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Abstract: A fast scheme for measured equation of invariance (MEI) method is

presented in this paper. The scheme combines a strategic technique of the interpolation
and extrapolation of MEI coefficients with a special algorithm of cyclic block band
matrix to fast solve the scattering problems of {/ery large conducting cylinders. The
circumferential dimension of scattering objects could exceed 10,000 wavelength.
Computational speed could be 2-3 order faster than conventional MEI method. The
fast scheme is especially applicable to scattering problems of very large conducting

objects in which other numerical methods may fail.

1. Introduction

One of the advantages of the measured equation of invariance (MEI) method
[1-4] is that the MEI can be used to solve scattering problems of normal size objects
very fast. However when the target is very large, most numerical methods have
difficulties in obtaining correct results. Even the MEI is no exception. In the case of
the MEI, the reason is that the integration required to generate the MEI coefficients is
very time consuming, and the results of the integration could be inaccurate which
causes excessive errors in the resulting MEI coefficients and subsequent failure of the
computation. In this paper, the interpolation and extrapolation technique for the MEI
coefficients is used to overcome this. problem. Such a technique allows us to
extrapolate the MEI coefficients at several low frequencies to higher frequencies of
interest. Thus the execution time for finding the MEI coefficients at the high
frequencies can be greatly reduced, and the accuracy of the MEI coefficients can be

greatly increased.  The details of the interpolation and extrapolation technique for the
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MEI coefficients can be found in reference [5]. Compared with the total execution time
for solving the large object scattering problems, after the utilization of the interpolation
and extrapolation technique, finding the MEI coefficients becomes a minor part of the
total computation time, and the solution of the MEI sparse matrix becomes the
dominant part. In order to accelerate the whole computational process, the solution of
the MEI matrix should be speeded up. To do so, one option is choosing parallel
computation. Another is choosing special algorithms. For the parallel computation, a
PVM (Parallel Virtual Machine) based parallel sparse matrix solver is investigated. A
cluster of Pentium PC’s is chosen as the hardware platform. Ethernet is used in
connecting Pentiums as a network. When partition number of the MEI matrix is 4 -
16, a speedup of 7 for the MEI matrix can be achieved [6]. At the same time, a special
algorithm, which is applicable for the structure of the MEI matrix, is developed. This
special algorithm will be described in this paper. In 2-D scattering cases, the MEI
matrix is such a sparse structure, in which all the elements are in a diagonal band area
except a few off-diagonal elements at the beginning and the end of the mesh. This is a
typical cyclic block tridiagonal structure. For such a special structure, we modify the
Thomas algorithm [7], which directly solves block tridiagonal matrix, to meet our
need. The computational time of our MEI matrix solver is proportional to N, the
dimension of the matrix. For the scattering of a conducting circular cylinder with
diameter 4,000 wavelength, the MEI solver is about 30 times faster than the Berkeley’s
sparse solver [8], and is about 4 times faster than the above PVM-based parallel sparse
matrix algorithm. Thus using the fast MEI scheme in this paper, which combines the
interpolation and extrapolation technique of the MEI coefficients with algorithm of the
cyclic block band matrix, the scattering problems of very large cylinders can be solved

much faster than with the conventional MEI or MoM algorithms.

2. The MEI Sparse Matrix
For the MEI computation mesh, suppose N be total grid points per one layer,
and N, be the total number of layers. Five points difference-difference formula is

used for the nodes on the inner layers of the mesh,

S =0 (1)

1=0
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where {c } are the finite-difference coefficients, ¢, is the field at node i. For the grids

on the truncated boundary, the MEI equation is used

iaiﬁ =0

=0

)

where {a,} are the MEI coefficients to be determined, and #n-1 is the number of

neighbors of node 0.

After boundary conditions of the conducting object are applied, the MEI-FD

matrix is nested in the following form,

B, C, 0 0 o 4 JTo ][
A, B, C, 0 0 0 | @, P!
0 4, B, C 0 0 | @, @’
o 0 .o 0 : = (3)
: : 0o | :
0 0 0 ANJ -1 N,-1 C @ No-1 i’,-l
C, O 0 0 v, By | @ @/,

N,-1
N,
where {A,.} {B,.}and {C,. } are (NL - 1) X (NL - 1) matrices, {CD,. }and {be } are

(N L= 1) x 1 column vectors which represent the unknown scattered fields and known

incident fields, respectively.
Obviously, the MEI matrix, i. e. eq. (3), is a typical cyclic block band matrix, in
which all the elements are in a diagonal band area except a few off-diagonal elements

at the beginning and the end of the mesh.

