168

OPTIMIZING THE PARALLEL IMPLEMENTATION OF A FINITE
DIFFERENCE TIME DoMAIN CODE ON A MULTI-USER
NETWORK OF WORKSTATIONS

J.V. Mullan, C.J. Gillan and V.F. Fusco

The High Frequency Electronics Laboratory
Dept. Electrical and Electronic Engineering
The Queen’s University of Belfast
Ashby Building, Stranmillis Road, Belfast
N. Ireland BT9 5AH, UK

Abstract

The implementation of a parallel, three dimensional, finite difference time domain {FDTD) computer
program is considered and applied to a test scattering problem on a multi-user network of desktop
workstations. The computation has primarily been done on a local area network (LAN) using six identical
HP 9000/715 workstations (i.e. a homogeneous environment) with the Parallel Virtual Machine (PVM)
software being employed as the communications harness.

In this paper the sequential and parallel FDTD approaches are reviewed. We investigate the factors
which cause a reduction in efficiency in the latter, such as host allocation and load balancing. ‘We propose
a task migration process, which is efficient for the FDTD algorithm, as & partial solution. The advantages
of this approach are discussed and further developments based on available computational resources are
suggested.

Introduction

The finite difference time domain method (FDTD), as formulated by Yee[l}, is now a well established,
numerical and storage intensive, approach to solving Maxwell's equations for the electromagnetic field. The
FDTD method has been employed, for example, in the design of microwave circuits{2], in radar cross section
prediction[3] and in antenna design[4]. Presently, the method is being used extensively in investigations
of biological interaction with electromagnetic fields[5]. The modelling of the fields radiated by a mobile
telephone, when it is close to the human head, is a very active area of research at this time. Not least
due to the complexity of human anatomy and physiology, the latter interaction necessitates that a parallel
algorithm be used in order to solve the FDTD equations within & reasonable amount of time with available
resQurces.

The non-sequential FDTD method has been investigated on a variety of hardware including transputers(6,
7], vector computers(8], massively parallel processors{8, 9] and networks of workstations{10, 11]. Excluding
vector computation, the general strategy has been to apply a straightforward geometric decomposition of the
total volume, an approach that is also employed in other areas of technical computing, for example molecular
dynamics[12]. In order to achieve optimum geometric decomposition, the topology of the connections between
the processors working concurrently on the problem must map the geometry of the data-domain that the
problem is defined upon.

In this paper we follow the approach of Chew and Fusco, this time operating on a network of HP9000/715
workstations with the aid of the Parallel Virtual Machine (PVM) software[13]. The test problem simulates

1054-4887 @ 1998 ACES

ACES JOURNAL, VOL. 13, NO. 2, JULY 1888, 5I: CEM & HPC



MULLAN et at OPTIMIZING THE PARALLEL IMPLEMENTATION OF A FINITE DIFFERENGE TIME DCGMAIN CODE 168

Z
AN K __
J
~ v
& 3 y
L o
s Ty
P &
x i

Figure 1: Segmentation of solution region into N subspaces by partitioning the grid along one dimension.
In this case, the y-axds is partitioned and N = 4.

the scattering of a 2.5 GHz sinuscidal plane wave by a lossless dielectric sphere (¢, = 4.0}, where the rest of
the computation space consists of air. Timestepping continues until steady state conditions are achieved in
each Yee cell; owing to symmetry only one quarter of the problem needs to be evaluated. This simple test
case was used so that the efficiency of this method could be assessed and optimized before being used on
more complex and useful calculations.

The sequential and parallel FDTD Algorithms

Other papers in this volume present the FDTD algorithm in considerable detail. However, for the sake of
completeness, we give the salient details for a sequential implementation of the method here in order to
facilitate an explanation of the way in which this is enhanced to achieve a parallel implementation.

The finite difference approach to solving Maxwell’s equations for the electromagnetic field, as a function
of position and time, approximates the infinite space-time continuum by a discrete three dimensional spatial
grid of finite extent on which the electromagnetic field components are updated at successive, discrete time
steps, that is on a temporal grid. The partial derivatives occurring in Maxwell’s equations are approximated
by difference equations defined with respect to the spatial and temporal grid. Yee’s' approach is to treat
Maxwell’s curl equations as a pair of coupled, first order, partial differential equations and uses a specific
griding arrangement, motivated by simple electromagnetic principles, which makes the difference approxi-
mations accurate to second order. Although this it is by no means the only solution strategy, or choice of
grid structure, the Yee method quickly became a de-facto standard in computational electromagnetics|8].

