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Abstract —This work deals on the estimation of the radarcode and for rendering the results, this paper emphasizes
cross section (RCS) of five three-dimensional conducthe main equations but not on transcribing the code.

tive objects: the metallic sphere, NASA almond, single  This article is organized in the following way: Section
ogive, double ogive and conesphere, using the Momer presents the theoretical concepts used for the problem.
Method. The Rao-Wilton-Glisson (RWG) basis functionsSection 3 presents the numerical approach used to obtain a
were used to expand the surface current of targets insid®lution for the scattering problem of electrical conductive
the Electric Field Integral Equation (EFIE). Triangular objects using the MoM and the RWG basis function. In
domains of RWG basis functions were constructed usingection 4 the numerical results obtained from simulation
MATLAB tessellation capabilities and a MATLAB code are presented and, finally, in Section 5 conclusions are
was developed and run to solve the electromagnetic scadriven.

tering problem. As a result five RCS graphs, one for each

target, were obtained. The accuracy of the program was Il. THEORETICAL CONCEPTS

validated by comparing the obtained results with those _
reported in the Literature. A. The Radar Cross Section

Keywords:Radar Cross Section (RCS), Method of Mo- o o ute 8 812008 S8 B0 P8 B0E e T ered
ments (MoM), Electric Field Integral Equation (EFIE), q 9 9y

Rao-Wilton-Glisson (RWG) basis functions, and Compu-in a givgn direction. The RCS, denoted by the greek letter
tational Electromagnetics (CEM). o is defined as follow [5,6],

s|2
|. INTRODUCTION o (k% K®) = lim (zm? ||§i||2) 1)
S It is. er" known th?t thbe. problehm (Ellectr_orr]nagdr!;_ticl whereE? is the incident field in a directior?, E* is the
catteringfor targets of arbitrary shape Is either difficult g yereq field in a directior®. Whether the directions

or impossible to treat analytically. This is due among i ond,.# coincide or not, we talk about monostatic RCS

others to the complicated effect of targets Curvatures, - piqtatic RCS, respectively. In the present work we will

corners, and dielectrics which could overlap the targets s on the monostatic RCS, even though the bistatic
This is the reason why in order to get an inside into thq?CS can also be computed easily,

scattering mechanism, available numerical methods must
be used. B. The Electric Field Integral Equation

Th|s work deals on the estimation of the rada_r CroSs | free space where a scatterer could be in the
section (RCS) of five three-dimensional conductive ob-

) ) . . OPresence of a forced incident electric fidkf, there will
jects: the metallic sphere, NASA almond, single ogive,pq 5 resultant electric fielf, given by E = E* + E*. In

double ogive and conesphere, using the moment methaflis assumption, the fielér* would be the scattered field.
[1]. Most of this objects are radar benchmark targetsyyer 5 Perfect Electric Conductor (PEC) scatterer surface,

widely used for the validation of computational electro- e tangential component of the electric field must vanish,
magnetic codes. Theirs geometries are well described ifance

[2].

The electric current and (?harge densitieg at thg tar- n x (Ez + Es) —0 )
get surface are expanded using the Rao-Wilton-Glisson
(RWG) basis functions [3]. Discretization of target sur-where n is the scatterer’s surface normal vector. The
face is achieved using MATLAB tessellation capabilitiesEquivalence Principle[5] establishes as a sources for
taking into account the work of Makarov [4]. Although E*®, a current densityJs; and a superficial density of
the MATLAB built-in functions are used for writing the charges,, both related through theontinuity of current
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pPs = —%. Hence, theE, could be computed by the 1) Numerical Integration: The integral Z,,, =
following expression, fsm Fm-L (frn)dS,, will be approximated by the product
B o_ A_VV 3 of Its argument evaluated at the barycenter (center of
s = TJwaAT ®) mass) of each triangle and their areas respectively. Hence,
with
A = £ [ 5060 Zon= [ Fm £+ [ fn L0535 @
47T S’ T;{ T
! I et £ (fa)l s + 05T £(F)
V(T):—/ ps(rG(r,r")dS’, o [Pm n)lpgk T Pm n/lpgk
47T€ S’
N — - here pc* is the position vector for the barycenters of
where G(r,1") = “—— ‘ ‘, r and r’ are the position W P | position v Y

r—r’] trianglesT’t andl,, is the length of the common edge.