3. Strategy to obtain MEI coefficients

In this section, we will briefly describe how to use the interpolation and
extrapolation technique to obtain MEI coefficients at the high frequencies of interest
from those calculated at low frequencies being first calculated.

The MEI coefficients have the characteristics of spatial interpolability,
frequency interpolability and frequency extrapolability [S] when the ratio of the
wavelength and the discretization size stays the same. The MEI coefficients are
interpolable between nodes, i.e., if the nodes are rearranged for different frequencies to
keep the ratio invariant, we may obtain the MEI equations at the nodes of the new

distribution from interpolations of the MEI coefficients at the nodes of the original

distribution. Fig.1 shows the arrangements of the nodes at three different frequencies
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increased by a factor of two. The mesh size is reduced by a factor of two, at the same
time, the spacing between the mesh boundary and object boundary is also reduced by a
factor of two.

We expect the MEI coefficients to smoothly approach a limit when the
frequency increases to the optical region. Our expectation is based on the similarity of
the local geometry of a node as the mesh boundary approaches the object boundary
and on the fact that in geometrical optics the same rules of calculation are applied to all
frequencies. Numerical examinations in [5] have indicated that the MEI coefficients do
approach a limit with the increase in frequency, and the accuracy of the MEI
coefficients obtained by the extrapolation is enough for obtaining accurate results. We
express the MEI coefficients at node O as polynomials of the normalized wavelength

with the degree J-1,
J=1
a(i)=2 a A’ 4)
j=0

Based on the mesh organization depicted in Fig.1, we calculate the MEI
coefficients at few normalized measuring wavelength such as 2, 1, 0.5, 0.25, ... with

number J, by using the conventional MEI method [1]. Then the coefficients {a;, ;4in
eq. (4) can be found. Once the coefficients {«, ;} are obtained, the MEI coefficients

at any normalized wavelength can be determined by using eq.(4). Since we only
calculate the MEI coefficients at the low frequencies through the integration,
computational time is very small. In addition, the interpolation and extrapolation time
for obtaining the MEI coefficients at the high frequency of interest is also small.
Compared with direct calculation of the MEI coefficients at the high frequency by the
integration, the computation time can be tens to thousands of times smaller depending
on how large the scattering objects are.

The technique presented above is not just a way to obtain the MEI coefficients
with economical computation time, but a way to obtain the MEI coefficients accurately

for the very large electromagnetic boundary value problems.

4. The Fast Solver for the MEI Matrix

We have pointed out in section 3, that the CPU time can be greatly reduced if

the interpolation and extrapolation technique is used in determining the MEI



LIU etat A FAST MEI SCHEME FOR SCATTERING BY VERY LARGE CYLINDERS 217
coefficients at the high frequency. Thus most of the CPU time will be used for solving
the MEI matrix. In order to reduce the execution time even further, a fast MEI matrix
solver has been developed.

As seen in section 2, most elements in the MEI matrix are tridiagonal nonzero
block elements, and only few elements are off-tridiagonal nonzero block elements on
each reverse-diagonal corner. This is a typical cyclic tridiagonal block structure. For
such a special structure, the direct algorithm called Thomas algorithm [7], which has
been used to get the solutions of tridiagonal block matrix systems, is expaﬁded to solve
this kind of cyclic tridiagonal block matrix systems. This is the MEI matrix solver.
Unlike the conventional sparse matrix routine, the MEI matrix solver does not need to
pivot and reorder the matrix before solving the matrix. All the MEI matrix solver does
is solving the block matrix analytically. In followings, we will briefly describe this
algorithm.

Using the first N —1 equations in eq.(3), the forward substitution can be

completed to obtain the coefficient matrices {Ai}, {R} and {Q,} recursively in the

following formula,

PG 0 - oTo 1 a-go,
0 P, C: 0 ch A, - O"(DN
0 PNs-Z CNs-Z ®Ns—2 AN5—2 —QNS—Zq)NS
i 0 0 0 Noml J_(DNS_]_ Moot QNS_I(DNS
where P, =B,, A, =®!, 0, =4,, and
P =B - AiR:IICz—] (6)
A = o~ AJDI:IIAi_I @)
0 = _Ai})i:: 0. (3)
1=23,..,N,-1. And the unknown sub-matrix ®,_can be determined by
ANS = (vas - ANS‘PNS-IANS—X - CNSVVl %)
Py = BNS - ANS PNS—I (CNS-I + QN,:l )— CNSWZ (10)
D, =PA7;ANS (1D

where the matrices W, and W,can be determined during the above forward
substitution recursively. Then, using backward substitution, all the unknown sub-

matrices can be recursively calculated by,
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O, =P -CD -0, ) (12)

where i=N_-1,...1.

