ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, Sl CEM & HPC

107

Highly Parallel Implementation of the 3D Integral Equation

Asymptotic Phase Method for Electromagnetic Scattering’

Xianneng Shen, RS/6000 System Division, IBM Corporation
Aaron W. Davis, Computer Science Department, University of Washington
Keith R. Aberegg, ERIM International, Ann Arbor, MI
Andrew E. Peterson, School of Electrical & Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0250, peterson@ee.gatech.edu

ABSTRACT: In this paper, we discuss the
implementation of the 3D Integral Equation—Asymptotic
Phase (IE-AP) method using the parallel architecture IBM
RS/6000 SP. The IE-AP method is a hybrd
numerical/asymptotic approach for electromagnetic
scattering that attempts to reduce the number of unknowns
required to accurately model electrically large structures.
The IE-AP method will be described, and results will be
reported for the parallel matrix fill implementation, and
the relative performance of the PESSL and PETSc
toolkits for parallel matrix solution.

1. Introduction

The application of interest is the radar cross-section (RCS)
computation for a 3D arbitrarily shaped electrically large
target. Practical RCS prediction using numerical methods
has long been thought of as unrealistic because of the
excessive computation and memory requirements. The
RCS prediction of a fighter-sized aircraft, for example,
requires the solution of a mairix equation whose
dimension can easily exceed 10°. The cost of such
computations also discouraged efforts to improve other
aspects of computational -electromagnetics. The
successful development of massively parallel processing
{MPP) technologies improves the opportunity to solve
these problems [1-4].

In this paper, we discuss the development and
implementation of the 3D Integral Equation — Asymptotic
Phase (IE-AP) code using a Massively Parallel Processing
{MPP) architecture. The TE-AP method is a hybnd
numerical/asymptotic approach for electromagnetic

scattering that incorporates an asymptotic phase function
in an attempt to reduce the number of required unknowns
by as much as an order of magnitude. The formulation
was originally implemented as a traditional serial process
[5-6]. In order to fully test the IE-AP approach, the
method was implemented on a parallel-architecture IBM
RS/6000 SP. An overview of the IE-AP formulation is
presented in the following section, while the remainder of
this article is focused on the parallel implementation
using the IBM SP and some of the observations we made
during this process.

2. The IE-AP Formulation

The Integral Equation — Asymptotic Phase (IE-AF)
method is a hybrid numerical/asymptotic procedure for
determining the current density and far fields associated
with electromagnetic scatterers. The method attempts to
eliminate the traditional dependence on a 10-per-
wavelength unknown density, without limiting the shape
of the target under consideration or the accuracy. The
method has been developed and tested on 2D [5] and 3D
[6] perfectly conducting scatterers, and the initial results
suggest an order of magnitude reduction in the necessary
unknown density. In the present implementation of the
method, the current density is taken to be the product of
an asymptotic result (the phase of the physical optics
current} and a residual vector function that is solved for
using the method of moments. The motivation for the
approach is the idea that the traditional 10-per-wavelength
unknown density is primarily dictated by the phase
progression of the electromagnetic wave or current (360
degrees per wavelength), and therefore over large portions

! This work was supported by the Cornell Theory Center, by a Supercomputing Program for Undergraduate Research Grant
from the National Science Foundation, and by NSF ECS-9257927.

1054-4887 @ 1998 ACES

108

of targets an asymptotic result can provide the necessary
phase progression. By treating the unknown curmrents as a
product of the asymptotic result and an unknown residual
function, it is thought that the residual function will be
slowly varying and therefore can be represented by far
fewer unknowns per wavelength.