vectors for observation and source points respectivelyl-aking into account the definition fof, equation (5) is
k = wy/ue is the wavenumber, and finallg’ is the written as
S 1

scatterer’'s surface seen as a source domain. By mean

of simple substitutions, and taking into account that pet pe=
—gwp =V’ J, equation (2) is rewritten as follows, Zmn = Jwln <Am+,n : Tm . W T”) +
n % jw_:u’ [JS(T/)G(T‘, ’f‘l)—|— Im (Vm*.,n - m*,n) (6)
47 %
1 where
—VV' - Jo(r")G(r,r")] ds' = n x E;. (4) kR
K 7 e m ,
. . . . . . Ami n— 5 fn T ds’,
The equation (4) is a integral equation of first kind ’ AT ) g m
[7] in the form L(u) = v known as the electric field
integral equation (EFIE), where one recognizes, 1 , e—InRE ,
Vit = =g [V S
’ T € ’ m
L()=
Wit , 1 , , , and Rt = ’rci—r".
— G —VV'- ()G d m m . . . .
X e / [( )G )+ K2 OG(rr )} ’ Finally, developing equation (6) is obtained 8.,
u=Jg
Zmn =
v=nXxE;. l
_ i | I (2212) e / FnG (reE 1) dS'+
For most of practical targets, equation (4) can not g\ m T +T7
be solved analytically, but must be solved numerically. Imln (ﬂ) [i a (r"i r,)
Equation (4), in principle, will be used to compute the 4 \mr/ AL Jrr m’

induced current on the PEC scatterer surface. 1 et s
-0 [ G O
I1l. THE NUMERICAL SOLUTION n T

where,ofr{E andr;jic are position vectors for the barycen-

The numerical solution to equation (4) will be ob- £ analesTE d locall d aloball
tained using the moment method as described in [1] . Th(t—.‘ers ot nanglest;, measured locally and globaily, re-

RWG basis functiory;,, will be used for the expansion of Spectively. L . .
the induced currend, [3]. To solve the remaining integrals in equatlon (7),
several approaches can be followed [9,10]. Particulary,
A. Filling the impedance matrix for this work, it has been adopted to use the so call
To fill the impedance matrixZ, two integrals: bgrycentrilc subdiyisior_[4,11]. According to.this, any
the integral of the inner product definitiod,,, = triangleT"is subdivided ir subtriangles applying thi/3

(Wi, £ (fn)) = [5 Wm - L(fx) and the convolution rule. Hen_ce, the integrand i; consideMstanﬁn any o_f
integral given by~ (f,,) must be solvedV x N times the su_btrlangles. Due to this procedure_the smgul_arlty_ of
[1]. The complexity of the former will be determined by €duation (4) is avoided because of subtriangle’s midpoints
the election of thaveightingfunctionw,,,. The weighting for each source triangl€E* never coincide with centers
functions w,, must be in the rank of preferably, to pf observation triangle® . The barycentric subdivision
accelerate the convergence [1]. Nevertheless, this premiée resumed as,

is not restrictive [8]. Although there exist several possibil- 4D
ities for the choosing ofvr,, in this work it is preferred / g(ryds = = Zg(ﬁj)- (8)
to use Galerkin approach as Rao et al. [3] suggested. s 9 1
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Applying equation (8) to equation (7), one obtains,

Zmn:
144 wips Zp +G( rE.r

Ll 1 . L et 4 e
ij367rEk G(r rk) G(rm,rk ) (9)

+)+pZ_G (ri, rg_)

Equation (9) shows tha¥,., = Z,,,+ + Z,.n—- Both

terms defined in the following way,

Zamnt = 144 a i( c+)
9
367T wez: (r?’) (102)
Zmn= 144 “me Pk gm( )
Inln 1 = & [ o
736 we 2= (T’f ) (100)
whereg® (r

ci Ggri r,cci )

Even when the

be trivial, they give the opportunity to fil[Z] using
a triangle-triangle approach instead of aedge-edgeap-
proach, making the filling ofZ] faster.

B. Computing the Scattered Field

Once theJs has been computed through the MoM
equation[Z][I] = [V], the scattered field®s must be
determine to estimate the RGS(x*, k*). The approach

used in this work to computeB* is based on théipole
approximation(see Fig. 1) [4].

Fig. 1. Equivalent dipole associated with a generic RWG

basis function.

