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Abstract

In this paper extensions to the impedance network method
are presented. In particular the method has been applied to
problems with boundaries extending to infinity. The
infinite boundary condition can also be applied to lines of
symmetry in the given geometry. Two dimensional
surface models have been verified by comparison of
numerical and experimental results in which the potential
was measured along the edge of copper sheeting of various
shapes located in a uniform, quasi-static magnetic field.
The method has potential for modelling three dimensional
structures including anisotropic earth planes, arbitrarily
shaped buried objects, and both finite and infinitely long
faults, dykes, pipes, cylinders and cracks.

1. Introduction

The three dimensional impedance method has been used to
model eddy currents induced in heterogeneous human
models by a time varying quasi-static magnetic field [1-4].
In this work, the object was modelled by a uniform cubic
three dimensional mesh of impedance cells. The values of
the impedances were determined from the size of the
element and the conductivity of the material being
modelled. Using standard circuit analysis the current was
solved for each face of every cell.

Other recent approaches to the calculation of eddy currents
using numerical techniques include an integral formulation
using a set of R, L and C elements [5], the boundary
element formulation [6], finite element modelling [7],
edge element [8], the integral equation approach [9] and
many others. There are considerable difficulties in
modelling the eddy currents induced in conductive media
when both the source field is non-uniform and the media
is both inhomogeneous and has arbitrary shape or is of
infinite extent in one or more directions. In this paper the
impedance method [1] is extended to address these
limitations. By discretising the two dimensional area or
three dimensional volume in terms of a spatial array of
impedance elements various structures can be represented.
The individual parameters of each element and spatial
variations in the applied field can also be modelled.
Varying symmetries in the solution space together with
prudent application of boundary conditions reduces the
number of elements required to solve a given problem.
The resultant matrix generated from this technique is used
to solve for the current in each cell for a spatially varying
time harmonic magnetic field. The technique is applied to
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the solution of eddy current problems in materials with a
spatial variation in conductivity in the presence of a quasi-
static magnetic field.

Until now calculations using this method have only dealt
with finite sized bodies with air boundaries. This excludes
the possibility of modelling a large range of problems
where boundaries extend to infinity. For this reason an
infinite boundary condition is desirable.

II. Impedance method theory
Maxwell's Equation in differential form (1) describes the
electric field E generated by the presence of a ime varying
magnetic field B.
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one can apply Stoke's Theorem to equation (1} and obtain
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For the quasi-static case the left hand side of equation (2)
represents the induced potential in the loop V, ie.
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and the right hand side of equation (2) is the negative of
the time derivative of flux & crossing the surface (S),
where
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For the time harmonic case we have the relation
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where @ is the angular frequency of the magnetic field.
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By dividing the media into a rectangular mesh of discrete
impedance elements Z, we can apply Stoke's theorem to
each cell individually providing that each cell is
sufficiently small so that the applied magnetic field is
uniform withir its boundary. The value of the impedance
on each side of the cell is directly related to the length of
the side and the complex dielectric constant of the cell.
The magnitude of the inducing magnetic flux is directly
related to the area enclosed by the cell and the angle
between the § and B. For a two dimensional surface
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formulation the values of Z are expressed in terms of the
cell length L, an arbitrary impedance element transverse
thickness A (usually expressed as an area in the three
dimensional model although it is the thickness in the two
dimensional formulation) by the following relation [3].

L
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where o is the conductivity and g is the relative
permittivity of the material and €gis the dielectric
constant of free space.

For a good conductor (O >> weep) and using a quasi-
static assumption, equation (6) becomes

R = —- 7)

We restrict the formulation to non-magnetic materials in
time harmonic fields. A single rectangular cell is shown
in Fig. 1(a), together with the electrical analog (b).
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Figure 1: An arbitrarily enclosed region of space and its
discretized equivalent cell.

In terms of the discretization process, it is assumed that
the magnetic field Bj across the element is uniform and so

the flux Pj within each cell is directly related to the area
of the cell ;. For an arbitrary four sided cell, we can write

4
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where VRj is the voltage across the B resistor in the
boundary path surrounding the ith cefl.

From (8) using Ohm's Law we can solve for the current in
a single loop Ici- The relation then becomes

4
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where I¢; = cell i loop current.
The full model consists of many interconnected cell loops

in a mesh. A two dimensional representation is shown in
Fig. 2

Figure 2: A portion of the two dimensional resistive
element mesh.