The two-dimensional implementation of the IE-AP
method reported in [5] involved the combined-field
equation (CFIE), curved (parabolic) cells, subsectional
quadratic polynomial basis functions, Dirac delta (TM) or
pulse (TE) testing functions, and the incorporation of the
appropriate TM edge singularity at comers. Test
geometries considered in [5] consisted of circular cylinders,
elliptic cylinders, wedge-cylinder structures, and square
cylinders, all of which had perimeter dimensions in the
range of 44 to 71 wavelengths. In most cases, the IE-AP
result obtained with an average unknown density of one
per wavelength or less differed by no more than 3 percent
from a reference numerical solution obtained with the
traditional 10-unknowns-per-wavelength density. In the
2D case, the method appears to produce an order-of-
magnitude reduction in unknown density without
significant additional error in the results. Based on the
apparent success of the 2D approach, the idea was exiended
to three dimensions [6].

To eliminate interior resonance difficulties that arise with
the analysis of electrically large scatterers with the
electric-field or magnetic-field equations [9-10], the 3D
CFIE was employed. The CFIE for scattering from
perfectly conducting targets can be written in the form

-, T VV-A+KA
e B+ (I—a)nax H =—a (—-—-—-—-—-—J
Jox tan

+(1-am G, —nx VxA) (D

where ¢ is an arbitrary parameter in the range 0 < ¢ < 1,
n is the medium impedance, £ is the permittivity, ® is
the radian frequency,

—jkR

_ _ o
A(u,\')':IIJS(u’,v') TR du’dv’ 2

and R is the distance from the source point (u’.v") to the
observation point (u,v), which in (1) is located an
infinitesirnal distance outside the scatterer.

Assuming that the incident field is a uniform plane wave,
the current in Equation (1) is replaced by the expansion

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, Sk CEM & HPC

}s(u,v) = ejk(x sinf cos¢ +y sin® sind + z cosB) 2 jn ﬁn(u,v)

n

3

where (x,y,z) denotes a point on the surface of the scatterer
with a local parametric representation (u.v), and (8,0)
denotes the spherical angle from which the incident wave
propagates. The exponential function represents the
asymptotic phase associated with the uniform plane wave
excitation; equivalently this is the phase arising from the

" physical optics approximation of the surface current. In

contrast to the classical physical optics approximation,
however, we use (3) throughout the lit and shadow
portions of the target.

Our implementation uses triangular patches with parabolic
curvature to represent the scatterer, and a type of razor-
biade testing function to enforce the equation [8]. Based
on our experience with the 2D results, it was decided to
implement higher-order basis functions for the 3D case
instead of the traditional Rao-Wilton-Glisson (RWGQ)
functions, which provide at most a linear representation.
The vector basis functions we implemented have one
higher polynomial order in each variable than the RWG
functions, and provide a linear representation of the
normal vector component and a quadratic representation of
the tangential vector component (LN/QT) along cell edges
prior to mapping [7, 10]. The mapping process used to
incorporate patch curvature is described in [8]. Reference
[7] provided data showing the improved accuracy of the
LN/QT functions on curved patches compared with the
RWG functions on flat facets, and demonstrated a
reduction of 2-3 in the required number of unknowns.
[Note that this improvement does not take into account
the incorporation of the asymptotic phase function in
Equation (3).]

A few preliminary results were generated for the 3D IE-
AP method, incorporating the asymptotic phase function,
using spheres and cone-spheres as test cases [6]. Spheres
permit a comparison with the exact solution, while cone-
spheres permit comparison with alternative formulations
that incorporate axial symmetry (so-called “body of
revolution” codes). For example, Figures la, 1b, and ic
show the surface currents and scattering cross section for a
sphere of radius 3A. These results were obtained using
720 unknowns, for an average unknown density of about
6.5 unknowns per square wavelength of surface area. Note
that there are discontinuities in the current, more evident
in the ¢ component, which are typical of any expansion
in divergence-conforming vector basis functions (such as
the RWG functions and the LN/QT functions used here).
For the particular mesh used to produce these data, the

SHEN stal: IMPLEMENTATION OF THE 3D INTEGRAL EQUATION ASYMPTOTIC PHASE METHOD 109

scattering cross section exhibits some error in the 60-90
degree sector.