The Yee algorithm is expressed as a loop over a finite number of timesteps where the work done at each
timestep is as follows:

1. Update the E-field components, a task which uses only previously computed E and H-field components.
The update, at each point on the spatial grid, is therefore independent of updates at other points on
the spatial grid, for this timestep, and requires only field values from adjacent Yee cells due to the



170 AGCES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPC

form of the finite difference equations.
2. Augment time by one half of a time step.

3. Update the H-field components, a task which uses the E-field components computed in 1 above as well
as only the previously computed H-field components. Again, the update, at each point on the spatial
grid, is independent of updates at other points on the spatial grid, for this timestep, and requires only
field values from adjacent Yee cells due to the form of the finite difference equations.

4. Apply outer radiation boundary conditions to the surfaces of the finite volume in order to compensate
for truncation of the infnite spatial continuum. The boundary condition is applied in a point by point
fashion with the computations at each point being independent but requiring results from step 1 above.

Clearly, the Yee algorithm exhibits a high degree of concurrency, a feature that cannot be fully exploited on
a single processor computer even with vectorization. Theoretically, a multi-processor computer with enough
processors could update the E or H field accross the entire spatial grid in the time taken to update at one
spatial point, providing of course that the computer had enough memory to simultaneously hold all field
values in core (see, for example, the work by Davidson etal [9] on the implementation on the FDTD method
using 8192 processors on a Connection Machine, model CM-2).

In practice, geometric decomposition is used to partition the grid into subspaces each of which is assigned
to one processor. Due to the form of the finite difference equations, it is necessary to exchange data between
processors, in a distributed or non-uniform memory access environment, at the end of each time step; this is
needed in order to update field values along the interfaces. 'This corresponds, physically, to a travelling wave
propagating across the total volume. In figure 1 we show the way in which we have partitioned the total
volume among four processors; in general there may be N such processors. This is consistent with the linear
topology of the 10 Base-2 thinwire ethernet (10 Mbits/ second) which connects together the HP workstations
in our laboratory.

In an attempt to obtain (static) load balancing and hence synchronization of the tasks we make sure that
each processor i given an equal number of points to handle, meaning that the number of points along the
Y-axis (Jmax + 1) must be an exact multiple of the number of processors. This is a reasonable assumption
for a parallel virtual machine consisting of a homogeneous network of free workstations. By free, we mean
that no one is logged onto the workstation or a negligible amount of work is being performed, in other words
the workstation is lightly loaded. The programs which update fields in the first and last regions (subspaces
1 and 4, respectively in figure 1) require boundary conditions to be obeyed but are otherwise identical to
the program used in all other regions. The extra time consumed in applying the boundary conditions is
insignificant compared to the time spent updating fields within the volume and does not therefore introduce
a load imbalance into the virtual machine. These programs have been named, for obvious reasons, first, last
and middle.

During a single timestep, a host must:

1. transmit/receive the E-field components from the previous time set-up (evaluated at the boundary
between subspaces);

2. compute H-field values in the subspace;
3. transmit/receive the H-field components (in the opposite direction to the E-field values);
4. compute the E-field values in the subspace.

This process is continued until a steady state is achieved. The transmission and reception of boundary field
values, at each timestep, is illustrated schematically in figure 2, for an arbitrary middle host called X. The
first and last hosts also transmit and receive boundary field values but only half as many as a middle host.
If figure 2 were redrawn for the first host, then the lefthand side would be missing, while a similar figure for
the last host would omit the righthand side.



MULLAN et at OPTIMIZING THE PARALLEL IMPLEMENTATION OF A FINITE DIFFERENGCE TIME DOMAIN CODE 171

Figure 2: Communications of the electromagnetic field components for one host during the nth timestep;
the geometric domain has been partitioned along the Y-axis only.