In general, if a large number of mesh buffer layers is utilized for the finite
difference, all the nonzero sub-matrices in the MEI matrix are still very sparse too. The
operators between these sub-matrices can be carried out by general sparse matrix
solvers to speed up the computation. However, for 2-D scattering problems, only 2 -
3 mesh layers are needed to obtain robust results in the MEI method [1]. In these
cases, the number of zero elements in the sub-matrices is small. Thus the zero
elements in the sub-matrices are directly treated as nonzero elements, and the
additional matrix fill for these zero elements is small. For example, for three layer
mesh with a 6 node MEI’s sub-mesh scheme, the total number of nonzero elements is
11N, while the total elements to be filled in eq.(3) is 14N . Another advantage is
that since the size of the sub-matrices is small, all the operators between the sub-
matrices can be given analytically, thus the calculation for the zero elements is avoided.

The CPU time of the MEI matrix solver is nearly proportional to », the

number of nodes per one layer, rather than proportional to Ng (a >1) as is the case
with the general sparse matrix solver [S]. As the dimension of the MEI matrix

increases, the time-saving of the MEI matrix solver will increase.

5. Statistics of CPU Time

The CPU time comparison of the MEI matrix solver with the Berkeley’s sparse
package [8] is presented in Fig.2, which shows that when N is small, the CPU time
of the MEI matrix solver and the Berkeley’s sparse solver are almost identical.
However, when the size of the MEI matrix increases, the CPU time of the MEI matrix
solver is much less than the CPU time of the Berkeley’s sparse solver. For solving the
scattering of a cylinder at above 10° wavelength circumferential dimension, the MEI
matrix solver is about 30 times faster than the Berkeley’s general sparse solver. The
CPU time for obtaining MEI coefficients using the interpolation and extrapolation
technique is also plotted in Fig.2. It is found that without using the interpolation and
extrapolation technique, the time consumed by the direct integration to obtain MEI
coefficients for a geometry at 2,000 wavelength circumferential dimension will exceed

10hrs, but the interpolation and extrapolation technique needs a few minutes only.
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6. Numerical Results

The above scheme allows us to fast solve the scattering problems of large 2-D
conducting convex objects. For illustration purpose, we first calculate TM scattering
surface current density of a conducting circular cylinder with diameter d = 4,000 4
(wavelength) under 0° plane wave incidence. The surface current densities compared
to the result of geometrical optics are shown in Fig.3. To solve this problem, the MEI
coefficients at the lower frequencies are calculated at normalized wavelength 0.8, 0.4,
0.2, 0.1 for a cylinder of diameter d = 10,4 . The normalized wavelength of the high
frequency is 0.0025. The CPU time to find the MEI coefficients is about 2 minutes.
The CPU time to solve the MEI matrix solver is about 124 seconds. But the
Berkeley’s sparse solver should take the CPU time of 72 minutes.

The second example is the scattering of a square conducting cylinder of 64
meter in circumerferial dimension. The normalized wavelength 2, 1, 0.5, 0.25 of the
low frequencies is extrapolated to the wavelength of interest 0.0625, for which the
ratio of the circumerferial dimension to the wavelength is 1,024. Fig.4 gives the
surface current densities by a 30° TE incidence wave illumination. Fig.5 shows the
remarkable agreement between the fast MEI scheme and the GTD on the RCS when

an incidence wave with angle 45° illuminates with the same configuration of Fig.4.

7. Conclusion

In this paper, we present a fast numerical scheme for the MEI method to solve
the scattering problems of the very large conducting cylinders in which circumferential
dimension exceeds 10,000 wavelength, in a common workstation. Since the scheme
combines the extrapolation and interpolation technique of the MEI coefficients with
the special algorithm of cyclic block band matrix, the whole computation can be

speeded up to 2-3 orders with reasonable numerical accuracy.
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Fig. 1 Mesh strategy with the mesh size reduced by a factor of two.
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Fig. 2 CPU time vs. number of nodes per one layer on a Sun-Workstation.
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Fig. 5 Comparison of bistatic RCS of the scattering configuration in Fig. 4 illuminated by 45° TE wave
incidence.