As a second example, consider a cone-sphere with a total
length of 10 wavelengths, an endcap radius of 1.48 A, and
a cone half angle of 7.5 degrees. Figure 2 shows the
scattering cross section obtained with the IE-AP
formulation using 1600 unknowns, for a total average
density of 29 unknowns per square wavelength. A
reference solution obtained using a “body of revolution”
code with 40 unknowns per wavelength along the
generating arc is shown for comparison. Although the
agreement is acceptable over most of the range, the data
show some apparent efror in the 0-80 degree portion of the
plot.

The preceding results suggest that a substantial reduction
in unknowns might be possible with the IE-AP approach,
as compared with a traditional subsectional integral
equation formulation that almost always requires more
than 100 unknowns per square A. However, the specific
results in Figures 1 and 2 contain error, and better scatterer

1L

Current Density Magnitude

0
Theta (deg)

Figure 1a. The O-component of the sarface current
density induced on a sphere of radius 3 A. The CFIE
result (markers) obtained using the IE-AP expansion with
only 720 unknowns is compared with the exact solution
(solid curve).

("]

b

Current Density Magnitude

Theta {deg)

Figure 1b. The ¢-component of the surface current
density induced on a sphere of radius 3 A. The CFIE
result {markers) 1s compared with the exact solution (solid
curve).

20,
K T T

40

RCS (dB/m**2)

20

O T -r T
Q 100 180
Theta (deg)

Figure 1c. The scattering cross section for a sphere of
radius 3 A. The CFIE result obtained using the IE-AP
expansion with only 720 unknowns (markers) is compared
with the exact solution (solid curve).

110

30 T T
20
10
~
*
"
=
= 7
o
&1
-
— 10
20+
-30 T Y
o 100 180
Theta (deg)
Figure 2. The scattering cross section of a cone-sphere

of length 10 A, an endcap radius of 1.48 A, and a cone half
angle of 7.5 degrees. Results obtained using the IE-AP
formulation with 1600 unknowns (markers), a density of
29 unknowns per A%, are compared with a reference
solution obtained using a “body of revolution™ code with
40 unknowns per wavelength along the generating ac
(solid curve).

meshes are necessary to improve the accuracy of the
results. These test cases were meshed empirically, with
many of the cells electrically large (less than 10
unknowns per wavelength over most of the cone-sphere,
but with a much higher density of cells near the tip).
Since the <cell sizes arising within the IE-AP
implementation can range from the usual size (0.1 A} to
cells that can be quite large (perhaps 10 A in some
situations) it is difficult to amrive at a nearly optimal
scatterer model without feedback from the numerical
solution. We feel that some form of adaptive gridding is
necessary to optimize the cell dimensions based on local
error estimates obtained from a coarse-cell model. In
addition, one would expect that the savings from the IE-
AP procedure would become greater as the electrical size
of the scatterer increased. Unfortunately, available
computer resources limited the range of scatterers easily
analyzed in [6] to those of about 10 wavelengths in linear
dimension. In order to treat larger problems and study the
IE-AP method in detail, the present authors teamed with

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, 8l: CEM & HPC

the support of the Cornell Theory Center to adapt the
method to the parallel-architecture IBM SP machine.

Becanse of the reduced number of unknowns, and the
additional cost associated with the entries of the matrix
equation, the IE-AP method represents a shift of the
traditional computational burden away from the matrix
solve part of the process and toward the matrix fill part.
Consequently, the procedure might be easier to parallelize
with a high efficiency than a traditional integral equation
formulation. In the following sections, we conmsider the
parallelization of the 3D IE-AP algorithm for the IBM SP
architecture.

