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Abstract –This work deals on the estimation of the radar
cross section (RCS) of five three-dimensional conduc-
tive objects: the metallic sphere, NASA almond, single
ogive, double ogive and conesphere, using the Moment
Method. The Rao-Wilton-Glisson (RWG) basis functions
were used to expand the surface current of targets inside
the Electric Field Integral Equation (EFIE). Triangular
domains of RWG basis functions were constructed using
MATLAB tessellation capabilities and a MATLAB code
was developed and run to solve the electromagnetic scat-
tering problem. As a result five RCS graphs, one for each
target, were obtained. The accuracy of the program was
validated by comparing the obtained results with those
reported in the Literature.

Keywords:Radar Cross Section (RCS), Method of Mo-
ments (MoM), Electric Field Integral Equation (EFIE),
Rao-Wilton-Glisson (RWG) basis functions, and Compu-
tational Electromagnetics (CEM).

I. INTRODUCTION

It is well known that the problem ofElectromagnetic
Scatteringfor targets of arbitrary shape is either difficult
or impossible to treat analytically. This is due among
others to the complicated effect of targets curvatures,
corners, and dielectrics which could overlap the target.
This is the reason why in order to get an inside into the
scattering mechanism, available numerical methods must
be used.

This work deals on the estimation of the radar cross
section (RCS) of five three-dimensional conductive ob-
jects: the metallic sphere, NASA almond, single ogive,
double ogive and conesphere, using the moment method
[1]. Most of this objects are radar benchmark targets
widely used for the validation of computational electro-
magnetic codes. Theirs geometries are well described in
[2].

The electric current and charge densities at the tar-
get surface are expanded using the Rao-Wilton-Glisson
(RWG) basis functions [3]. Discretization of target sur-
face is achieved using MATLAB tessellation capabilities
taking into account the work of Makarov [4]. Although
the MATLAB built-in functions are used for writing the

code and for rendering the results, this paper emphasizes
the main equations but not on transcribing the code.

This article is organized in the following way: Section
2 presents the theoretical concepts used for the problem.
Section 3 presents the numerical approach used to obtain a
solution for the scattering problem of electrical conductive
objects using the MoM and the RWG basis function. In
Section 4 the numerical results obtained from simulation
are presented and, finally, in Section 5 conclusions are
given.

II. THEORETICAL CONCEPTS

A. The Radar Cross Section

The radar cross section (RCS) is a figure of merit that
quantifies the amount of electromagnetic energy scattered
in a given direction. The RCS, denoted by the greek letter
σ is defined as follow [5,6],

σ
(

κi, κs
)

= lim
r→∞

(

4πr2
|Es

|
2

|Ei
|
2

)

(1)

whereEi is the incident field in a directionκi, Es is the
scattered field in a directionκs. Whether the directions
κi andκs coincide or not, we talk about monostatic RCS
or bistatic RCS, respectively. In the present work we will
focus on the monostatic RCS, even though the bistatic
RCS can also be computed easily.

B. The Electric Field Integral Equation

In free space, where a scatterer could be in the
presence of a forced incident electric fieldEi, there will
be a resultant electric fieldE, given byE = Ei +Es. In
this assumption, the fieldEs would be the scattered field.
Over a Perfect Electric Conductor (PEC) scatterer surface,
the tangential component of the electric field must vanish,
hence,

n ×

(

Ei + Es
)

= 0 (2)

where n is the scatterer’s surface normal vector. The
Equivalence Principle[5] establishes as a sources for
Es, a current densityJs and a superficial density of
chargesρs, both related through thecontinuityof current
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ρs = −
∇·Js

ω
. Hence, theEs could be computed by the

following expression,

Es = −ωA−∇V (3)

with

A(r) =
µ

4π

∫

S′

Js(r
′)G(r, r′)dS′,

V (r) =
1

4πε

∫

S′

ρs(r
′)G(r, r′)dS′,

where G(r, r′) = e−κ|r−r
′|

|r−r′
|

, r and r′ are the position
vectors for observation and source points respectively,
κ = ω

√

µε is the wavenumber, and finallyS′ is the
scatterer’s surface seen as a source domain. By means
of simple substitutions, and taking into account that
−ωρ = ∇

′
· J , equation (2) is rewritten as follows,

n × 
ωµ

4π

∫

S′

[

Js(r
′)G(r, r′)+

1

κ2
∇∇

′
· Js(r

′)G(r, r′)
]

ds′ = n × Ei. (4)

The equation (4) is a integral equation of first kind
[7] in the form L(u) = v known as the electric field
integral equation (EFIE), where one recognizes,

L( ) ≡

n × 
ωµ

4π

∫

S′

[

( )G(r, r′) +
1

κ2
∇∇

′
· ( )G(r, r′)

]

ds′

u ≡ Js

v ≡ n × Ei.

For most of practical targets, equation (4) can not
be solved analytically, but must be solved numerically.
Equation (4), in principle, will be used to compute the
induced current on the PEC scatterer surface.

