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ABSTRACT

Problems which depend on a small parameter in their formulation can often be studied by a perturbation
approach. Whether the perturbation is "regular” or "singular” is important in many respects. In magneto-
statics, due to some inherent duality, both kinds of perturbation may happen, depending on the chosen
formulation ("b-oriented” vs. "h-oriented” methods). Singularly perturbed problems are numerically more
difficult than regularly perturbed ones. We suggest that this might explain why, as some recent numerical
observations seem to suggest, b-oriented methods shouid give better accuracy in a specific class of

nonlinear magnetostatic problems at high permeability.

INTRODUCTION

This paper is a case study, which butts on a methodological question of such generality
that it seems almost preposterous to address it in written form: how should the particular-
ities of a physical problem (here, the presence of "small parameters”) guide the modeler in
the selection of a numerical method? This is a basic subject, one about which everybody
has definite opinions (and even, sometimes, strong feelings), but also an elusive one,
difficult to treat in a comprehensive way. (This is why there are relatively so few books or
paper collections devoted to mathematical modelling, like e.g., [1, 2, 3, 6, 7,9, 11, 13, 15,
22]. Why most of them seem so remote from the kind of mathematical modelling we do is

a puzzling question.)

One might say that, after all, this is quite normal. Why should "tricks of the trade" be
honored with formal dissertations? But a moment of reflection will show that some of the
most powerful of such tricks deserve to be thus treated, that they are, and that it is
eventually beneficial for all those concerned. Take Fourier analysis, for instance. On one
level, it is an efficient dimensionality-reduction device, which helps replace the numerical
solution of a fully three-dimensional problem with a series of simpler ones, in one or two
dimensions. On another level, it is the practical and usable by-product of a majestic
mathematical theory: harmonic analysis [ 12, 17]. Is this a coincidence? Probably not.
The development of the theory was stirred by the efficiency of what was at the time a
modelling trick, the use of trigonometric series in the study of heat transfer, and it has
payed back largely, as far as mathematical modelling is concerned. This is the classical
example of a practical modelling tool—a trade trick—backed by a strong mathematical
theory, and of the dialectics of their historical development. Other examples will come to
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mind (the "least squares” trick in relation with control and identification theory, some
aspects of Geometrical Diffraction Theory, some statistical tests . . .).

The small parameter issue (an instance of which will be presented in a moment) might
deserve such a status. Here there is, no doubt, a trick: use dimensional analysis to expose
"small parameters", identify the corresponding terms in the equations, drop them. There
is also a grandiose theory, or rather, theories: asymptotic analysis, perturbation theory.
But the theory appears incomplete, it lacks unity, and the trick itself is far from being
fail-safe: when your equationis —gu"+u={f, or —u" + gu={, should you drop the
g-term, or not? (Think of € as related, for instance, with the skin-depth.) The answer to
this particular question is known, but lots of similar ones are still to be addressed. Here is a
rich field of study, full of prospects for both intellectually stimulating mathematical
theories and usable practical recipes.

Yet, case studies may prove more effective than comprehensive studies of large
scope, at this stage. One such study comes from the experience of a small
electromagnetism community (the "TEAM workshop”, [22, 23]) whose emphasis is on
low-frequency and static situations. The test-case, described below in general terms, is a
non-linear magnetostatics problem on which the same observation has been made by
several independent investigators: numerical methods based on the use of the vector
potential tend to perform better than those using a scalar potential. This calls for an
explanation, which is the theme of the present paper. In short, there are two "small
parameters” in this problem, the ratio of the airgap to some characteristic length, and the
ratio of permeabilities in the air and in the iron. Their interplay results in the possibility
of formulating the problem as a perturbation with respect to some similar, much simpler
problem. This is a standard idea. What is new here is that, due to some symmetry inherent
in Maxwell equations, there are fwo ways to do this, based respectively on the use of the
scalar and of the vector potential, and that the nature of the perturbation is not the same for
both: it's "regular” perturbation in the former case, "singular" perturbation in the latter.
An attempt is made to link these facts with the numerical observations.