3. Parallel Implementation

There are several distinct paraliel-architecture computer
systems available [1-2, 11]. They can be cataloged as
shared memory, distributed shared memory, and distributed
memory systems. We implemented the parallel TE-AP
code on the Cornefl Theory Center’s 512-node IEM
RS6000 SP system using the Message-Passing Interface
(MPI). The IBM RS6000 SP employs a distributed
memory architecture with relatively powerful nodes and a
fast interconnect network, the SP switch network. The
SP supports three classes of parallel programming
models: message-passing, data parallel, and shared
memory. An explicit message-passing program can run
very efficiently since it matches the underlying SP system
architecture. The message-passing library can be accessed
from a FORTRAN program.

The explicit message-passing approach using MPI has a
number of advantages. MPI is a standard message-passing
library, and most parallel computer vendors have
implemented MPI to facilitate code portability despite
underlying hardware differences.

Because the IE-AP matrix entries involve a traditional
Green's function multiplied with an asymptotic phase
function, and integral domains that may span several
wavelengths, the matrix entry computation is somewhat
more costly than with a traditional 10-unknown-per-
wavelength integral equation code. For N unknowns, the
computational complexity of the matrix fill procedure is
N’ while the matrix factorization involves complexity of
order N'. The coefficient of the N’ term in the complexity
calculation for the IE-AP approach is somewhat larger
than in traditional formulations, while the order N is
smaller (by perhaps an order of magnitude). Since the
matrix fill task represents the majority of the computation
for a moderate-sized problem, the parallelization study

SHEN etal: IMPLEMENTATION OF THE 3D INTEGRAL EQUATION ASYMPTOTIC PHASE METHOD 111

initially focused on that part of the procedure.
Subsequently, a parallel LU factorization was
implemented using two available libraries.

The simple implementation of the matrix fill is discussed
in the following section. The remainder of the paper is
devoted to a discussion of the parallel LU factorization
procedure.

4. Parallel Matrix Fill

The matrix entries arising from integral equation
formulations are usually completely independent
expressions, and therefore the matrix fill task is easy to
parallelize with high efficiency [2-4, 12-14]. In our initial
implementation, every processor or node performs the
identical initialization tasks prior to the matrix fill.
Assuming P+1 available processors (or nodes) with one
used as a dedicated processor, the task of computing each
matrix entry is partifoned into P + | subtasks and
distributed among P processors and dedicated processor.
Each subtask involves computing a block of columns (or
rows) consisting of either int(N/P) or int{N/P)}+1 columns
(or rows) of the matrix. When each node finishes
computing it sends its block to the dedicated processor,
which assembles the global matrix. Thus, each processor
does only its share of the computation. In the initial
implementation, the dedicated node performed the matrix
factorization and solved the matrix equation. There is no
communication between nodes during matrix fill since all
the computation is carded out locally. Each node only
needs to communicate one block of data to the dedicated
PTOCEssOr.

If we define speedup as S=(sequential execution
time)/(parallel execution time), we are able to achieve
almost linear speedup in the matrix fill portion of the
program. [t is obvious that the limit of the speedup for a
P-processor system is P, a ideal speedup. In this case,
there is very little overhead in partitioning the data and no
message passing is needed during the matrix fill. This is
a very simple implementation but it achieves excellent
speedup for system with a few thousand unknowns.

Figure 3 shows the speedup achieved for a 1000 unknown
system by this approach verses the ideal speedup. There
are three speedup curves in Figure 3, labeled marrix fill,
optimal, and wall clock. The matrix fill speedup is the
ratio of the execution time of the matrix fill in one node
to that obtained multi-node. The wall clock time speedup
is the ratio of wall clock time used for the entire program
execution (including matrix solve} by one node to that
required multi-node. The optimal speedup is the ideal case

1 0 L 1 H 1 X, L L 1
optimal
8- * matrix fill d
b wall clock x

relative execution time

0 1 L) T 1 T L) T 13
1 2 3 4 5 68 7 8 9 10
nodes
Figure 3. Speedup obtained for a system of order 1000

when the matrix filt task is distributed among various
numbers of processors and the matrix solve task is
performed serially. The speedup for the matrix fill task
and the overall execution (wall clock) are compared with
perfect parallelism {optimal).