Hence the relationship beiween a one cell Ici and its

nearest neighbour cell currents ch is

4
jode; = 3 (Iej- Icq) -Rj (10)
j=1

For a conductive sheet consisting of n cells, the system
can be represented as

Rlnn. [T11xn =]0[@] 15n (D



where Rjj forms the resistance network, I is a column

matrix of unknown currents and @ is a row matrix of
magnetic flux through each element.

From (11) it is possible to calculate the loop current in
each cell and from this, calculate the net current
distribution throughout the sotution space. Thus, we can
determine the net current through each resistive element R
by summing the contributing currents from adjoining
cells. For the two dimensional surface formulation there
are a maximum of two component currents per resistive
element, however for a three dimensional model thers are
potentially four component currents flowing through a
resistive element. For example, if the resistive element
lies in the x direction then there are two loop currents in
the XOY plane and two in the XOZ plane {4].

Note that the applied field flux [®] can be spatially
variable for each element and so non-uniform fields can be
modelled. The flux generated by induced currents in a
particular cell will be in the opposite direction to the
applied flux and extends radially from the cell. If we
consider the four immediately adjacent cells then to a first
approximation we would expect less than 25% of this flux
will flow through each adjacent cell. Since the field falls
away as -3 contributions to other cells will be even less
significant. Therefore re-radiated flux generated from the
induced eddy currents is not considered in this method.
This assumption is also used by others [1-4].

The two dimensional surface formulation is sufficient to
solve many problems and the method is easily adaptable
to three dimensions and has been demonstrated in the
literature [1]. The computation of & as it appears in
equation (11) is still from the magnetic flux through each
cell which must be calculated from the magnetic field
component normat to the surface area of each celiface.

Boundary conditions

A variety of boundary conditions are required for the
accurate solution of models of arbitrary shape or semi-
infinite size. Application of the appropriate boundary
conditions can reduce the number of cells required to solve
a given problem and hence increase the computational
efficiency. This allows larger problems to be solved on a
given platform. A number of boundary conditions are
discussed below.

(i) Open boundary/insulator boundary
In the case of an open boundary where a conductor meets
an insulator, cells lying on the edge do not allow current
to flow beyond the boundary, ie. there are no
sources/sinks of current beyond the boundary. Hence for
an open boundary the contributing current ICJ in eguation

(8) is zero. Thus any element at this boundary is
expressed in terms of its four bounding resistances and up
to three nearest neighbouring current elements.
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(ii) Infinite boundary
Where a uniform material extends to infinity and is
subjected to a uniform magnetic field it can be classified
as an infinite boundary. At infinity, adjoining cells in the
direction of the boundary will have identical currents. If
the infinite boundary is located at x = , then it follows

that % = 0 and the net current flowing through the

element on the boundary of these two cells will be zero
(the summation of two equal and opposite component
currents). This is a Neumann boundary condition.
Equation (10) then becomes a summation of potentials j =
1..3. The location of the infinite boundary is chosen such
that in the solution, the difference in current between cells
adjacent to the boundary is less than (say) 5%.

With 3 or more infinite boundaries the cell currents are no
longer constrained. This is reflected by an ill conditioned
matrix [R] where no unique solution exists because the
number of unknown gquantities exceeds the number of
knowns and the matrix equation cannot be solved.

(iii) Symmetry
Along a line (eg. paraliel to the Y axis) or plane of

symmetry (eg. in the YOZ-plane) then % = 0. This is.

also a Neumann boundary condition, identical to the
infinite boundary condition.

Computational aspects

The computational model was developed and implemented
on a Sun Sparc Server 10. Mesh generation and
processing was implemented using custom software in 'C'
with double precision variables. For a two dimensional
surface formulation, mesh generation yields an n x n
matrix for an n element problem. The matrix generated
has a sparse diagonally dominant band structure, Because
the problems exhibit a low condition number an exact
rather than an iterative inversion routine was
implemented. Standard LU decomposition as described in
[10] was used. Matlab™ was used to create the net current
vectors and voltage plots from the numerically obtained
values of cell loop currents [I] in equation (11).

