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Abstract—Several relatively simple numerical
changes improve the speed and accuracy of the
early Mautz and Harrington discretization
procedure for boundary element method
calculations of scattering from axially symmetric
bodies. This method is still in common use in
programs siuch as CICERO and GRMBOR. For a
fixed set of geometry points, changes in the
azimuthal (¢) integration reduce computer time,
especially when lossy materials are involved.
Changes in the integration along the generating
curve (t) improve accuracy. The most interesting of
these is the use of the equal area rule from parallel
wire modeling of solid surfaces to answer the old
question of the optimal constant for dealing with an
integrable singularity in some. of the t integrals.
Some of these changes are applicable to a variety of
integral equations and boundary conditions. Most
of them can be implemented with little
programming effort. Tests are shown for difficult
cases involving spheres, and Mie series calculations
are used for comparison.

I. InTRODUCTION

HE old Mautz and Harrington method of reducing
integral equations to matrix equations in body of
revolution (BoR) scattering [Mautz 1969, 19771 is still
in use [Rogers 1989, 1990], though newer procedures
have been developed by others [Govind 1978], [Kishk
1992], [Goggans 1992] for example, and by the same
workers [Mautz 1982 Mai, 1982 December]. The
newer procedures handle the short distance singularity
more carefully while the 1976 procedure is simpler
and seems to have robustness and efficiency from its
use of Galerkin's Method. Its simplicity has allowed
it to be used in general computer programs that might
otherwise be prohibitively awkward [Rogers 1990].
The McDonnell Douglas implementations such as
CICERO [Mitschang 1984 August, 1984 November],
[Putnam 1984] exploit the advantages of the early
algorithm by being symmetrical, compact, fast and
general.
Though singularity removal is necessary for
some problems such as tapered coatings, one can argue
that the most efficient solution to a symmetrical
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problem must be symmetrical itself. EFIE CICERO
is almost completely symmetrical with respect to the
exchange of the incident and scattered plane waves
(and with respect to the exchange of € and ).

The McDonnell Douglas programs have
unusually good efficiency in terms of giving
reasonable accuracy for small numbers of basis
functions and small computer time, but they do not
converge quickly enough, for some purposes, when the
sampling density is increased. On examining the
formalism, it seemed that there might be weakness in
the numerical integration in the t direction. The
computer program CICX2 (also called DICIC or
CICFIX) is a version of CICERQ with several
changes to the numerical integrations by which it
calculates the MoM matrix elements.

The first changes resulted in increased speed for
cases with wide ranges of refractive index, rather than
in increased accuracy. The version with only changes
of this type was called CICX1. Additional changes
verified the supposition that the t integrations limited
the accuracy. The original scheme was simple and fast
but did not give high accuracy. On the other hand the
more elaborate methods of programs such as DBR
[Glisson 1979, 1980] and JED (a Lockheed Missiles
and Space Company (LMSC) program using the later
Harrington and Mautz method) tend to be specialized
to their basis and testing functions. We wished to
preserve CICERO's triangle basis functions and
Galerkin's method that appear to account for its
efficiency, and to stay within the framework of its
geometry description.

Each change was tested for the conducting
sphere, for which a good bench mark is available
[Smith—Subbarac 1987]. A few final variations were
compared also against coated spheres and against
experimental data.

II. Tae SxeNiFicaNT DIFFERENCES
A. Changes 1o the t Integration

1} The basis and testing functions of this
method are triangles (with some lone half triangles at
junctions). When these are differentiated, they become
double pulses. The intervals between adjacent pairs of
the user's geometry points are usually called segments.
Each half triangle covers two segments. The integration
sampling points of the original procedure are the
centers of the segments. In CICX2 the segments are



divided into “subintervals” for numerical integration,
xvhenever the distance between them at ¢ =0, (! t-
t'l = ¥{z#)«(pp)° ) is smaller than the wave length
(& operator) or half the wave length (£ operator).
This improves accuracy, at the expense of fill time.
The number of these submtervals depends_on the
distance. It is two for It-t1 > W2, three for It tI > 9
and five for It- tI = 3 (¢ operator), and two for it-th> d
and three for i-t1 = & (& operator), where 0 is the
average of the source and field segment widths.