which achieves 100% parallelism. One can see that the
ideal speedup is almost achieved for the matrix fill but
poor speedup is observed overall (wall clock speedup).
The poor overall performance appears to be the result of
two major factors. Let T,, denote the wall clock time of
the parallel code execution, and T,, denote the wall clock
time of the sequential code execution. The wall clock
time speedup S, is given by S,=T,/T,,. There are three
factors contributed to T, , the parallel fill execution time,
the sequential execution time of the rest of the program
(in this case, primarily the matrix factorization), and the
communication time between the dedicated node and the
other nodes in the application. To improve the wall clock
speedup, the matrix solution procedure and the data
communication must be optimized.

5. Parallel Matrix Solve

The parallel implementation of the IE-AP matrix fill
process using MPI yielded substantial improvement over
the serial program. However, it is obviously not efficient
to communicate the entire matrix to a single processor for

112

factorization. Although the time to fill the matrix
dominates matrix solve time for small problems, this is
not the case for systems of order greater than 5000. An
additional limiting factor is incurred by communicating
the entire matrix to a single processor, which limits the
matrix order to a system small enough to fit within the
memory of a single processor. The Comell Theory
Center SP thin nodes with 128MB of RAM limit the
matrix order to 2400. An out-of-core solution could
alleviate this problem, but since we are already computing
the matrix elements on many different processors, an
easier solution is to eliminate the communication
requirement by performing the matrix factorization in
paraliel.

A large number of articles have proposed and evaluated
parallel matrix factorization algorithms [1-2, 11-17}
Since this is a relatively mature area for certain
architectures, and Iibraries for specific machines are in
widespread use [17], we chose to investigate parallel
numerical libraries specifically recommended for the SP-2.
The available libraries were the Portable Extensibie
Toolkit for Scientific computation (PETSc) and [BM's
Paralle! Engineering and Scientific Subroutine Library
(PESSL). Below, we report on our experience in using
these libraries to solve the system of equations in parallel.

5.1 Parallelization Using PETSc

The first attempt to add a parallel matrix solve was made
using the PETSc Version 2 Beta 13. PETSc is a parallel
numerical library developed at Argonne National
Laboratory that attempts to provide a high-level object-
oriented interface that automatically manages such details
as message passing.

In order to integrate PETSc into our application, we
compute the values to be inserted into the PETSc data
objects as before. We then call routines telling PETSc
where in the global structure to insert the data. Since the
programmer is generally unable to directly index
individual objects, PETSc maintains a certain tevel of
abstraction, allowing one to change the underlying
representation of a data object without actually modifying
the program.

After all the data objects have been set up, the application
invokes a PETSc solver, which for linear systems is the
SLES linear equation solver. In PETSc it is necessary to
create a solver context, which may be thought of as an
object representing the system. After matrices and vectors
have been associated with the system, one calls a generic
solve routine to actually solve the system. In its most

ACES JOURNAL, VOL. 13, NO. 2, JULY 1398, 51: CEM & HPC

basic form this process would be done in FORTRAN as
follows:

call SLESCreate(MPI_COMM WORLD, sles, ierr)

call SLESSetOperators(sles, A, A,
DIFFERENT MNONZERCO PATTERN, ierr)

call SLESSetFrandptions(sles, ierr)

call SIESSolve(sles, b, X, iterations,
ierr)

call SLESDestroy(sles, ierr)

This approach has the advantage of being general. By
only altering command-line options, it is possible to
change the method used to solve the system. The
developer can trivially test the utility of different
techniques for solving a given system.