Message Passing Harnesses

Even today, many scientific programmers develop sequential codes in a top-down fashion with the Von-
Neumann concepts of computer architecture in mind. Notwithstanding the fact that such codes are often
restructured to take advantage of compiler optimizations exploiting hardware features such as pipelining,
chaining and, perhaps, vectorization, the approach taken by scientific programmers has been largely to rely
upon third party utilities/libraries to enhance their code performance; one example is the basic linear algebra
system (BLAS). As long as these libraries are available on an architecture, codes dependent on the libraries
are assured of high performance on that architecture. Consequently, in the era of parallel and distributed
computing a number of message passing harnesses appeared obviating the need for scientific, particularly
Fortran, programmers to learn about network programming. Message passing harnesses first appeared on
transputers towards the late eighties, but with the adoption of the Internet Protocol (IP) as a defacto global
standard in the early ninties harnesses quickly became available for UNIX workstations, and even UNIX
mainframes, connected by IP networks.

The novice should appreciate that message passing harnesses are simply a layer of software that sit
between an application program and operating system interfaces. It is the within the operating system that
the physical transmission and reception of data takes place just as data is written to and read from disk.
Sometimes the message passing layer is thin and provides very little abstract functionality, sometimes the
converse is true. Related to the rapid growth in the use of message passing is the fact that the Berkeley
Standard Unix distribution (BSD) implemented and standardized an abstract data construct known as a
socket. In this model, the network hardware, the CPU hardware, their mutual interaction, the specifics of
the protocol and the role of the operating system are all encapsulated within socket routines and thereby
hidden from a socket programmer. This means that network programming becomes a matter of manipulating
sockets and data buffers in real time, a task easily accomplished in the C language and frequently referred to
as IP socket programming. With the standardization of the IP socket programming model, implementations
of sockets have become available for all operating systems in common use. On a UNIX workstation, and on
a PC, message passing harnesses are simply an interface between an application program and socket routines
therefore.

In the late eighties and early ninties there was a proliferation of message passing harnesses, each providing
different functionality and therefore incompatible. In the physical sciences and engineering communities PVM
was seen as a de-facto standard and was, and continues to be, widely used. Many computer manufacturers



172 ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, SI: CEM & HPG

now provide implementations of PVM which are highly optimized for use on their architecture just as they
do also for BLAS routines. To date, there is no ANSI standard for message passing harnesses, however
beginning in 1992 around forty organizations created a working group to propose, but not to implement as
such, a ‘standard’ for message passing; this effort was known as the Message Passing Interface forum and the
standard created is known as MPI. Vendors of massively parallel processors support the MPI standard on
their own particular architectures. for example SGI/Cray on the Cray T3E; a number of implementations of
MPI have also appeared for workstations, for example CHIMP: the common high level interface to message
passing from the Edinburgh parallel computer centre[14]. In this article, we have chosen to focus only on
PVM deferring consideration of other message passing architectures for future work.

Latency in PVM

The costs inherent in using PVM for our FDTD calculation are twofold, regardless of the computing envi-
ronment used. Initially, there is a fixed set up cost due to the fact that the first process must spawn the last
process and several copies of the middle processes and prepare them for subsequent FDTD timestep updates.
This cost can be amortized over subsegent timesteps such that if there are very many timesteps, the setup
costs become insignificant. The second, and critical, limitation is the cost of communicating boundary field
values coupled to process synchronization, because this has to be done at every timestep and is therefore
an increasing cost; in the event that this cost, within one timestep, exceeds the reduction in computation
time for that timestep, derived from domain decomposition, then the distributed FDTD implementation will
always require more time than its sequential analogue.

In simple terms, the time consumed in updating the electromagnetic fields in a subdomain depends on the
total number of points in the volume and on the CPU speed; part of this time may be spent applying boundary
conditions at the surface of the volume. Correspondingly, the time consumed in transferring boundary field
values depends on the surface area of the volume and on the transmission time for a message between
processes. Aside from the limitations of network hardware, the PVM system itself has an associated latency
just as any message passing system does; the reader should appreciate that the design of a complicated utility
such as PVM requires trade-offs between reliability, portability and efficiency. A rudimentary discussion of
PVM, and a trivial implementation, can be found in Robbins and Robbins[15).

