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Abstract—Computer time required for finite element
analysis of microwave filters is reduced by more than an
order of magnitude by using modal frequency rather than
direct frequency methods. In the conventional direct fre-
quency method, the number of unknowns is equal to the
number of edge degrees of freedom. Instead, the newmod-
al frequency method first computes the 3D modes and
then uses them as basis functions, thereby greatly reduc-
ing the number of degrees of freedom. The two methods
are applied to the European benchmark problem of a
dual—mode microwave filter. The modal frequency meth-
od obtains essentially the same results as the direct fre-
quency method, but when analyzing 201 frequencies it
yields a speedup factor of 15.

INTRODUCTION

Microwave resonators are often used to make filters. If
the coupling coefficients are small and the quality factor
Q is high, then narrow passbands or stopbands may re-
quire analysis at a hundreds of frequencies. In conven-
tional direct frequency finite element analysis (FEA), to-
tal solution time is directly proportional to the number of
frequencies analyzed, and may therefore be hundreds of
times longer than the solution at one frequency.

To reduce computer time, several methods of reduced
order modeling have been used. Asymptotic waveform
analysis (AWE) has been used for several years [1], and it
has been successfully combined with finite element analy-
sis [2]. The most recent method of AWE is called PVL for
Padé via Lanczos process [3]—[6]. While PVL can extend
the frequency range compared tostandard AWE methods,
as of now no AWE method is guaranteed to find all reso-
nances over a specified frequency range.

In a new technique called modal frequency FEA [7], a
3D real Lanczos eigenvalue analysis with Sturm sequenc-
ing is first performed to reliably find a/l resonances of low
loss devices. The resulting eigenvectors are used as basis
functions for solutions over a range of frequencies, there-
by possibly saving computer time if S—parameters are
needed for a large number of frequencies.

This paper begins with a review of the modal frequency
method of FEA and some of its recent applications. Then
the new modal frequency method is applied to a bench-
mark problem from a European magazine. The problem

is a two—port dual—mode cylindrical six—cavity filter with
iris coupling to rectangular waveguides. The modal fre-
quency results will be compared with those obtained by the
conventional direct frequency method and by measure-
ments.

MODAL FREQUENCY
FINITE ELEMENT ANALYSIS

Conventional direct frequency FEA consists of solving
the complex matrix equation [7], [8] with angular frequen-

cy w:
[ = @?[M] + jo[C] + [K] {u} = {P} M

where [M] is the permittance matrix (proportional to per-
mittivity), [C] is the conductance matrix (proportional to
conductivity), and [K] is the reluctance matrix (inversely
proportional to permeability). For the 3D edge finite ele-
ments used here, the unknown vector {u} consists of edge
magnetic vector potentials A. The electric field is then
—jwA. {P} is the excitation vector, which for S—parame-
ter computations is located at the ports. The {u} vector
has as many degrees of freedom as there are finite element
edge unknowns, which usually number in the tens of thou-
sands. Note that the left hand matrix changes with fre-
quency and thus solution time is proportional to the num-
ber of frequencies analyzed.

Instead of solving (1) directly, we can first compute the
real eigenvalues and eigenvectors, denoted by {¢;}, of the
3D finite element model. Then a modal frequency solution
is assumed to be a linear combination of the eigenvectors,
expressed as [7}:

{u} = [¢}{a} (@)

where the matrix [¢] is made up of m columns of individual
orthogonal eigenvectors {¢;}, and the vector {q} contains
all of the coefficients. If there are n direct degrees of free-
dom in a problem (the length of the column vector {u}),
then [¢] is an (n x m) matrix. This transformation can be
highly accurate when all n eigenvectors of the system are
used. In many cases only a small approximation is intro-
duced if a limited number of eigenvectors in a specified
frequency range is used.

The frequency range of the eigensolution should in-
clude all modes that are expected to be excited. All of the
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real modes over any finite frequency range are rigorously
computed in our software [7] using a Sturm sequenced
Lanczos algorithm. Then the final solution is obtained by
substituting (2) into (1):

— o?[M][¢]{a} + jo[Cl[¢[{a} + [K][¢]{q} = {P} )

Premultiplying both sides by [¢]T results in:

- ?[¢]"M][$l{a} + jolo]"[Cl[$1{a}
+ [¢]'[Kl[¢}{a} = [¢]'{P}

where the three new modal matrices are:

[m] = [¢]"[M][¢]
[c] = [¢]"[C][$]
(k] = [¢]"[K][]

Thus (4) can be rewritten as the modal frequency equation:

( — w[m] + jole] + k] {a} = {p} (8)

Recall that the unknown {q} vector is of length equal to
the selected number of real 3D modes. This reduction in
the number of unknowns from those of {u} of (1) can often
lead to a substantial computational speedup compared
with direct frequency FEA.