III. THE NUMERICAL SOLUTION

The numerical solution to equation (4) will be ob-
tained using the moment method as described in [1] . The
RWG basis functionfn will be used for the expansion of
the induced currentJs [3].

A. Filling the impedance matrix

To fill the impedance matrixZ, two integrals:
the integral of the inner product definitionZmn =
〈wm,L (fn)〉 =

∫

Sm

wm · L (fn) and the convolution
integral given byL (fn) must be solvedN × N times
[1]. The complexity of the former will be determined by
the election of theweightingfunctionwm. The weighting
functions wm must be in the rank ofL preferably, to
accelerate the convergence [1]. Nevertheless, this premise
is not restrictive [8]. Although there exist several possibil-
ities for the choosing ofwm, in this work it is preferred
to use Galerkin approach as Rao et al. [3] suggested.

1) Numerical Integration: The integral Zmn =
∫

Sm

fm ·L (fn) dSm will be approximated by the product
of its argument evaluated at the barycenter (center of
mass) of each triangle and their areas respectively. Hence,

Zmn =

∫

T
+
m

fm · L (fn) dS +

∫

T
−
m

fm · L (fn) dS (5)

≈

lm
2

[

ρc+
m · L (fn)|

ρc+
m

+ ρc−
m · L (fn)|

ρc+
m

]

whereρc±
m is the position vector for the barycenters of

trianglesT±

m and lm is the length of the common edge.
Taking into account the definition forL, equation (5) is
written as,

Zmn = ωlm

(

Am+,n ·

ρc+
m

2
+ Am−,n ·

ρc−
m

2

)

+

lm
(

Vm−,n − Vm+,n

)

(6)

where

Am±,n =
µ

4π

∫

S′

fn

e−κR±
m

R±

m

dS′,

Vm±,n = −

1

4πωε

∫

S′

∇
′
· fn

e−κR±
m

R±

m

dS′,

and R±

m =
∣

∣rc±
m − r′

∣

∣.
Finally, developing equation (6) is obtained forZmn,

Zmn =

lm
8

( ηκ

π

)

ρc±
m ·

∫

T
+
n +T

−
n

fnG
(

rc±
m , r′

)

dS′
±

lmln
4

( η

πκ

)

[ 1

A+
n

∫

T
+
n

G
(

rc±
m , r′

)

−

1

A−

n

∫

T
−
n

G
(

rc±
m , r′

) ]

(7)

whereρc±
m andrc±

m are position vectors for the barycen-
ters of trianglesT±

m measured locally and globally, re-
spectively.

To solve the remaining integrals in equation (7),
several approaches can be followed [9,10]. Particulary,
for this work, it has been adopted to use the so call
barycentric subdivision[4,11]. According to this, any
triangleT is subdivided in9 subtriangles applying the1/3
rule. Hence, the integrand is consideredconstantin any of
the subtriangles. Due to this procedure the singularity of
equation (4) is avoided because of subtriangle’s midpoints
for each source trianglesT±

n never coincide with centers
of observation trianglesT±

m . The barycentric subdivision
is resumed as,

∫

S

g(r)dS =
A

9

9
∑

k=1

g(rc
k). (8)
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Applying equation (8) to equation (7), one obtains,

Zmn =


lmln
144π

ωµρc±
m ·

9
∑

k=1

ρ
c+
k G

(

r±
m, rc+

k

)

+ρ
c−

k G
(

r±
m, rc−

k

)

± 
lmln
36π

1

ωε

9
∑

k=1

G
(

r±
m, rc+

k

)

− G
(

r±
m, rc−

k

)

. (9)

Equation (9) shows thatZmn ≡ Zmn+ + Zmn− . Both
terms defined in the following way,

Zmn+ = 
lmln
144π

ωµ

9
∑

k=1

ρc±
m · ρ

c+
k g±m

(

r
c+
k

)

± 
lmln
36π

1

ωε

9
∑

k=1

g±m

(

r
c+
k

)

(10a)

Zmn− = 
lmln
144π

ωµ

9
∑

k=1

ρc±
m · ρ

c−

k g±m

(

r
c−

k

)

± 
lmln
36π

1

ωε

9
∑

k=1

g±m

(

r
c−

k

)

, (10b)

whereg±m

(

r
c±

k

)

= G
(

r±
m, rc±

k

)

.
Even when the definitions in equation (10) could

be trivial, they give the opportunity to fill[Z] using
a triangle-triangle approach instead of aedge-edgeap-
proach, making the filling of[Z] faster.

B. Computing the Scattered Field

Once theJs has been computed through the MoM
equation[Z][I] = [V ], the scattered fieldEs must be
determine to estimate the RCSσ

(

κi, κs
)

. The approach
used in this work to computedEs is based on thedipole
approximation(see Fig. 1) [4].��

�� �
��� ����	
� �	
��
��� ���

Fig. 1. Equivalent dipole associated with a generic RWG
basis function.