PVM uses a spoke and hub system akin to that employed in the airline transport industry. On each
processor there is a PVM daemon (pumd), that is a hub, which communicates directly with PVM tasks
running on that processor using either TCP/IP sockets or Unix domain style sockets. The PVM daemons,
on each processor, communicate with each other using UDP/IP sockets. A message from a task on host A
destined for a task on host B, travels first to the pvmd on host A, then to the pvind on host B and finally
to the task on host B. Enroute there is some buffering through send and receive queues within the pvmds;
more critically, the UDP/IP protocol is an unreliable delivery protocol requiring PVM to implement message
fragmentation and an acknowledgement/retry mechanism to ensure message delivery. It must be pointed
out that PVM does permit direct task to task communication using TCP/IP sockets and thereby avoiding
the pvmds; this option is mentioned in the PVM user manual with the corollary that it does not scale well,
therefore we have not used it in our present work.

Initial Results

The effectiveness of the parallel FDTD code was gauged by defining the speed-up, S, as the ratio of the
execution times for the equivalent serial code (Tser) to the parallel one (Tpar), that is:

§ = 2,
Tpar
In the first instance, the network was not dedicated to these tasks. One can see, from figure 3, that the speed
up for a given number of processors increases with the number of grid elements, that is with a decreasing
mesh size, although there are some occasions where the speed-up drops below what one would expect. An
example of this behaviour is the case of five processors with the finest mesh (6§ = 1.48 mm). The speedup



MULLAN et at OPTIMIZING THE PARALLEL IMPLEMENTATION OF A FINITE DIFFERENCE TIME DOMAIN CODE 173

Speed-up

1 2 Numbear of Pn::cessors4

Figure 3: The speed-ups for up to five processors when the network was not dedicated to the PVM tasks. ¢
points are for a mesh size of 0.00148 metres, x for a mesh size of 0.0017 metres, + for a mesh size of 0.003
metres,[T for a mesh of 0.00616 metres.

would appear to far from optimal with § = 1.86. It was speculated that another user had begun a job
on one of the hosts and so the run was repeated with the all workstations reserved for the duration of
the test; results are shown in figure 4. For the particular case just mentioned, a much improved speedup,
S = 3.45, was found. The approximate factor two increase in the speedup, that is a halving of the execution
time, reinforces the assumption that two jobs sharing a host was the cause of the initial poor result. The
speedup of § = 3.45 using five processors, with dedicated use of the network, is clearly the upper bound
for this particular problem. We have shown that this is an unlikely figure to achieve under typical network
conditions and have quantified the dramatic reduction in efficiency that can result from having just one host
otherwise occupied. This is a striking reminder of the fact that desktop platforms, that is UNIX workstations
and PCs, were never really designed as multi-user platforms to replace minicomputers or even mainframes.
Unfortunately, faster CPU speeds have masked this problem somewhat. Simple economics combined with
the fact that the operating systems in use on the desktop use premeptive multi-tasking has led, by default,
to use of desktop platforms as minicomputers and even mainframe replacements however.

Surprisingly, another drop in efficiency was found, see figure 4, when the mesh corresponding to (6 =1.70
mm) was distributed over five processors. Following further checks, it was found that although six processors
were configured, the PVM application takes one host to use as a group server when the programs include
dynamic groups. Furthermore, the default host selection is through a round rebin process which places a
spawned task onto the next workstation in the host file. It was found that this method did not guarantee
that each task was placed on a separate host giving rise to uncertainty in the obtainable speedup on a given
run. Our method used the PvmTaskDefault option on the pvmfspaun() call, a feature that can be replaced
by the PvmTaskHost option requiring a specific host to be given. The pvmfconfig and pumftasks() routines
provide the facility to interrogate the virtual machine and so discover, for example, which host is acting as
the group server and which hosts are not yet used for PVM tasks. We could use these routines to make
the code adapt to the tasks already present on the virtual machine, however we have not investigated this
solution because it is encapsulated, by default, into the dynamic loadbalancing solution that we suggest in
the next section.