2) The treatment of the logarithmic singularity
in the t integrations contributing to the & operator
contained a small error, which was corrected. This
might not be regarded as an error at the time the
method was first proposed, but it has slowed the
method's convergence as computer hardware has
improved.

These programs do not subtract out this integrable
singularity. The t integration proceeds with constant
steps and weights except that when the source interval
is the same as the field interval, the value of zero for
it-1 is replaced by 1/4 of the segment width. The
original explanation for this procedure was that it
corresponds to using a cylinder equivalent to a strip.
Another interpretation is that it subdivides the interval
and samples each half at its center. This is not the best
choice. The imaginary parts of the integrands are
smooth. The real parts are concave upward in each
interval (for small lf_f'l)_ So integrating by intervals
sampled at their centers always gives estimates of the
contribution to the integral from the neighborhood of
the singularity that are too small.

The new algorithm corrects this systematic error
by using the appropriate equivalence between a
cylinder and a strip. This is the same equivalence as
the equal area rule for parallel wire modeling of
surfaces. The 8/4 is accordingly changed to 0/(2m).
Test numerical integrations verify this new value. (See
Part IV.)

[Kishk 1989] and Shafai found that sampling the
dielectric side of an interface more densely than the
vacuum side improves the efficiency, but the current
author only became aware of his work through the
editors of this journal.

B. Changes to the ¢ Integration

Gauss Legendre quadrature is not an obvious
choice for a periodic function (with no ends). Yet, it
deals well with the spike in the integrand centered at
$=0, because the integration points bunch up near the
limits of integration.

1) The number of ¢ integration points
(NGAUSS) is different for each region. This avoids
using unnecessary points for low refractive index
materials, when there are dense materials in the
problem. In particular, it avoids using an
unnecessarily large value of NGAUSS while computing
the submatrices for the outside free space. This can be
the most time-consuming part of this program.
Making the t sampling density depend on the dielectric
constant has previously been shown to improve
efficiency [Kishk 1989].

2) The Green's Function integrals terminate at
large distance in lossy materials when the e factor
is less than a small constant value. (It made little
difference whether this number was 107 or 104)
This avoids calculating negligible terms. This test is
so effective for lossy high refractive index materials
that it seems preferable, for these cases, to singularity
removal, which results in an integral that cannot be
truncated. The original version of CICX2, running on
a scalar computer, jumped out of the ¢ integration
loop. To optimize the program for a vector computer,
it was necessary to find the number of ¢ steps needed
before entering that loop. The program searches the
table of integration abscissas for an approximate match
to the required number of skin depths.

3) The Gauss Legendre weights and abscissas
used are half of those for an integration from zero to
2 instead of those for zero to x. In other words the
call to the subroutine GAUSS has the parameters 2
NGAUSS and 2n instead of NGAUSS and x. This
avoids unnecessarily bunching the integration points
near ¢ = m where the integrand is well behaved. We
are integrating even periodic functions from zero to 2
7. The old way is to divide each integral into two
equal parts, one from zero to « and one from x to 2,
and then to use Gaussian quadrature on one of these
equal parts. The new method uses Gaussian
quadrature on the interval from zero to 2z but only
evaluates one of each pair of equal samples.

4) NGAUSS now depends on the absolute value
of the refractive index rather than on the real part only.
The derivatives of the integrand depend on the
imaginary part of n as well as on the real part. This
should improve the accuracy for very lossy materials.
The time cost is small because of 2) above.

The formula for NGAUSS used here is the nearest
integer 10 4 n Pmax / Ay + 2.5, or 12, whichever is
larger. Here n is the absolute value of the refractive
index, Pray is the largest value of the radius in the
current region and A is the free space wave length.
The formula for NGAUSS in old CICERO is the
largest integer less than 2 (np)yax / Ao + 1.3, or 8,

whichever is larger. Here n is the real part of the



refractive index, p is the radius, (np)max 1s the largest
value of np in any region and Ag is the free space
wave length. NGAUSS was increased, as needed to
compensate for the less smooth form of the integrand

resulting from the smaller values of it-11, when

subintervals are used. .

5) The ¢ integrals at longer it-t'l, where no
subintervals are used, are done on a smaller number of
equally spaced ¢ values with equal weights. This is
the obvious choice for a well behaved periodic
integrand.

