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Abstract ─ A compact printed ultrawideband 
(UWB) monopole antenna with triple band-
notched characteristics is presented. By adding a 
Split-Ring Resonator (SRR) on the radiating 
patch, the notched band in 3.3 GHz - 3.7 GHz for 
the WIMAX system is achieved. Furthermore, the 
proposed approach that utilizes the folded 
rectangular SRR structure is proven to be an 
effective way for band-notched designs. The 
antenna exhibit good band stop characteristics to 
reject the WLAN bands (5.15 GHz - 5.825 GHz 
bands) and downlink of X-band satellite 
communication systems (7.25 GHz - 7.75 GHz 
bands). The VSWR, gain, and radiation patterns of 
the proposed antenna are presented, which prove 
that the designed antenna is a good candidate for 
various UWB applications. 

 
Index Terms - Band-notched, split-ring resonator, 
and UWB antenna.  

 
I. INTRODUCTION 

Because of the advantages such as compact 
size, light weight, low profile, and low cost [1], 
the planar monopole ultra-wideband (UWB) 
antennas are usually used for high-data-rate 
wireless communication [2], high-accuracy radar  
[3-4], and subsurface sensing applications [5]. 
However, electromagnetic interference (EMI) 
problems are quite serious for UWB systems since 
there are several other wireless narrowband 
standards that already occupy frequencies in the 
UWB band, such as worldwide interoperability for 
microwave access (WIMAX) operating in 3.3 
GHz - 3.7 GHz, wireless local area network 
(WLAN) operating in 5.15 GHz - 5.825 GHz, and 

downlink of X-band satellite communication 
systems in 7.25 GHz - 7.75 GHz. An additional 
requirement for UWB antennas is to reject certain 
frequencies within the ultra-wide passband [6-9]. 

Recently, various band-notched designs have 
been developed and several UWB antennas with 
frequency band-notched function have been 
reported [10-16]. The most popular approach is 
cutting several slots on the patch or in its ground 
plane [17-21], the slots using U-shaped, and C-
shaped or arc-shaped. In [22], an embedded slot 
with the length of about a quarter of the guided 
wavelength at the desired notch frequency tuning 
stub in a monopole is also proposed. 

As for the structure of the broadband planar 
antenna introduced in this paper, the new 
antenna’s impedance bandwidth covers the bands 
of 3.1 GHz - 10.6 GHz, which is released by the 
Federal Communications Commission (FCC). An 
SRR is embedded in the patch to reject the 
WIMAX bands (3.3 GHz - 3.7 GHz bands). Two 
pair of SRRs nearby the feeding microstrip are 
designed to achieve the WLAN bands (5.15 GHz -
5.825 GHz bands) and the downlink of X-band 
satellite communication systems (7.25 GHz - 7.75 
GHz bands). Measured results of the fabricated 
antenna prototype verify simulations with 
reasonably good agreements. 

 
II. ANTENA DESIGN 

The configuration of the proposed antenna is 
shown in Figs. 1 and 2. The final optimized 
dimensions are offered in Table 1. Basically, the 
antenna consists of a radiating monopole with an 
arc-shaped edge, a 50 Ω microstrip feeding 
mechanism, a simple rectangular ground plane on 
the back side of the substrate, an SRR embedded 
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in the radiating patch, and two folded rectangular 
SRRs nearby the feeding microstrip. 

 
A. Baseline UWB Design 

As shown in Fig. 3 (a), the UWB monopole 
antenna with 25 × 29 × 0.508 mm3 dimensions is 
fabricated on the Rogers Duroid 5880 board 
material substrate. The substrate is of thickness 
0.508 mm and relative permittivity εr = 2.2, loss 
tangent of tanδ = 0.0009.  The monopole is fed by 
a 50  microstrip line. On the back side of the 
substrate, the ground plane with length of 13 mm 
only covers the section of the microstrip feed line. 
The VSWR of the antenna is shown in Fig. 3 (b). 
It indicates that the working bandwidth of the 
antenna covers the entire UWB band (3.1 GHz - 
10.6 GHz) under the condition of VSWR < 2. 

 
 

Fig. 1. Geometry of the antenna (a) top view and 
(b) side view. 
 
 
B. Single-Notch UWB Antenna Design 

In order to reduce the EMI with the WIMAX 
band, the antenna with an SRR covering the 
interval 3.3 GHz - 3.6 GHz is desired. The 
proposed single-notched UWB antenna is 
illustrated in Fig. 4 (a). It is found that the 
parameters of r1 = 6.15 mm and the size of its gap 
r3 = 0.5 mm play critical roles in defining the 
band-notched frequency. Figure 5 shows that the 
band-notched frequency can be improved. It can 
be seen that a greater r1 causes lower band-

notched frequency. For instance, obviously the 
band-notched frequency increases from 3.36 GHz 
to 3.60 GHz as r3 is varied from 0.2 mm to 0.8 
mm. 

 

 
 
Fig. 2. Geometry of the SRR1 (left side) and SRR2 
(right side).  

 
 

 

 

 
 
Fig. 3. (a) Basic structure of monopole antenna 
and (b) the simulated VSWR. 

Table 1: Optimal dimension of the design antenna. 

Parameter mm Parameter mm Parameter mm 

L 29 r2 5.6 w1 0.2 
L1 13.6 r3 0.5 a2 3.55 
L2 13 a1 3.7 b2 6 
L3 7 b1 6 c2 0.5 
W 25 c1 0.5 d2 5.17 
W1 16 d1 5.1 e2 4 
W2 1.5 e1 4 f2 0.2 
H 0.508 f1 0.2 g2 0.2 
R 8 g1 0.2 h2 1.82 
r1 6.15 h1 2.3 w2 0.2 
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Fig. 4. (a) Basic structure with an open circuit slot, 
(b) basic structure with SRR1, and (c) basic 
structure with both, SRR1 and SRR2. 
 