Similar situations where two small parameters are "competing”, each one driving the
problem toward different limits, seem to be common to other areas of electromagnetics,
for example, skin effect, current flow around a crack, and even (for higher frequencies)
surface impedance.

'H-ORIENTED' AND 'B-ORIENTED' METHODS IN MAGNETOSTATICS
We shall consider the following general situation (Fig. 1): acoil C (sustaining a

given, permanent, current-density j*), and a ferromagnetic piece M. The whole space is
E,and A=E —C—M is the air-region. A non-linear behavior law b= I'(h) is given (no
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hysteresis). For the present discussion, we assume a I" such that vectors b(x) and h(x)
are collinear at all points x in M, and that b(x) vanishes if h(x) does. One is requested
to compute the fields b and h. The relevant equations are

(1) curth=j® in E, b=T(h), divb=0 in E.
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Figure 1. A typical problem (left). Definition of surface £ and domain M, to be
used in the sequel (right).

We are only interested here in comparing the accuracy achievable with various
methods, not in things like the computing time, the number of steps in iterative
procedures, etc. So we may consider a linear problem with the same solution as (1),
namely

(2) culh=3# in E, b=ph, divb=0 in E,

where L is the function x — Ib(x)l/Ih(x)l, as computed from the actual solution {b, h}.
Whatever can be said about the merits of various methods as regards (2) will thus be
relevant to (1).

The ratio p(x)/}, is a feature of the solution (and as such, it depends on the imposed
current j&). Tt is usually high (about 2000, typically), but tends to decrease when the
driving current j* is increased (saturarion phenomenon). Let us call € the average of
Mo/H(x) over M. We define, forall x in M, p,(x)= € u(x). Note that P, iscloseto [,
except perhaps in saturated zones. This € is one of the small parameters alluded to in the
Introduction. It will play an important role in what follows. The other small parameter is
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the ratio d/L of the gap-width d to the average length L of the magnetic circuit M. We
shall assume that d/L, though small, is still large with respect to €& thus, the reluctance of
the whole device is mainly due to the air gap. This is the assumption used in the TEAM
workshop study, and is the rule in problems of this kind. (But the assumption is a crucial
one: if the reluctance was mainly due to the iron core, this would modify our conclusions.)

Although the discussion will be limited to linear problems, we are not losing anything
significant in generality, because one can always tackle (1) by iterating on L, Newton-
Raphson style, a linear system being solved at each step. In fact, almost all methods in
actual use in nonlinear magnetostatics seem to rely on this approach. They fall into two
main families: 'b-oriented’ methods, which yield b (for instance by computing the
magnetic vector potential), and 'h-oriented' methods, which aim at h (for instance by
computing the magnetic scalar potential). For the sake of definiteness, let us formalize

this:

Definition 1. A vecror field h [resp. b] is said "curl-conformal” [resp. "div-
conformal”] if its tangential {resp. normal] part is continuous across all surfaces in its
domain of definition.

Definition 2. A method will qualify as "h-oriented” [resp. as "b-oriented"] if it
computes h [resp. b] in such a way that its tangential [resp. normal] continuity is exactly
enforced, i.e., if it vields a curl-conformal h [resp. a div-conformal bl

Let us develop an example of b-oriented method. A tetrahedral mesh is first
designed, large enough to cover M, C, and enough of the air-region to justify neglecting
what happens outside the meshed volume. Let A be the set of nodes. Let A, be the
"hat-function” associated with node n (i.e., the unique continuous, piecewise affine,
function equal to 1 atnode n and to O at all other nodes). Call IP' the set of all vector
fields of the form

3) a=Z . xa, A,

where the degrees of freedom (DoF) a_ are vectors, one per node. Now look for a in
IP' such that

4) Jeu" curla. curla'= [;jf.a V a eIP'

(the so-called "weak form" of the equation curl(u™ curl a) = j*). This is a linear system in
terms of the 3 X N components of the a_s (N, the number of nodes in the mesh). There
exists a solution (because div j* = 0), perhaps not unique, but anyway, all solations will
have the same curl. (Numerical difficulties that one may encounter in solving (4) are not
our concem.) This is a b-oriented method, because it gives b = cutl a, thus enforcing the
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essential requirement about the continuity of the normal compoenent of b across all
surfaces, including the faces of the mesh. The field h = p' curl a fails to have the
symmetric property of continuity of its tangential part through surfaces. This is so
because the relation curl h=j* is only weakly enforced by (4).