This approach states for the particular case thia&

efinitions in equation (10) couldith 4 — = 1m.,

a dipole placed fromret to r&~ with current moment
IAl = I,l, (r& —r&T). Hence, the generalized ex-
pression for theE* would be the following,

N
e J“‘T Tm‘
E, = - (M- 11
;Jm%'r |( m) (11)
H, R 12
Z-] 47T|T_Tm|(mxa7‘)a ( )

with M = (r - m)/r?, m = ma; according to Fig. 1
and N is the number of edges in the target discretization.

V. SSIMULATION AND RESULTS

In order to evaluate the method explained in the
preceding sections, a total of five targets were chosen.
These targets have been extensively used by the electro-
magnetics community as benchmark targets to validate
computational electromagnetic methods. To illuminate
them, a plane wave is used as the electromagnetic incident
field. The parametric equations that model their surfaces
can be found in [2]. The chosen targets are presented in
Fig. 2.

Figure 3 represents the RCS computed for the metal-
lic sphere as a function of the frequency. It has been per-
formed a frequency sweep in the rangeaf < 27“1 <6
the radius of the sphere. In F|g 3 the
computed RCS is plotted in continuos red line, while
the benchmark values already reported in [12] are plotted
using blue rhombus.

Figure 4 represents the monostatic RCS computed
for the metallic almond at.19 GHz. It is descomposed
in terms of verticaloyy and horizontalb; polarized
radar cross section as a function of incident angle
starting from0° and stoping at80° using0.125° as a step
size. The elevation angle is zero. Zero degrees azimuth
corresponds to an incident on the tip. Atl9 GHz the
metallic almond is one wavelength long. The incident
angle is the azimuth in a standard spherical coordinate
system. Theryy and oy are defined whenkE;| = 1
as,

ovy = lim 42 |EY | (13)
oup = lim dmr? [EH |, (14)

The computed estimations of vertical and horizontal
RCS are plotted in blue and red continuos line, while
the benchmark reported in [2] is plotted as rhombus and
squares, respectively.

Figure 5 represents the monostatic RCS computed
for the metallic single ogive at.18 GHz. The RCS for

both, the vertical and the horizontal are plotted in dBSM,
as a function of the azimuth angle. The elevation angle

electric field radiated by one single RWG basis functionis zero again. Zero degrees azimuth correspond to an
fn can be approximated at far distances by that one oincident normal to a tip of the metallic single ogive. As
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(a) Metallic sphere with 2272 triangles. (b) Metallic almond with 1792 triangles. (c) Metallic single ogive with 1900 triangles.
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(d) Metallic double ogive with 1520 triangles(e) Metallic conesphere with 900 triangles.

Fig. 2. Chosen Target to validate the method.

expected, the vertically and horizontally polarized RCS
are equal at0° and 180° of azimuth in Fig. 5. At1.18

GHz, the metallic single ogive is one wavelength long.yertical polarizations are plotted against azimuthal angle.
The computed estimations for vertical and horizontal RCSzero degrees azimuth is toward the pointed end8@s

are plotted in blue and red continuos line, respectivelymHz, this target is two wavelength long. Good agreement
while the benchmark is plotted as rhombus and squaregetween the computed RCS and those used as a reference

RCS dBSM
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Fig. 3. Estimated RCS for the Metallic Sphere as aFig. 4. Estimatedr andogy for the metallic almond
function of frequency. as a function of the incident angte

Figure 7 represents the monostatic RCS computed for
the metallic cone-sphere &9 MHz. Both horizontal and

Figure 6 represents the monostatic RCS computed fos observed from the previous figure.

the metallic double ogive at.57 GHz. It is decomposed

in terms of verticaloyy and horizontalb; polarized V. CONCLUSIONS

radar cross section as a function of incident angl&he

RCS for both the vertical and the horizontal polarized In this work, the Method of Moments (MoM) with
RCS are plotted in dBSM. The elevation angle is zeroRao-Wilton-Glisson basis functions has been used to

At 1.57 GHz the metallic double ogive is one wavelengthdevelop and test a method for the estimation of the radar
long.

cross section for metallic conductive object of arbitrary
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o e shape. It has used five extensively used targets to test
o and validate the method employed. Excellent agreement
o is seen between the computed results and those already
1 reported in previous investigation. The numerical proce-

dure already described can be easily extended to scatterers

of any geometrical shape.
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