Because real modes are assumed, the modal frequency
method is applicable only to low loss problems. While di-
electric and ferrite material losses can be analyzed direct-
ly, wall losses can only be analyzed indirectly using equiva-
lent lossy air or other filler material. Also, real modes
cannot represent radiation boundaries, and thus antennas
cannot be analyzed by modal frequency FEA.

A recent paper [7] describes the theory of modal fre-
quency FEA in detail. It includes a discussion of S—pa-
rameter computations using approximate port boundary
conditions.

The same paper also applies modal frequency FEA to
computing the S—parameters of two filters. One filter is
a cutoff—coupled rectangular dielectric resonator filter,
and the other is a coax—fed rectangular box containing cy-
lindrical dielectric resonators. Modal frequency FEA re-
sults obtained are similar to those obtained by direct fre-
quency and by measurements. Compared with direct
frequency FEA, modal frequency FEA obtained speedup
factors ranging from 1.4 to 4 for analyses at approximately
100 frequencies.

Another recent paper [9] applies modal frequency FEA
to two other filters. One is the ACES/TEAM 19 single cav-
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ity filter, for which accurate S—parameters were obtained
with a speedup of 10 over direct frequency FEA. The oth-
er example analyzed was an improper variant of a dual-—
mode filter; here the proper geometry is used in the analy-
sis via both direct frequency and modal frequency FEA.

DESCRIPTION OF THE DUAL-MODE
MICROWAVE FILTER

Dual—mode microwave filters use two similar propa-
gating waveguide modes to produce a bandpass filter. The
transmission coefficient often shows excellent rejection
outside the desired passband [10].

The earliest dual—mode filters produced their dual
modes by means of adjustable screws inserted in wave-
guide walls [11]. Recently, an improved design uses ro-
tated apertures to produce dual couter—rotating modes in
a circular waveguide [12]. Usually multiple apertures are
placed along the length of the filter, where each aperture
is rotated sequentially. The rotations are either all in the
clockwise direction or all counterclockwise.

The dual—mode filter analyzed in this paper has ellipti-
cal apertures that are rotated sequentially in the counter-
clockwise direction [13]. Figs. 1 and 2 show the outside of
the filter, which is made up of six cylindrical cavities fed by
rectangular waveguide at both ends. The rectangular wa-
veguide cross section is 1.905 by 0.9525 cm. The cylindrical
cavities are all of diameter 2.40 cm. The geometry was en-
tered via solid modeling commands in the preprocessing
software. The filter is entirely filled with air and all of its
walls are made of aluminum. Thus the filter is here as-
sumed to be lossless.

Fig. 3 isanisometric view at the same angles of Fig.1, but
showing the inside of the filter. There are seven elliptical
apertures at positions and major axis angles [13] listed in
Table 1. Fig. 4 is a front view of the inside of the filter,
showing the ellipses. The two large tilted ellipses of Table
1 have a major axis of 2.4 cm and a minor axis of 2.1 cm.
The two large verical ellipses are 2.4 by 2.0414 cm. The two
end ellipses are 1.278 by 0.4 cm, and the single center el-
lipse is 0.87 by 0.4 cm.

TABLE 1. Elliptical apertures in filter

zmin (cm z max (cm major axis angle (deg.)
0.750 0.923 180 (end ellipse)

1.4729 1.523 135 (large tilted ellipse)
2.0728 2.132 90 (large vertical ellipse)
2.6827 2.8342 90 (center ellipse)
3.3841 3.4441 90 (large vertical ellipse)
3.994 4.044 45 (large tilted ellipse)
4.5939 4.7669 0 (end ellipse)

Fig. 5 shows the measured S—parameters. They were
obtained using an experimental filter that is specified to
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Fig. 1. Isometric view of outside of solid geometry model of dual—mode filter.

Fig. 2. Side view of dual—mode filter of Fig. 1.
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Fig. 3. Isometric view of inside of solid geometry model of dual—mode filter.

Fig. 4. Front view of inside of solid geometry model of dual—mode filter.
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Fig. 5. Measured S—parameters of dual—mode filter [13].

obey the above dimensions within a tolerance better than
plus or minus ten microns.