On the other hand, the well-known "single magnetic potential” method is h-oriented.
Its principle is to look for the field h in the form h=grad ¢ +h?® where h® is a field that
satisfies rot h®=3% and div h®=0. {Such a field can be constructed from j* by Biot-
Savart integration.) The unknown in this problem is thus the potential ¢. According to
the general finite element approach, one thus has to find a function ¢ of the form

(5) (p:'znem[_('pn ln
such that

(6) Jou (grad @ +h?) . grad @' =0

for all test-functions @' themselves of the form (5). (This is a way to enforce the
condition div(ph) =0, in weak form.) Here the @ s are scalar degrees of freedom. This
time h has the required tangential continuity, but b= ph fails to have normal continuity,
because div b =0 is only weakly enforced: the method is "h-oriented”.

Remark. Note that ¢ is single-valued here. There are variants in which a similar, but
possibly multivalued magnetic potential is used [19], or more than one potential [18].
Clearly, such methods also are h-oriented.

Not all methods fall in one of the previous categories. A method can have both
orientations. But in that case the behaviour law b = [t h will fail to be exactly satisfied, in
general, (This point is developed in [5].)

Now the scene is set. We shall argue as follows: "b-oriented” methods should in
general work better, because the smallness of the ratio /| results in a regularly
perturbed problem with such formulations, whereas "h-oriented" methods suffer from
singular behavior with respect to this same parameter. Therefore, they are more sensitive
to numerical error.

SINGULAR VS. REGULAR PERTURBATIONS
Let us first recall the difference between regular and singular perturbation, with the

help of a simple example. Suppose we have to solve the two-points boundary-value
problem
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) —u"+ek(x)u=f, u'({®=0, u(l)=0,

for a numerically small value of €, and a given positive function k. Note that this is
equivalent to minimizing the functional F(v)= [ ,, (V' + ek Ivi’~ 2fv) among all
those in the set V = {v e C°[0, 1] : fi,, ;Iv'1> < o, v(1) =0}, which can easily be done by
numerical methods. But instead, in order to take advantage of €'s smallness, one would
rather make use of the "limit-problem”, corresponding to € =0, whose solution u, is
obtained directly, by quadratures, without having to solve a linear system. The idea is to
expand u as u, + €U, + ..., and to throw this into (7): again, u, can be obtained by
straightforward integration, the same way u, was. Andso on. Problem (7)isa
perturbation of a simpler one (namely, to find u such that —u"=f, u'(0) =0, u(1)=0),
and therefore can be solved by a cascade of similar problems. Note that u, still achieves
the minimum of some functional (namely, F,(v)) over the same set V. This is what makes
the perturbation "regular”: the limit solution is solution to the limit problem, as obtained
by setting £= 0 in either (7) or its equivalent variational formulation, "minimize F.(v)
over V". Note also that u, and its first derivative both converge (in the sense of quadratic
means) to u, and u'y respectively.

In contrast, "singular perturbation” occurs with
(8) —eu"+k(x)u=1f, v'0)=0, u(l)=0.

If one wants to solve this numerically, the smallness of € imposes a small discretization
step, which is cumbersome, so making use of the limit problem seems again a good idea.
But now two things go wrong. First, the would-be "limit-problem", i.e., (7) with €=0, or
its variational version, "minimize | o, 11 {k lvI’~ 2 f v} over V", has no solution. Next,
when one relaxes its requirements by dropping the boundary conditions, the solution u,

of the relaxed problem, "minimize over L%([0, 1])", which is u, = f, is not the limit of u,
in the above sense: only u, converges towards u, in L2, whereas u’, does not converge to
u'y (Fig. 2).