 
 
Fig. 5. Simulation results with some important 
parameters: (a) Impact of parameter r1 changes 
and (b) impact of parameter r3 changes. 
 
 

C. Tri-Band-notched UWB Antenna Design 
As shown in Fig. 4 (b) and (c), SSR1 and SSR2 

are designed nearby the feeding microstrip to 
achieve the notched-band of WLAN and the 
downlink of X-band satellite communication 
systems. The simulation results suggest that the 
notched bands of 5.15 GHz - 5.35 GHz and 7.15 
GHz - 7.35 GHz are determined by SRR1. 
Moreover, the notched bands of 5.65 GHz - 5.85 
GHz and 7.55 GHz - 7.75 GHz are determined by 
SSR2 synthetically. As an example, Figs. 6 and 7 
show the optimization procedure of two of the 
notched-bands.  

The notched-band of 5.15 GHz - 5.35 GHz is 
mainly decided by the dimensions of the inner part 
of SRR1 shown in Fig. 4 (b), especially the 
parameter of h1. Figure 6 (c) indicates that the 
notched-band drifts to higher frequency obviously 
as the h1 is decreasing. However, as shown in Fig. 
6 (a) and (b), the notched-band just drifts slightly 
while the parameters such as a1 and c1 of the 
external part of SRR1 is changing. Figure 6 (d) 
shows that the notched-band also drifts slightly 
and the value of VSWR increases significantly as 

the parameter g1 is changing. It can be explained 
by the coupling effects between the SRR and the 
feeding microstrip. 

 
 

Fig. 6. Simulation results with some important 
parameters: (a) Impact of parameter a1 changes, 
(b) impact of parameter c1 changes, (c) impact of 
parameter h1 changes, and (d) impact of parameter 
g1 changes. 
 

 
 

Fig. 7. Simulation results with some important 
parameters. (a) Impact of parameter a2 changes. 
(b) Impact of parameter h2. 

 
The notched-band of 7.15 GHz - 7.35 GHz is 

mainly decided by the dimensions of the external 
SRR1 shown in Fig. 4 (b), especially the parameter 
of a1 and c1. Figure 6 (a) and (b) indicate that the 
notched-band drifts to lower frequency obviously 
as the a1 is increasing and c1 decreasing. Figure 6 
(c) indicates that the parameter h1 of the inner SRR 
just affects the notched-band slightly. Taking the 
optimization into account significantly, the 
notched-band of 5.15 GHz - 5.35 GHz and 7.15 
GHz - 7.35 GHz can be achieved while the 
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parameters of a1, c1, h1 and g1 are assigned as 
shown in Table 1. In a similar way, the parameters 
of a2 and h2 can also be optimized. As shown in 
Fig. 7, one can notice that the band-stop frequency 
of SSR1 and SSR2 did not affect each other, the 
notched-band of 5.15 GHz - 5.35 GHz and 7.15 
GHz - 7.35GHz stay the same while the parameter 
a2 and h2 are optimized. 

 
III. RESULT AND DISSCUSSION  

Figure 8 shows the photograph of the 
proposed antenna. The simulated results are 
offered by the commercial software (CST MWS) 
based on the Finite Integration Technology (FIT). 
The measured curves are performed by an Agilent 
E5071C network analyzer. Figure 9 shows the 
simulated and measured VSWR of the proposed 
band-notched antenna. The working bandwidth 
covers the full frequency range from 2.8 GHz to 
11.8 GHz except for the three notched-bands of 
3.3 GHz - 3.7 GHz for the WIMAX system, 5.15 
GHz - 5.825 GHz for the WLAN, and 7.25 GHz -
7.75 GHz for the downlink of the X-band satellite 
communication systems. 

The simulated current distributions at 3.5 
GHz, 5.25 GHz, 5.75 GHz, and 7.4 GHz of the 
proposed antenna are shown in Fig. 10. The 
simulated and measured radiation patterns of the 
E-plane (yz-plane) and H-plane (xz-plane) at 4 
GHz, 6.5 GHz, and 9 GHz are plotted in Fig. 11, 
respectively. It indicates that the radiation patterns 
of the H-plane are nearly omni-directional over the 
working bandwidth except for the three notched-
bands. The radiation pattern is similar to that 
formed by a typical monopole antenna. The 
simulated and measured gain at the operating 
bandwidth is shown in Fig. 12. The simulated 
results are in good agreement with the measured 
results within the experimental errors. 

 

 
 
Fig. 8. Photograph of the fabricated antenna 
prototype. 
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Fig. 9. Simulated and measured VSWR of the 
proposed antenna. 
 

 
 

Fig. 10. Simulated surface current distributions on 
the radiating patch for the proposed antenna at (a) 
3.5 GHz, (b) 5.25 GHz, (c) 5.75 GHz, and (d) 7.4 
GHz. 
 
 

IV. CONCLUSION 
In this paper, a novel compact printed 

monopole antenna with three band-notched 
characteristics used for UWB applications has 
been presented and analyzed in detail. By 
successfully using SRRs elements and adjusting 
the parameters, the antenna has not only triple 
band-notched characteristics but also good omni-
directional radiation patterns at the frequencies of 
interest. The antenna was fabricated and measured, 
showing good results and good agreement between 
simulations and measurements. It provides a 
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simple and practical method in the notched-bands 
antenna designing. 

 
 

Fig. 11. Simulated and measured radiation patterns 
in the E-plane (left side) and H-plane (right side) 
of the proposed antenna. 
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Fig. 12. Simulated and measured gain of the 
proposed antenna. 
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