IH. Test Cases

The data shown were computed with 64 bit
precision. See section IV for comments on arithmetic
precision.

A. Conducting Sphere

Figure 1 is a logarithmic plot of the back scatter
cross sections calculated by the new and old versions
of CICERO and by a Mie series calculation for a
conducting sphere with a one meter radius. Both
CICERQ calculations are for the same segmentation of
the sphere. There are about ten basis functions

0O CICERO 201 Geometry Points
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(20 geometry points) per free space wave length at the
highest frequency shown.

All three agree well, except that the standard
CICERO calculation begins to change rapidly with
frequency near the upper end of the frequency range.
This behavior is associated with cavity resonances.
{The scattering problem could be solved by a
McDonnell Douglas variant with the Combined Field
Integral Equation [Mitschang 1984 November]
[Putnarm 1987}, but the interest here is in a measure of
the numerically generated transparency of the
conducting surface that allows the cavity resonances to
couple to the exterior field.}

Figure 2 shows more frequency steps in this
upper region. The new version shows resonant
behavior, but the resonances are localized to certain
frequencies with smooth regions between. With the
original version, the resonances are broadened by
numerical error to the extent that they overlap.

Figure 3 shows the first minimum. Though the
number of basis functions per wave length is much
larger here than at the higher frequencies calculated,
there is a fraction of a dB error in the old CICERC
caleulation. This is smaller with the new version.
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Figure 1: Back-Scatter from a Perfectly Conducting Sphere (1 meter radius) Railey Region to 1 GHz.
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Figure 3: Back-Scatter from a Perfectly Conducting Sphere Region of the First Resonance Minimum
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Figure 5: Back-Scatter from a Perfectly Conducting Sphere Region of the Second Resonance Minimum



Figure 4 shows the second maximum with
generally the same results. In Figure 5, the region of
the second minimum, there is one isolated cavity
resonance. This is just visible in this view of the
calculation with CICX2 and is more pronounced in
that with CICERQO.

B. Vacuum Coated Conducting Sphere

Figure 6 shows a conducting sphere, calculated as
a conducting core coated by a dielectric with the € and
u of free space. Here the old and new versions do
about equaily well. The onty version that does better,
here, is a version (labeled L) with more integration
steps even for large distance between source and field
segments. This result supports James Rogers's use of
more than two segments per half triangle. It also
suggests that these long distance matrix elements
might be an appropriate target for future work.
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C. A Sphere with a Lossy Coating

Figure 7 shows the back scatter cross section of a
sphere with a lossy coating. The coating has (relative)
£ about 10 and p about 3. It has both eleciric and
magnetic loss. Its loss and thickness (about 2.5 cm.}
give perfect absorption at normal incidence on a flat
surface at 500 MHz. In an impedance boundary
condition approximation, there is zero back scatter
from the coated sphere at the same frequency. The
Mie calculation with the program MIMI
[Smith—Subbarao 1987] shows that the true cross
section is very small at this frequency. On the other
hand it comes up rapidly away from 500 MHz.,
because of the specular reflection. This case is very
sensitive to the modeling of the coating properties.
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Figure 6: Back-Scatter from a Perfectly Conducting Sphere Calculated as a Coated Sphere
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Figure 7: Back-Scatter from a Coated Sphere Outer Radius = 1 Meter, Coating Thickness = 2.2 cm.

The BoR curves shown here are for three
different geometry point spacings with the CICX1
version and the coarser spacing with the new CICX2
version. A calculation done at the coarser spacing
with the old CICERO is shown to verify that the result
is indistinguishable from that with CICX1. Some luck
is involved. A version with more integration points for
the % operator does not do quite so well on the resonant
frequency. But there is clearly a large improvement.
Other experience also supports the conclusions that
CICERCO underrepresents the electrical thickness of
coatings and that this tendency has been corrected in
CICX2. The systematic part of the error was
presumably due to the undersampling of the 1 /¢
singularity, though no specific trial has been done to
confirm this.

D. Sphere Imbedded in a Cylinder

The only case noticed, for which the modifications
hurt the accuracy was a conducting sphere enclosed in
a cylinder with the £ and p of free space. Whether this
shows any fault in the changes described here is not
known.
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E. Computer Time

Even for equal rumbers of basis functions, the
computer times are different for the two versions. The
CICX2 uses many more t integration steps at short
distances than the old CICERO but conserves on ¢
steps, especially at large distances. It is slower for
electrically small perfect conductors and faster for
large lossy bodies.