Singular perturbation is thus characterized by the fact that, when passing to the limit,
the solution "escapes” from the set where it naturally lives, and while it still does converge
to something, it is in a weaker sense, and to an object which belongs to a larger universe. It
does not mean that the (non-acceptable) "limit solution” u, is useless as a stepping stone to
obtaining the true solution, u,, of (8). Indeed, u, is a term in some asymptotic expansion
of u,, that can be derived via a moderately involved process called "matching asymptotic
expansions”. (Some references to these things are [ 10, 14, 16, 20, 21].) Quite often, a lot
of numerical work can be avoided by such an asymptotic approach to the solution. This is
so because, from the numerical point of view, singularly perturbed problems are tougher
than regularly perturbed ones. In the case of (8) vs. (7), a glance at Fig. 2 shows why: the
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step-size has to be very small, at least in the "boundary layers” near the ends of the
interval,
A

0 1

Figure 2. Solution of (7) for & small (k =1).

PROBLEM (2) AS A PERTUBED PROBLEM
For reference, let us write weak formulations analogous to (4) and (6), as they stand
before any commitment to particular finite elements has been made. Call A (resp. @) the
set of all square-integrable vector fields (resp. functions), with a square integrable curi
(resp. gradient), over the whole space. The weak formulations are, for the (b-oriented)
"a-method": find a_, € A such that
fep'curla,.curla' = [zj*.a VaeA
(which can be rewritten as
(9 [ Mo curla, . curla' + ¢ [yn, " curla, . curla' = [cj.a ¥V a e A),
and for the (h-oriented) @-method: find ¢, © such that
fzit (grad @, +h®) . grad 9'=0 V @' e @
(which can be rewritten as
(10)  Jo_ vty (zrad ¢, +h®) . grad ¢ + &7 [y, 1, (grad @, +h%). grad ¢’
=0 V ¢'€ D).
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Remark. one should compare (9) with the following:
[ du, 00 +€ fkuu'=[fu Vuael,

which is equation (7) in weak formulation. The analogy we rely on is due to the presence
of the small parameter € in front of the second integral in both cases.

Let us now see in which way our problem (2), when formulated as (9) or as (10), can
be considered a "perturbation” of some simpler one. A difficulty is that there are two
small parameters in the picture: the above ratio € (~ [o/p), and the ratio d/L of the
gap-width to the circuit-length. The analysis in terms of two such "competing” small
parameters is quite interesting; it leads—depending on which parameter dominates—to
very different limit models (called "significant degenerations" in [10]), which do have
meaningful interpretations within the present context. (See an application to skin-effect,
and to the concept of "surface impedance” [8], in [4].) There is no space here to justify our
main assumption that €, not d/L, is the dominant small parameter in the present case: this
would call for some lengthy dimensional analysis (whose principles, anyway, are familiar
to all readers). We cannot either dwell on the Taylor expansions in terms of €, and similar
techniques, by which models (11) and (12) below are derived: although these are familiar
and elementary mathematical tools, their application to the present case requires a heavy
apparatus of functional analysis, that seems out of place. So we shall proceed more
dogmatically: first, some notation, next a terse statement of the results, then some a
posteriori justification.

Letuscall M the union of M (cf. Fig. 1) and the gap, and I a surface congruent to
the pole surfaces, located in the middle of the gap. Enlarge space ® by accepting into it
functions which are allowed to be discontinuous across L. Call ® the bigger space so
obtained.

Now, the limit problems. The one in terms of the vector potential a splits into two
successive problems: find a, € A such that both conditions

| Je_gmlo curlag.curla' = [zjf.a ¥V a'eA,
(11) I
| curl(u,” curlag)=0 in M,
hold. Theonein ¢ is find @y ® such that both conditions
| [ s Mo (grad @y +h®) . grad ¢'=0 V ¢’ € @.

12) |
| grad @o+hé=0in M-Z,
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hold. Then b=curl a, and h= grad @, + h® are the limit solutions.