It is noticable in figures 3 and 4 that the speedups for the three finest meshes, 0.00148, 0.0017 and 0.003
metres, are clustered together and well separated from the data for the most coarse mesh, 0.00616. We



174 ACES JOURNAL, VOL. 13, NO. 2, JULY 19988, SI: CEM & HPC

Speed-up

il ] 1 L

Numbe‘? of Prooessors4

Figure 4: The speed-ups for up to five processors when the network was dedicated to only the PVM tasks.
As in figure 3, ¢ points are for a mesh size of 0.00148 metres, X for a mesh size of 0.0017 metres, + for a
mesh size of 0.003 metres[~} for a mesh of 0.00616 metres.

performed a calculation for the intermediate mesh size of 0.00403 metres and found that the speedup values
clustered with the 0.00616 metre case. The overall trend is, as mentioned above, that a finer mesh benefits
more substantially from concurrent computations however the increase is not linear. We believe that this
reflects performance characteristics of the data buffering that is part of the any message passing process,
coupled perhaps to the paging of virtual memory by the operating system. An investigation of the buffering
issue could be achieved by using small RISC assembler routines to write those sections of the code concerned
with moving blocks of field data around; unfortunately, we have have not had time, or resources to do this
as yet.

For problems which require a large number of geometric grid points, the memory requirements can often
be a limiting factor in performing an FDTD computation; under these conditions optimum CPU performance
is a only secondary issue relative to actually solving the problem at all. On a single processor, or even on a
massively parallel processor, the addition of extra memory to the system is generally not an available option
for a user. Distributed computing has the distinct advantage that to obtain more memory one need only
find a lightly loaded, networked workstation, or a networked PC, within one’s organization. Typically, there
are many such machines available, even if only during the night and at weekends.

Improving the Effectiveness of the Computation

In order to improve the predicability of execution times of the distributed algorithm, we decided to assess
the number of executing processes on each host using the well known UNIX command uptime[16], which
provides a one line summary of the number of users and the average load on the processor for the previous
five, ten and fifteen minutes; unfortunately, this approach proved to be ineffective in our circumstances.
Some workstations in our laboratory act as file servers holding various commercial EM simulation packages;
even when a simulation is being performed on another machine, the file server consumes CPU cycles and
appears loaded. A more useful UNIX command is top which tabulates running processes and gives the
percentage CPU consumption associated with each. This, of course, produces several lines of output which
must be analysed to find the appropriate information, a task that was accomplished by using a UNIX C



MULLAN erat OPTIMIZING THE PARALLEL IMPLEMENTATION OF A FINITE DIFFERENCE TIME DOMAIN CODE 175

shell script.

This script was successful in selecting the lightly loaded hosts prior to FDTD execution. In addition to
configuring the optimum virtual machine, the script compiled and ran the program on the available hosts.
The code was modified so that each task was spawned onto the next host in the configuration so that all
available hosts were used even though we use dynamic groups. This ensured that one, and only one, task
was given to each workstation and thus helped to ensure that the impairment in effectiveness, described in
the previous section, was eliminated. This improvement is of limited use, however, because in the duration
of execution, the load on each of the networked workstations is likely to change due to the presence of other
users. It was imperative to allow for the transient nature of the load, so methods of combating the negative
effects of a multi-user system were considered.

The power of a portable parallel environment such as PVM lies in the fact that computational resources
can be utilised which would be otherwise idle. However, to convince the owner of a private workstation that
it should become part of a larger, virtual machine it is often necessary to ensure dedicated use of that host
when the user requires it. It was with this scenario in mind that the following task migration scheme was
developed. The migration of a complete task from a heavily loaded host onto a lightly loaded one is a more
severe option than obtaining load balancing through load redistribution but it is easier to achieve.

In the virtual machine one has, in general, one incidence of the ‘first’ and one incidence of the ‘last’
program executing but several incidences of the ‘middle’ program executing. In order to simplify matters,
only the incidences of the ‘middle’ program were condidered as candidates for migration. To enable the
scheme, a fourth program source, ‘middle-migrated’ was created; this was designed a little differently from
the ‘middie’ program so that it could receive data defining the calculation in the midst of a loop over
timesteps and then continue executing from some arbitrary timestep.

sends a request to migrate FDTD

task from Wks C to Wks F

migrated task must

re-establish itself

in the virtual machine

Figure 5: Schematic illustration of the communications involved in a task migration from workstation C to
F. F must establish itself with workstations B and D as a nearest neighbour node.