Non-rectangular cells

Equation (9) can be modified to calculate the induced
current in one cell in terms of any number of nearest
neighbour cells. It follows from this equation that the
number of sides n, of a given cell determines the exact
form of this equation {(j=1..n). Triangular elements allow
more accurate representation of many structures where
normally highly detailed staircase approximations are
required.



III The numerical results

To verify the method in two dimensions, a uniform,
square, conductive sheet of dimensions 9cm x 9cm was
modelled in a uniform quasi -static magnetic field. The
numerical model was evaluated for many cell sizes. The
voltages between points on one edge of the sheet were
evaluated. This is equivalent to the spaced pickup
experiment (described below). Note that a cell with
dimensions of 3cm x 3cm allows the solution of only two
data points whereas a cell size of 0.25¢m x 0.25cm
produces 18 data points. These results are shown in Fig.
3. It should be noted that there is good agreement
between the numerical results obtained for all cell sizes
although the spatial resolution is obviously limited by the
cell size. The error for even the largest cell size is less that
5%.
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Figure 3: Model accuracy for a variety of cell sizes
(f=1kHz, 6 = 5.8x1075/m).

To model an infinitely long strip about a small region of
interest infinite boundary conditions are used. The
conductor/air interface is an open boundary since the
currents are confined to the conductor with little current
injection to/from the air. Fig. 4 shows an 18 x 18 cell
model of lcm x lcm celis with R = 1 /m with two open
and two infinite boundary conditions applied.

Infinite boundary Open bo-ud\ary
\ X (18 cells)
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Figure 4: Mode! of an infinitely long conductive strip.
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IV Experimental setup

Experimental measurements were made to provide a direct
comparison with results from the numerical model. A
split shielded loop of diameter 50cm was placed around the
test area (Fig. 5). The loop was driven with a signal
generator at 1kHz to create a uniform magnetic fieid
normal to and inside the loop. A typical field strength of
SuT was generated. Using a small search coil, the
magnetic field inside the area bounded by the coil was
found to be constant to within less than 5%. Copper foil
of various shapes were placed in this region normal to the
magnetic field.

Co-axial
Cable \

f— lengih (on) —gw~|

B field
into page
Signal
Generator .,

Figure 5: Experimental setup.

Voltage probes with electrical connections to the edge of
the foil were connected to a detector using co-axial cable.
The detector circuit had an input impedance of 1012q,
This was created by using commercially available JFET
operational amplifiers in an instrumentation amplifier
configuration. Detector electronics was housed in a small
aluminivm box (5cm x 7om x 10cm) which was battery
powered with a LCD display. There was no earth reference
to the detector. The electronics consisted of a band pass
filter tuned to 1kHz, amplifier stages, an RMS to DC
detector and DMM (digital multimeter) module. The
instrument was calibrated by varying the field strength
stepwise and recording the probe output.

The objective in this design was to minimise any electric
field generation from the coil and magnetic or electric field



induction in the detector electronics. When the earth
connection to the shield of the excitation coil was
removed, the signal level of a test coil placed within the
test area showed poor directionality indicating electric field
coupling. With the earth connection in place, the detector
output was zero when the wire test coil was oriented

paralle! to the magnetic field.

V Results

In the first experiment a square sheet of copper foil (9cm x
9c¢m) was placed in the quasi-static magnetic field such
that the field is normal to the copper sheet. This problem
was solved numerically using a variety of cell sizes. With
18 x 18 cells the numerical solution for the quasi-static
vector current distribution is displayed in Fig. 6. This
current distribution shows a well known result where the
induced current is circular and the greatest current
magnitudes lie on the edge of the sheet. This was verified
by experiment by monitoring the voltage drop across a
spaced pickup at various points on the edge of the sheet.
This current plot gives good agreement with a result
generated using edge analysis [8].
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Figure 6: Induced current distribution in a homogenous
conductive square (9cm x 9cm) cell size (0.5cm x 0.5¢cm)
calculated using the impedance method.

Spaced pickup

In this set of measurements, separation between the
measurement points was varied across the top of the sheet
while remaining symmetrical about the position x =
4.5cm. The numerical model results are normalised to the
experimental magnetic field strength by using a field
strength probe. The model used had a cell size of 0.25cm.
The model results were obtained by numerically
integrating the currents between the ends of the pickup to
obtain a measured potential. These results are displayed in
Fig. 7. The difference between the model results and the

experimentally measured data is less than 10%
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Figure 7: Comparison between impedance method model
results and experimental results for a spaced pickup.