After adapting to the peculiarities of the library, we were
able to create a working version of our application using
PETSc. PETSc allowed us to utilize the routines from
the MPI version with little modification, since PETSc
uses a slab data partitioning scheme compatible with our
original parallel fill routines. This made it possible to
call the original fill routines, then easily insert the entries
into a PETSc matrix. We then used the generic PETSc
solve functions, changing command-line options to
experiment with various methods.

We soon discovered that PETSc had severe limitations for
the IE-AP type of application, which produces a dense
matrix. The PETSc library is targeted at applications
with sparse matrices requiring iterative solution. There is
no parallel dense LU solver, which forced us to choose
between using dense matrices and an iterative solver or
using sparse matrices and a block Jacobi solver with LU
factorization on individual processor blocks. After some
experimentation we chose the latter, although even it did
not provide acceptable timing results.

5.2 Results Using PETSc

The PETSe toolkit is not well-suited for our application,
as we soon discovered upon viewing timing results.
Figure 4 shows the speedup achieved by this approach,
which is poor in terms of overall wall clock performance
and for the matrix fill part of the computation. The
application was executed with the command-line options

-mat_mpidense
~-pc_type bjacobi
-sub pc_type lu

Despite exhibiting substantial parallel speedup, the

SHEN etalr IMPLEMENTATION OF THE 3D INTEGRAL EQUATION ASYMPTQTIC PHASE METHOD 113

PETSc implementation was much slower than a hand-
coded LU routine executing on a single processor.

Upon examining these timings and the output given by
running the application with the PETSc option

-log_summary

we determined that the slow matrix fill time is due almost
totally to time spent in the matrix assembly routines.
Initially, we believed the problem was the result of our
attemnpting to insert values on the wrong processor and,
consequently, being forced to wait for PETSc to
communicate the data to the proper node. Unfortunately,
we tested a column block partitioning scheme and found
even worse results, leading us to believe that PETSc was
indeed partitioning as we first suspected but was forced to
do some communication during assembly. The execution
time could most likely be improved by interleaving some
communication between the assembly routines.

1 0 Il L L L L A 1 1
optimal
87 x matrix fill I
. wall clock

relative execution time
L

¥] T T T T

4 5§ 6 7 8 9 10

—
[}%)
[[

nodes

Figure 4. Speedup obtained for a system of order 1000
when the PETSc toolkit is emploved. The speedup for the
matrix fill task and the overall execution (wall clock) are
compared with perfect parallelism (optimal).

The poor times for the solver are easier to explain since it
was intended for sparse systems. It is possible that these
timing results are not entirely the fault of PETSc, as the
library gives the user much control over the algorithms
and data types used through the use of command-line
options. We may have chosen a poor combination of

options or done something else in a manner not conducive
to optimal performance. Nonetheless, PETSc does not
appear to be the best choice for this application.

5.3 Parallelization Using PESSL

Because of the poor results obtained from the PETSc
library, a second atiempt was made to parallelize the
matrix solver portion of the code using IBM’s Parallel
Engineering and Scientific Subroutine Library (PESSL).
PESSL is a library of numerical subroutines that are
optimized for the IBM RS/6000 architecture, leading us to
expect superior performance on the Cornell Theory Center
SP2. Furthermore, it is compatible with the widely
available ScalLAPACK library {17], thus facilitating ports
to additional architectures.

The use of PESSL is relatively straightforward. It is able
to operate on the data structures created in the original
MPI version of our code without modification. [t is
necessary, however, 10 set up descriptors giving the global
dimensions, block structure, and other partition
information for each data object. We found that the
method used to partition the matrix had a great impact on
performance and, therefore, experimented with several
methods. The task of finding an optimal partitioning
scheme and block size was hindered, however, by the sheer
number of modifications to the code required to implement
different partitioning schemes such as slab, cyclic, and
block cyclic.