This approach states for the particular case that:The
electric field radiated by one single RWG basis function
fn can be approximated at far distances by that one of

a dipole placed fromrc+
n to rc−

n with current moment
I∆l = Inln

(

rc−
n − rc+

n

)

. Hence, the generalized ex-
pression for theEs would be the following,

Es =

N
∑

n=1

κη
e−κ|r−rm|

4π|r − rm|

(M − m) (11)

Hs =

N
∑

n=1

κ
e−κ|r−rm|

4π|r − rm|

(m × ar), (12)

with M = (r · m)/r2, m = mal according to Fig. 1
andN is the number of edges in the target discretization.

IV. SIMULATION AND RESULTS

In order to evaluate the method explained in the
preceding sections, a total of five targets were chosen.
These targets have been extensively used by the electro-
magnetics community as benchmark targets to validate
computational electromagnetic methods. To illuminate
them, a plane wave is used as the electromagnetic incident
field. The parametric equations that model their surfaces
can be found in [2]. The chosen targets are presented in
Fig. 2.

Figure 3 represents the RCS computed for the metal-
lic sphere as a function of the frequency. It has been per-
formed a frequency sweep in the range of0.1 ≤

2πa
λ

≤ 6
with a = 1m., the radius of the sphere. In Fig. 3 the
computed RCS is plotted in continuos red line, while
the benchmark values already reported in [12] are plotted
using blue rhombus.

Figure 4 represents the monostatic RCS computed
for the metallic almond at1.19 GHz. It is descomposed
in terms of verticalσV V and horizontalσHH polarized
radar cross section as a function of incident angleφ,
starting from0◦ and stoping at180◦ using0.125◦ as a step
size. The elevation angle is zero. Zero degrees azimuth
corresponds to an incident on the tip. At1.19 GHz the
metallic almond is one wavelength long. The incident
angle is the azimuth in a standard spherical coordinate
system. TheσV V and σHH are defined when|Ei| = 1
as,

σV V = lim
r→∞

4πr2
∣

∣EV
s

∣

∣

2

(13)

σHH = lim
r→∞

4πr2
∣

∣EH
s

∣

∣

2

. (14)

The computed estimations of vertical and horizontal
RCS are plotted in blue and red continuos line, while
the benchmark reported in [2] is plotted as rhombus and
squares, respectively.

Figure 5 represents the monostatic RCS computed
for the metallic single ogive at1.18 GHz. The RCS for
both, the vertical and the horizontal are plotted in dBSM,
as a function of the azimuth angle. The elevation angle
is zero again. Zero degrees azimuth correspond to an
incident normal to a tip of the metallic single ogive. As
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(a) Metallic sphere with 2272 triangles.
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(b) Metallic almond with 1792 triangles.
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(c) Metallic single ogive with 1900 triangles.
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(d) Metallic double ogive with 1520 triangles.
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(e) Metallic conesphere with 900 triangles.

Fig. 2. Chosen Target to validate the method.
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Fig. 3. Estimated RCS for the Metallic Sphere as a
function of frequency.

expected, the vertically and horizontally polarized RCS
are equal at0◦ and 180◦ of azimuth in Fig. 5. At1.18
GHz, the metallic single ogive is one wavelength long.
The computed estimations for vertical and horizontal RCS
are plotted in blue and red continuos line, respectively,
while the benchmark is plotted as rhombus and squares.

Figure 6 represents the monostatic RCS computed for
the metallic double ogive at1.57 GHz. It is decomposed
in terms of verticalσV V and horizontalσHH polarized
radar cross section as a function of incident angleφ. The
RCS for both the vertical and the horizontal polarized
RCS are plotted in dBSM. The elevation angle is zero.
At 1.57 GHz the metallic double ogive is one wavelength
long.
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Fig. 4. EstimatedσV V andσHH for the metallic almond
as a function of the incident angleφ.

Figure 7 represents the monostatic RCS computed for
the metallic cone-sphere at869 MHz. Both horizontal and
vertical polarizations are plotted against azimuthal angle.
Zero degrees azimuth is toward the pointed end. At869
MHz, this target is two wavelength long. Good agreement
between the computed RCS and those used as a reference
is observed from the previous figure.

V. CONCLUSIONS

In this work, the Method of Moments (MoM) with
Rao-Wilton-Glisson basis functions has been used to
develop and test a method for the estimation of the radar
cross section for metallic conductive object of arbitrary
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Fig. 5. EstimatedσV V andσHH for the metallic single
ogive as a function of the incident angleφ.
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Fig. 6. EstimatedσV V andσHH for the metallic double
ogive as a function of the incident angleφ.
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Fig. 7. EstimatedσV V andσHH for the metallic cone-
sphere as a function of the incident angleφ.

shape. It has used five extensively used targets to test
and validate the method employed. Excellent agreement
is seen between the computed results and those already
reported in previous investigation. The numerical proce-
dure already described can be easily extended to scatterers
of any geometrical shape.
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