At the start of an FDTD calculation, ‘first’ FDTD program spawns a monitor program after the FDTD
calculation has been started, that is after some appropriate number of timesteps (defined by the user). The
monitor then runs independently of the FDTD codes and continually assesses the status of each configured
host. The monitor program is itself a master process controlling several slaves. In this case the slaves are



176 ACES JOURNAL, VOL. 13, NO. 2, JULY 1988, St CEM & HPC

UNIX C-shell scripts which are spawned on each workstation in the virtual machine in turn. The scripts
execute the top command with the output being directed to a file; this file is edited, using sed amd awk within
the script finally producing a disk file which contains some integer data related to the load on the processor.
This data is subsequently read from the file by the monitor program, a feature that depends on the network
file system (NFS) that is in use in our laboratory (using NFS means essentially that all workstations share a
common disk area). The efficiency of using NFS as a data sharing mechanism has been illustrated for image
processing calculations using a network of SUN SPARC10 workstations[17].

A task migration is effected when the monitor program detects an overloaded machine and prompts the
offending task to relocate on a host deemed to be free. The decision criteria programmed was that

when two jobs are running on a host and one is an FDTD executable, then the FDTD process
should be migrated off that host.

This was moderated by the condition that migration was not carried out until an FDTD executable was
found to be in need of migration on three sucessive occasions. This condition was needed in order to prevent
spurious migrations due to very short lived processes that might be present in the virtual machine. In figure
5 we show, the sequence of events that takes place when a task migration is effected.

In a non-migrating FDTD calculation, the communications among the various tasks are synchronous. In
the load balancing situation several communications become asynchronous in nature, for example,

e between the monitor and the ‘middle’ programs.
e between a terminating task and the migrated one that replaces it.

e at the termination of the monitor program, something which takes place when the ‘first’ program
reaches the end of the loop over timesteps, a message is passed asynchronously from the ‘first’program
to the ‘monitor'program.

We have enabled these communications with the pymfprobe() routine. A key issue was whether, or not, the
extra probes and barriers used in the task migration scheme actually affected execution times. At first a
probe and a barrier were used on each time step as it was felt that for computationally intensive FDTD
applications these would have negligible effect, in other words the time spent updating electromagnetic fields
was far in excess of that used for task synchronization. For coarse grids, or substantially faster CPUs, this
would not be the case but then the distributed algorithm is ineffective for those anyway. The migrating and
non-migrating FDTD codes were run for fifty timesteps with a selection of grid sizes; the execution times
are compared in table 1. As expected, the more the computation involved in each time step, the smaller

Grid spacing (8) Migrating Non-migrating Increase in the
in metres Code Code execution time
0.00616 5.82 2.12 2.74
0.00198 41.47 21.29 1.94
0.00148 88.66 54.18 1.64

Table 1: Comparison of execution times for the migrating and non-migrating FDTD codes, discussed in the
text, for various sizes of mesh. All times are given in seconds.

the effect of the probes. The effect is still excessive for the finest mesh and this would put into doubt the
advantage of parallelizing the FDTD algorithm at all. It is clear, upon reflection, that probing on each
timestep is overkill and every ten steps would be a much more reasonable approach. Initial tests show that
this produces an efficient task migration procedure.



MULLAN etat OPTIMIZING THE PARALLEL IMPLEMENTATICN OF A FINITE DIFFERENCE TIME DOMAIN CODE 177

Conclusions

The performance of our distributed implementation of the FDTD algorithm has been found to be sensitive to
the dynamic load on the wirtual mechine used. The presence of other active tasks on any one, or more, of the
nodes used causes severe degradation in performance. To overcome this limitation, a dynamic loadbalancing
strategy is used in which tasks migrate onto lightly loaded nodes. Notwithstanding any performance degra-
dation, distributed computing provides an easily scalable memory environment, a feature which is generally
not economic on massively parallel systems.

The full task migration process described in this paper is effective when enough workstations are available
50 that a free machine can be found. It is not so useful for a small number of host machines when it is likely
that all available hosts will be employed at the start of an FD'TD execution. A more useful approach in these
conditions is to use data redistribution. It is envisaged that the above programs could be modified so that
instead of ruling out a host with one non-FDTD process running, we could steal half of its available CPU.
Thus a free machine would calculate z nodes while a semi-free machine would compute z/2 to achieve a load
balance on the homogeneous network. The dynamic load-balancing would thus involve a reshuffling of the
amount of work on all machines when one has to be altered. At first sight, this seems so much more involved
than full task migration to be unfeasible. However, the large increase in work needed by the monitor will
not be a problem as it can run virtually independent from the FD'TD codes. The number of communications
during a load redistribution is undoubtedly larger than in a full task migration. These data transfers will
occur concurrently and thus be quicker. It should therefore be a relatively simple matter to extend the
task migration to produce a very efficient load balancing tocl. This would not be limited to a homogeneous
network because it is based on standard UNIX and PVM commands.