5.3.1 Slab Partitioning

Initially, the data was partitioned exactly as in the MPI
version of the code; that is, with each processor holding
one contiguous block of rows of the moment matrix.
Such a partitioning scheme was very easy to impiement,
since the MPI matrix fill routines could be used without
modification. It was only necessary to set up the PESSL
data descriptors for the matrix and vectors and then
subsequently to call the LU factorization and solve
routines PZGETRF and PZGETRS.

Unfortunately, this method exhibits the drawback of being
slow, although it is far better than PETSc. Figure 5
shows the speedup achieved in terms of wall clock time
performance of the solve routines for a system of 1000
unknowns. It shows that the PESSL implementation
scales better than both the simple implementation and the
PETSc implementation. However, the slab partitioning
approach imposes a load imbalance on the LU
factorization process. To improve the performance of the

114

parallel LU factorization, an altemnative partitioning
scheme needs to be employed.

10 —_
optimal
8- x matrix fill K
g wall clock L4

relative execution time

T T T T ¥

1 2 3 4 5 6 7 8 9 10

nodes
Figure 5. Speedup obtained for a system of order 1000

when the PESSL library was employed with slab
partitioning.

1 0 L L i L L L L H
) I
£ '
- 81 i
=
o
= -
Q
g ™
® 4 -
o .
> optimal
T 2] x matrix filt
e . wall clock
O 1 L] T ¥ 1

1 2 3 4 5 6 7 8 ¢ 10
nodes
Figure 6. Speedup obtained for a system of order

1000 when the PESSL library was employed with cyclic
partitioning.

ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

5.3.2 Cyclic Partitioning

In an attempt to compensate for the deficiencies of the
slab partitioning method, a second approach was taken.
This time, rows were distributed across processors
cyclically with a block size of two rows. For example, if
there are two processors, blocks 1, 3, 5, 7, etc. reside on
the first processor, while blocks 2, 4, 6, 8, etc. reside on
the second processor. Such a scheme helped to balance
the processor load and, as a consequence, produced much
better results (Figure 6).

The performance obtained using cyclic partitioning could
likely be improved by using a larger block size, which
would reduce the communication overhead and probably
provide greater parallel speedup. The block size of two
rows was chosen for convenience, since in the version of
the code in which only the matrix fill is done in parallel,
row elements are computed in groups of two.

5.3.3 Results
Partitioning

Obtained Using Cyelic

In an attempt to determine the ability of the modified
application to scale to large problems, we executed it on
systems consisting of 3060, 5520, and 10240 unknowns.
The cyclic PESSL version of the program was altered so
that the coefficient matrix is dynamically allocated to only
use the space needed on a given node, making the solution
of these systems possible. A 40-node SP machine was
used to solve a system with 10240 unknowns, requiring
about 1.9 hours wall clock time to execute. To
demonstrate scalability, we ran the program for a 3520-
unknown system using both 10 SP nodes and 20 SP
nodes. The wall clock time of the execution on 20 SP
nodes is almost one half of the wall clock time of the 10
SP node case.

6. Conclusion

This paper described the parallelization of the 3D IE-AP
code developed by Aberegg [6]. The IE-AP procedure
tends to shift the computational burden away from the
matrix solve part of the process and toward the matrix fill
part, suggesting that it might be well-suited for parallel-
architecture implementation. The IBM RS6000 SP2 was
vsed as a parallel-architecture platform for the
implementation.

The matrix fill task was easily parallelized using available
MPI instructions. Two implementations of the matrix
solve process were explored. ~ While the PETSc

SHEN etal: IMPLEMENTATION OF THE 3D INTEGRAL EQUATION ASYMFTOTIC PHASE METHOD 115

implementation did not result in overall speedup, the
PESSL implementation did exhibit an improvement over
a serial implementation. Timing results are presented to
demonstrate the performance.

The parallel-architecture implementation of the IE-AP
approach will facilitate systernatic testing and evaluation
of the formulation on a wide range of scattering targets.
Future work will address the overall efficiency of the IE-
AP approach.