IV. TeHE EQuaL ARrea RULE AND THE
BoR Matrix ELEMENTS

The ¢ integrals required for the matrix elements
are: G, G, and G; for the & operator, [Mitschang
1984 November, p. 28] and H, H, and H; for the &%
operator[p.33]. The first three of these contain a factor
of l/(kr). G also contains a factor of sin(¢) sin(n¢)
that cancels the singularity at ¢ =0.

The three integrals for the % operator nominally
contain a factor of 1/(kr)>. Here one factor of 1/(kr) is



from the Green's function itself, one results from
differentiating the green's function (instead of the basis
and testing functions as for the £ operator) and one is
merely the result of using the position vector instead of
the corresponding unit vector in defining the direction.
The magnetic field on a flat sheet of current depends
only on the local value of the current, which is
included separately. So the contribution of these
integrals, for t and t' on the same segment and ¢ small,
must vanish. The singular parts of the integrals do not
contribute, except through roundoff error.

In the original form given by [Mautz 1977, p.9],
only one of the three integrals of the &% operator has
the 1/(kr)® form. Its coefficient explicitly vanishes for
the self term, so they avoid this subtraction of large
numbers. For the cases tested, changing the numerical
precision of these variables or of the whole program
between 64 and 32 bits had little effect, but one should
suspect them when he/she sees precision dependence
with the McDonnell Douglas form.

The two dimensional integrals, then, are all either
smooth or of the form 1/(kr). We integrate in the t
direction by dividing each basis function into segments
(and subintervals) and sampling at the center of each
interval. Where the source and field intervals are the
same, we would get infinity for the ¢ integral, so we
further divide the interval into two. At this point the
old algorithm again samples each of these half
intervals at its center and therefore underestimates the
integral. By the mean value theorem, there is some
point where we can sample the function and get the
right answer, for the real part. If the interval is much
smaller than a wave length in the matertal, then the
correct choice of the t location at which to sample does
not depend strongly on the e ¥, cos(¢) and cos(n¢)
factors in the integrands. The contribution of t-t' to Irl
will have died out before these slowly varying
functions begin to deviate from unity. As usual, the
short range effects can be regarded as electrostatic and
magnetostatic.

We need an approximation for the integral, based
on sampling the distant intervals at their centers. Such
an approximation is in use in electromagnetics. It is
commonly called the “equal area rule” [Ludwig 1987].
One statement of this is that the electrostatic energy
(and the magnetostatic energy, which has the same
form) of a row of circular cylinders most closely
approximates that of a plane when the circumference
of each cylinder is equal to the spacing between them.
This energy can be evaluated by adding the
contributions of the charges on the cylinders (assumed
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axially symmeirical) to the electric potential on the
surface of one of them. It gives the same form as
integrating by strips, sampling each but the self term at
its center and sampling the self strip at 8/(2x) from its
center. This, is the relevant equivalence between strips
and cylinders.

Other values such as 0/8 [Kishk 1986], [Kishk
1992} and even 0/6 (rumor) have been tried, but the
equivalence of this integral to those in the standard
“user” equal area rule has apparently been missed.

A. Wire Modeling of Surfaces

" A wire screen can be modeled as an equivalent
circuit between two 377 € transmission lines that
model free space [Marcuvitz]. This circuit may have
resistive loss, inductance and capacitance. If the
screen has no loss, the circuit has no resistance. The
inductance and capacitance are measures of the
magnetic and electric field energies stored near the
mesh. More precisely, of their differences from the
field energies in free space.

The group who founded TCI noticed, perhaps
during the design of a wire grid Luneburg lens before
that company was founded, that the electrical
properties of mesh depend on both the magnetic and
electric field energies [Andreasen 1962, TCI]. To
match a solid metal plate, both field energies must
match those of the plate. For crossed wires, one must
resort to nonphysical (for wire) negative series
inductance to do this, because the wires perpendicular
to the current hold charge but have little effect on the
magnetic field. If the polarization is known from
symmetry, one can use parallel wire. For parallel wire,
the electric and magnetic field energies have the same
form, as they do for a flat plate. It is necessary only to
pick the right spacing to radius ratio to approximate
both energies accurately. Of course the spacing must
still be small compared to the wave length and to any
relevant geometric features of the body, but the
method converges much more rapidly if the correct
ratio is used. This ratio is 2m [Ludwig 1987]. This is
heuristically known as the “equal area rule.”