Length variations

In this experiment a rectangular (20cm x 9cm) sheet of
copper foil was placed in a quasi-static magnetic field such
that the field is normal to the surface of the copper sheet.

The length of the sheet was progressively shortened from
20cm to 9cm in 0.5¢m increments. The voltage difference
was always measured between two corner points on one
9¢m edge. The numerical model used had a cell size of
0.5cm x 0.5cm. Fig. 8 shows that the normalised
response of the model compares well with the
experimentally measured results. Clearly as the size of the
sheet decreases, the response also decreases. There is
however, a limiting sheet length (approximately 9cm)
beyond which there is no significant increase in response.

It is clear that beyond a length of 9cm there is very little
contribution to the measured voltage from addittonal
copper material; ie. for short lengths the current is
constrained by the y dimension and beyond the square, the
current is constrained by the x direction.

Cell shape variability
Two shapes were modelled experimentally and

numerically. First the response from a symmetrical

detector with a separation distance of 9cm across the top
of a 9cm x 9em square sheet of copper foil was measured.

The foil was then cut from a top corner across the
diagonal to a lower corner to form a triangular shape. The
detector position remained unchanged. The response from
this triangular shape was then measured. The two shapes
were modelled using a square and triangular one element
model respectively. The induced voltage of the triangular
shape reduces to 66% of the square shape in both the
numerical and experimental results. The measured and
numerically modelled results were found to differ by 0.5%
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Figure 8: Model and experiment results for copper
rectangle length variations.

Infinitely long homogenous conductive strip

In Fig. 4 the region of interest is divided into 18 x 18
cells. Cells on the top and bottom of this model are open
_ boundaries and the cells on the left and right boundaries
are infinite boundaries. Fig. 9 shows the vector currents
obtained by the impedance method. Note that the boundary
elements are included in columns 1 and 18 of the figure.
The current through the model is parallel to the open
boundary edges indicating that the infinite boundary
condition is effective.
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Figure 9: Induced currents in an infinitely long conductive
strip.
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Figure 10: A model of a surface crack in an infinitely long
conductive strip.

Infinite boundary

Surface crack modelling

Fig. 10 shows a resistive crack (1 x 5 cells, R = 1 x
10%) in an infinitely long homogenous strip (R=1).
The impedance method resuits are shown in Fig. 11. The
induced currents flow around the resistive crack as

expected.
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Figure 11: Induced currents around a crack in an infinitely
long conductive sirip.

Three dimensional modelling

The impedance method can be used to model three
dimensional bodies in the presence of an applied magnetic
field [3]. Computation time for a three dimensional
model is dramatically increased (cubic rather than squared
relationship) for given cell dimensions.

The two dimensional surface formulation is adeguate for
the two dimensional cross section modelling of three
dimensicnal structures on three conditions:

(a) The magnetic flux [ ¢ ] is unaffected by the nearest
adjacent plane perpendicular to the direction of the applied
field. (There is no significant magnetic field attenuation if
the distance is less than 10% of one skin depth).

(b) The conductivity distribution in the adjacent plane is
not significantly different to that of the plane being



modelled. (There will be negligible cross planar currents
generated which give rise to additional out of plane current
sources and sinks.)

(c) The magnetic field is always directed parallel to the
surface vector of each cell. (If this is not the case then
additional current sources and sinks will be present within
the model.)

VI Conclusions

The impedance method can be used to solve eddy current
problems in both bounded and unbounded regions. This
formulation has the advantage of using a variety of cell
shapes (for example triangular and rectangular) to best
represent the structure in the model. In addition, there is
no requirement for a uniform mesh. Different sizes and
shapes can be used within the one model. The impedance
method has been verified using copper sheet in a uniform
magnetic field. The experimental measurements lie within
10% of the numerical model results for most
measurements.

By applying appropriate boundary conditions, small
regions of interest within large structures can be modelled.
This enables large structures to be modelied with only 2
small number of elements if the region of interest is
small. This technique allows for significant CPU savings
and hence greater resolution .

Three dimensional modelling has great potential to model
complex features. If the features of interest lie only in the
plane orthogonal to the applied field then a two
dimensional model is sufficient since there will be no
interaction between the layers. The method has potential
for the non-destructive detection of sub-surface flaws in
metallic régions eg. aircraft wings and generator housings.
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