A cknowledgments

This work was supported, in part, by the UK Engineering and Physical Sciences Research Council under
contract GR/L23215.

References

[1] Yee K S 1966, “Numerical Solution of Initial] Boundary-value Problems Involving Maxwell’s equations
in isotropic Media ”, IEE Trans Ant. Prog. Vol: AP-14, May 1966 pp.302-307.

[2] Huang T W, Houshmand B and Itoh T 1993, “Microwave structure characterization by a combination
of FDTD and system identification methods™, IEEE MTT-5 Int. Microwave Symposium Digest, vol. 2,

PP- 793-796.

[3] Kunz K S and Lee K M 1978, “A three-dimensional finite-difference solution of the response of an
aircraft to a complex transient EM environment I: The method and its implementation”, IEEE Trans.
on Electromagn. Compat. vol. 20, pp. 328-333,

(4] Chebolu S, Mittra R and Becker W D 1996, “The analysis of microstrip antennas using the FDTD
method”, Microwave, vol. 39, pp. 134-150.

{5} Ghandi O P, Sullivan D M and Taflove A 1988, “Use of the finite-difference time-domain method in
calculating EM absorption in man models”, IEEE Trans. Biomedical Engineering vol. 35, pp. 179-186

[6] Buchanan W J 1993, “Simulation of radiatin from a microstrip antenna using three dimensional finite-
difference time-domain (FDTD) method.” Eighth International Conference on Antennas and Propaga-
tion, IEE Coni. Pub. No. 370, pp639-642

[7] Chew K C and Fusco V F 1995 “A Parallel Implementation of the Finite Difference Time Domain
Algorithm” Intl. J. of Numericel Modelling:El. Networks, Devices and Fields 8 293

[8} Taflove A 1995 Computational Electrodynamics: The Finite Difference Time Domain Method, (Boston:
Artech House) ISBN 0-89006-792-9, pp545-84



178 ACES JOURNAL, VOL. 13, NO. 2, JULY 1998, §1: CEM & HPC

[9] Davidson D'B, Ziolkowski R W and Judkins J B 1994, “FDTD modelling of 3D optical pulse propagation
in linear and non-linear materials”, Second International Conference on Computation in Electromag-
netics, IEE Conf. Pub. No. 384, ppl66-169

[10] Varadarajan V and Mittra R 1995 “Finite Difference Time Domain (FDTD) Analysis using Distributed
Computing” IEEE Microwave and Guided Wave Letters 4 144-145

[11] Rodohan D P, Saunders S R and Glover R J 1995 “A Distributed Implementation of the Finite Difference
Time-Domain (FDTD) Method” Intl. J. of Numerical Modelling:El. Networks, Devices and Fields 8 283

[12] Reale F, Bocchino F and Sciortino S, “Parallel Computing on UNIX Workstation Ar-
rays” Comp. Phys. Comm. 83 pp. 130-140, 1994

[13] Geist G A, Beguelin A, Dongarra J, Jiang W, Manchek R and Sunderam V 1994, PVM 8 User’s Guide
and Reference Manual, Qak Ridge National Laboratory Technical Report ORNL/TM-11616.

[14] Malard J 1995, MPI: A Message Passing Interface standard, Technical Report, Edinburgh Parallel
Computer Centre,

[15] Robbins K A and Robbins 8 1996, Practical Uniz Programming: A Guide to Concurency, Communica-
tion and Multithreading, (Prentice Hall: NJ) ISBN 0-13-443706-3 p401-18.

[16] “Using HP-UX”, HP 9000 Workstations, Hewlett Packard, Part No. B2910-9001, Edition 1, 1994.

[t7) Ward G, “Parallel Rendering on the ICSD SPARC-10’s”
The Radiance Synthetic Imaging System, http://radsite.lbl.gov/radiance/refer/Notes/parallel.html.