Both a wire with uniform current and one with
uniform charge have field proportional to 1/r, so each

field energy is the integral of 1/r? over the space
outside the wire. In polar coordinates, this is the
integral of 2 m r/ r? from the wire radius p to some
distant point R. This is proportional to log(R/p).
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The equal area rule is a well-established
approximation for these ficld energies, which contain
the same singularity as that in the BoR & operator
integrations. The electric field energy per charge of a

B. Test Integrations

After integrating over ¢, two of the % operator
integrals have a logarithmic singularity. To
demonstrate the convergence of this method on such a
singularity, log(Ixl) was numerically integrated on an
interval containing zero. Specifically, the function
(172) [log(IxI)-1] was integrated from -1 to 1 by
Gaussian quadrature. The method replaced the zero x
sample by 8/(2x) or by 0/4, where 9 is the local point
spacing. The point spacing varies in Gaussian
quadrature but, far from the ends, its local value is
approximately the local value of the weight.

The value of this integral is zero [Dwight 1961],
so the output is the numerical error. Figure 9 shows
the resuits. With 2z, the error is smaller for all
numbers of steps used and much smaller for the larger
numbers of steps than it is with 4. Though the author
is not aware of a mathematical proof, this shows a
higher order of convergence. The failure to continue
to converge beyond a part in 108 is probably due to the
error in the abscissas and weights. These are
calculated by a routine from CICERO that defines
constants with precision not much more than this.

(locally) uniformly charged plate is proportional to the % ? 8| 116 3|2 6|4 1%8 25L6
scalar potential. This is the integral over the charge of
l/r, as in the & operator. The BoR integration points 1.
correspond to the wires. This part of the & operator 8/4
can be interpreted as the scalar potential due to a E—Z 7
charge distribution. For the self wire, the distance E Z
from the line charge used in the 1/r integral is the wire &
spacing divided by 2n. Since the BoR integral has the ;'4-'
same form of singularity the distance from the line 4_5.-
charge should be taken to be the point spacing divided 9
by 27 here also to obtain the same accurate and robust 6. 0/2x
approximation: -7.4
%2 BT T T I T I
) i 2 4 8 16 32 64 128 256
J J L gydx ~ 8 x 1 . Z L dx number of integration points
1
o 6/2’“ i=ln Figure 9: Test Integral of (1/2) {tog(Ixi)-1]
A similar test, done by numerically integrating a
where 1 = 'J(X'Xj)z"'(}"Yj)z and &= yzl;i function containing 1/r in two dimensions, gave
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similar results.



C. Tests in a Boundary Element Method Program

The Figures 10-12 show three comparisons
between 0/25 and &/4 for a one meter radius perfectly
conducting sphere in a high frequency range, where
internal resonances exist. These were done with an
LMSC program called KAJRDL. This is again an
EFIE calculation. It is sensitive to the numerical
integrations, which cause the spurious coupling
between inside and outside solutions. The EFIE on a
perfect conductor uses only the & operator, which is
the one that is sensitive to the difference between 4
and 2.

Figure 10 compares calculations done with no
subintervals. Figure 11 shows calculations with
subintervals only at very short distance. In Figure 12,
the distance over which each number of subintervals is
used was increased by a factor of ten relative that for
Figure 11. The accuracy increases with increasing
subintervals. For each figure, over nearly the whole

V. CONCLUSIONS

Each change listed in Part II individually makes
modest improvement in the speed to accuracy relation.
Together, the improvement is significant for nearly all
cases tested and can be striking. All changes, except
the subintervals, can be done with little or no increase
in complexity. (JRMBOR [Rogers 1990] has another
way of varying the number of integration points per
basis function.)

In particular, 84 should be changed to d/(2x) in
the & operator of every program that uses this way of
dealing with the short range singularity in the t
integration.
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frequency range, the calculations with 27 are more
accurate than those with 4.
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