Why, on physical grounds? Imagine the air gap is shrunk to X, while the ratio €=
Mo/l tends to zero. Then h tends to zero in the core, hence the second line of (12), and
(since its circulation is held constant) tends to infinity in the air gap, hence the eventual
discontinuity of the magnetic potential. As for b, one has divb =0 and curl(u,™ b) = j®
out of the core, and its flux lines impinge orthogonally to the surface of the core in the case
of an infinite permeability: indeed, the first line of (11} implies all that. The second line
of (11) describes what happens inside the core, and (since the tangential values of a are
now known, from solving (11), first line) constitutes a well-posed problem. (All this,
though it may not be obvious, relies on the above observation that d/L is large with
respectto €.)

Remark. Neither (11) or (12) are practical ways to solve the problem, if only because of
the non-linearity: p,, of course, is not known in advance, so no useful information on the
field in the core could be obtained that way. (The stray-field thus obtained, however,
might be reasonably accurate.) We do not advocate the actual use of limit models in the
specific case of Pb. 13. We just expect to get insight—about how difficult it will be to
solve the true probletn—from an examination of the /imit one.¢

Now it should be clear that the limit process from (9) to (11) is regular, while the one
Sfrom (10) to (12) is singular: for in the latter, there is this tendency of @, to "escape
from" space @ (towards the larger one ®), while nothing similar happens to a_, which
stays in A.

The difference can be seen more concretely from what happens in the air at the
boundary of Z: asingularity of @ (actually, a jump-discontinuity), whereas a is regular
(Fig. 3). Figure 3 is two-dimensional for convenience, but what is described here is a
feature of the three-dimensional sitvation: the magnetic potential changes very rapidly
across the airgap (Fig. 3, right). So, if one tries to model the situation by treating the
atrgap as a surface, across which ¢ can be discontinuous—which is precisely model
(12)—the computed ¢ will look as on the left part of the figure, with an obvious
singularity. Our point is that, although this limit model is not the one which is actually
solved for, the latter is sufficiently closed to it for the singular character of the limit case to
be felt, in various ways, when actually solving for ¢.

The nature of the finite elements has not been a factor in this discussion. So we may
conclude that regularity (resp. singularity) pertains to the whole family of a-methods
(resp. @-methods). Singularly perturbed problems are notoriously more difficult to solve
numerically than regularly perturbed ones. Hence the tentative conclusion: b-oriented
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methods as a whole should be considered with a favorable bias, for this particular
problem. Of course, this should not be construed as a seal of approval for any particular
b-oriented methods.

g
iy
I

Figure 3. Flux lines in the vertical symmetry plane, near the edge of the air gap,
showing the singularity of the field: left, as predicted by the limit models, right, as it
really is. The situation is nearly two-dimensional. In that case, a is a scalar, whose
isolines are precisely the flux-lines shown. Dotted lines are isovalues of ¢, the
magnetic potential. Clearly, a is continuous at point P, but ¢ is not, in the limit
model.

CONCLUSION

Let us summarize the main line of our argumententation. The problem which is
actually solved (the one with a small but non-zero €) is closed to a singuiar limit when
h-oriented methods are used, and to a regular limit when b-oriented methods are used. So
in the critical region (near the edges of the poles), h-oriented methods are likely to behave
in a nastier way than b-oriented ones. For instance, they may require a finer mesh if the
same precision is to be achieved. But meshes, as a rule, are not what would be desirable,
they are what computing resources allow. So we may expect, on the average, better
precision from b-oriented methods in reported numerical experiments. This seems
indeed to be the present trend, as regards this particular problem.

We have seen how an analysis of the nature of the perturbation (regular or singular)
in a small parameter problem can be used to predict the relative success of a particular
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family of numerical methods with respect to another. This was, at best, heuristics. Can the
reasoning eventually be refined into one that would yield precise, provable, statements?
Perhaps, but I tend to think efforts in this direction would be misdirected. In the present
state of the art, it seems better to view the above explanation as a route towards a
conjecture, to be confirmed or rejected on the basis of numerical experiments: that, for
these problems of non-linear magnetostatics with high relative permeability, "b-oriented
methods work better".
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