7. References

[1] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W.
Otto, J. K. Salmon, and D. W. Walker, Solving
Problems on Concurrent Processors, Englewood Cliffs,
New Jersey: Prentice-Hall, 1988.

2] T. Cwik and J. Patterson, Computational
Electromagnetics and Supercomputer Architecture, PIER
7, Cambridge, Massachusetts: EMW Publishing, 1993.

[3] X. Shen, Massive Parallel Processing Applied to
Computational Electromagnetics, PhD Dissertation,
Syracuse University, 1994.

[4] X. Shen, G. E. Mortensen, C. C. Cha, G. Cheng,
and G. C. Fox, “Parallelization of the Parametric Patch
Moment Method Code,” Digest of the 1995 ACES
Symposium, Monterey, CA, March 20-24, 1995.

[5] K. R. Aberegg and A. F. Peterson, “Application of
the integral equation—asymptotic phase method to two-
dimensional scattering,” I[EEE Trans. Antennas Propagat.,
vol. 43, pp. 534-537, May 1995.

(6} K.R. Aberegg, Electromagnetic scattering using the
integral equation—asymptotic phase method. PhD
Dissertation, Georgia Institute of Technology, Atlanta,
1995,

[7t K. R. Aberegg, A. Taguchi, and A, F. Peterson,
“Application of higher-order vector basis functions to
surface integral equation formulations,” Radio Science,
vol. 31, pp. 1207-1213, September-October 1996.

(8] A. F. Peterson and K. R. Aberegg, “Parametric
mapping of vector basis functions for surface integral
equation formulations,” ACES J., vol. 10, pp. 107-115,
November 1995.

[97 A. F. Peterson, “The interior resonance problem
associated with surface integral equations of

electromagnetics: Numerical consequences and a survey of
remedies,” Electromagnetics, vol. 10, pp. 293-312, 1990.

[10] A. E. Peterson, S. L. Ray, and R. Mittra,
Computational Methods for Electromagnetics, New York:
IEEE Press, 1998.

[11] D. 1. Kaklamani and A. Marsh, “Benchmarking
high-performance computing platforms in analyzing
electrically large planar conducting structures via a parallel
computed method of moments technique,” Radio Science,
vol. 31, pp. 1281-1290, Sep.-Oct. 1996.

[12] T. Cwik, “Paralle]l Decomposition Methods for the
Solution of Electromagnetic Scattering Problems”,
Electromagnetics, Vol. 12, pp. 343-357, 1992,

[13] J. P. Brooks, K. K. Ghosh, E. Harrigan, D. S.
Katz, and A. Taflove, “Progress in CRAY-based
algorithms for computational electromagnetics,” in T.
Cwik and J. Patterson, Computational Electromagnetics
and Supercomputer Architecture, PIER 7, Cambridge,
Massachusetts; EMW Fublishing, 1993.

[14] S.D. Gedney, A. F. Peterson, and R. Mittra, *The
moment method solution of electromagnetic scattering
problems on MIMD and SIMD hypercube
supercomputers,” in T. Cwik and J. Patterson,
Computational FElectromagnetics and Supercomputer
Architecture, PIER 7, Cambridge, Massachusetts: EMW
Publishing, 1993.

f15] D. S. Scott, “Solving large out-of-core systems of
linear equations using the Intel iPSC/860,” in T. Cwik
and J. Patterson, Computational Electromagnetics and
Supercomputer Architecture, PIER 7, Cambridge,
Massachusetts: EMW Publishing, 1993.

[16] T. Cwik, R. van de Geijn, and J. Patterson,
“Application of massively parallel computation to integral
equation models of electromagnetic scattering”, J. Opt.
Soc. Am. A, Vol. 11, No. 4, pp. 1538-1545, April 1994,

[17] ScaLAPACK User's Guide may be found online at:
http://www . netlib.org/scalapack/slug/scalapack_siug.html