3D FINITE ELEMENT MODEL AND
COMPARATIVE RESULTS

Even though the six cylindrical cavities of Figs. 1
through 4 are all symmetric about several mirror planes,
the rotation of the elliptical aperture axes means that the
filter possesses no plane of symmetry. Thus the entire fil-
ter must be modeled, here using finite elements.

Fig. 6 shows the finite element model, which consists of
10,169 second order edge (H1—curl) tetrahedrons. They
have a total of 64,450 edge degrees of freedom.

The model of Fig. 6 was submitted to our software,
which computed the fields and S—parameters using equa-
tions given previously [7]. The S—parameters were com-
puted using the software’s direct frequency capability of
(1) and its modal frequency capability of (8) at 201 fre-
quencies from 10 to 12 GHz, spaced by 10 MHz.

The computed S—parameters are shown in Fig. 7 for
direct frequency and in Fig. 8 for modal frequency FEA.

Fig. 6. Finite element model of filter, made up of 10,169 H1—curl tetrahedrons.
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Fig. 7. S—parameters computed using direct frequency method at 201 frequencies.
SCATTERING-MATRIX vs. FREQUENCY
S
joe]
©
o
L
@
-80 + + + + + + + + + +
19.8 1.2 18.14 12.6 1.8 11.9 11.2 11.4 11.8 11.8 2.0 12.2
FREQUENCY
{ ghz ]
e § 14010 T 1L
s 2.1 * 1.1
s 1.2 L.d
s 2.2 1.

Fig. 8. S—parameters computed using modal frequency method at 201 frequencies.
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Comparing Figs. 5, 7, and 8 shows that the direct and
modal results are very similar, both for S11 and S21. The
measured S21 of Fig. 5 appears similar to the computed
S21 of Figs. 7 and 8. The measured S11 of Fig. 5 differs
significantly from the computations of Figs. 7 and 8 in the
passband region.

There are several possible explanations for the differ-
ence between the measured and computed S11. One is
that the measurements may have been made on a filter
with a greater diameter, evidently denoted asx.xxx in [13],
than the 2.40 cm assumed in Fig. 1. Another possibility is
that more finite elements may be needed, whether direct
frequency FEA or modal frequency FEA is used. The ex-
pected accuracy of the computed and measured S parame-
ters is on the order of plus or minus 5 db.

COMPUTER PERFORMANCE

Both the direct frequency and modal frequency com-
putations of Figs. 7 and 8 were made on a Hewlett—Pack-
ard model 735/125 workstation. The CPU time was 40,718
seconds for the direct frequency analysis and 2,767 sec-
onds for the modal frequency analysis. The modal fre-
quency analysis first searched for all 3D modes from 5 to
12.5 GHz, and found ten modes at frequencies ranging
from 8.27 to 11.36 GHz.

The software developed here is also available on other
high—performance computers including several types of
Cray parallel processors. On the Cray, a vectorized and
parallelized sparse solver has been developed [14]. The
software includes not only the solid geometry preproces-
sing of Figs. 1 through 4, but also the automatic mesh gen-
eration of Fig. 6, as well as postprocessing capabilities such
as the graphs of Figs. 7 and 8.

Eigenvalue extraction and other computationally inten-
sive tasks in the software are carried out using special vec-
tor kernels that have been optimized for various high—
performance computer platforms. The most important
vector kernels are usually BLAS (basic linear algebraic
subroutines). Level I—type kernels include SAXPY and
DOT [14], [15]. Block kernels are also specific to the par-
ticular hardware and include double kernels such as multi-
plications of scalars and vector blocks. BLAS level Il and
especially level III—type kernels are not favored in com-
mercial finite element systems, because they are usually
incompatible with simple fortran matrix storage schemes.

Recently, sparse matrix methods have been implement-
ed that greatly enhance performance for very large finite
element matrices. Sparse BLAS kernels such as SAXPI
have become heavily used in sparse matrix routines. Also
enhancing performance of sparse matrix processing are
new resequencing methods based on minimum degree or-
dering [14], [16].

CONCLUSION

A dual-mode microwave filter has been analyzed by
both conventional direct frequency FEA and by a new
modal frequency FEA technique. Both methods have ob-
tained S21 at 201 frequencies that agrees well with mea-
surements, but their S11 disagrees somewhat with mea-
surements. While the modal frequency method obtained
essentially the same S—parameters as the direct frequency
method, it has achieved a speedup factor of 15. Thusmod-
al frequency FEA is attractive for analysis of filters and
other low—loss resonant microwave devices.
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