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Abstract − An interval-based approach aimed at the 
robust design of a specific performance of a Double 
Hetero-junction Bipolar Transistor (DHBT) for 
microwaves applications is presented. The robust design 
is obtained by looking at the range of the performance 
function by means of an overestimation, given in 
analytical form, of its amplitude. The proposed approach 
is described by referring to two theoretical performance 
functions to show the reliability for both the univariate 
and multivariate cases. The worst case approach is 
considered in order to study the minimum variation of the 
max oscillation frequency of the DHBT, obtained by a 
regression model from numerical results, in presence of 
given parameters variations. The physical and 
geometrical parameters affecting the performance are 
regarded as implicitly uncorrelated and uniformly 
distributed in an assigned range and therefore all their 
combinations are kept into account. The implemented 
approach permits to achieve a greater robustness of the 
solution without assuming approach-specific settings and 
additional computations dependent on designer’s ability 
and can be used to maximize the production yield. 

 
Keywords: Robust design, uncertain parameters, and   
optimization. 

 
I. INTRODUCTION 

 
The real behavior of a component is inevitably 

different from that considered in the design process 
owing to the uncertainties in the values of physical and 
geometrical parameters, to the effective operating 
conditions and to the drift and aging effects. Such an 
inconvenience may be faced up during the prototyping 
process of the component by a costly and time consuming 
dynamic adjustment of the parameters values whose 
convergence is based on the designer ability. However, it 
is possible to obtain a component realization, satisfying 
the imposed constraints even in presence of parameters 
changes, if in the early design phase such variations are 
properly taken into account. It is therefore possible to 
achieve a robust design that is the chosen combination of 
the design parameters ensures that component 
performance presents the minimal variations with respect 
to the parameters changes. The possibility to accomplish 

a robust design is particularly relevant in those fields, as 
in the dimensioning of an electronic device, in which the 
realization of prototypes is expensive and lengthy [1]. 

As shown in [2], an innovative approach, based on 
the use of Interval Analysis, leads to a robust design of a 
component able to satisfy the desired constraints even 
when the geometric dimensions, the physical properties 
or the operating conditions assume any possible value in 
an assigned range. For a given Performance Function 
(PF) described by a polynomial form, it furnishes the 
Most Robust Stationary Solution (MRSS), i.e. the set of 
nominal parameters such that its first derivative is zero, 
and an over-bounding of the PF. This systematic 
approach leads to the quick identification of the most 
suitable combination of the parameters values thus 
allowing to increase the production yield, reduce the 
optimization time and consequently the overall time-to-
market process. 

In this paper the main properties of the interval-based 
robust design approach are discussed by considering two 
theoretical performance functions in order to show the 
reliability for both the univariate and the multivariate 
cases. The method is then applied to the design of a PF 
represented by the max oscillation frequency of a Double 
Hetero-junction Bipolar Transistor (DHBT) for 
microwave applications. In particular, the dependency of 
the PF with respect to the influencing factors, given by a 
polynomial form obtained by interpolating the numerical 
results of a physical simulator [1], is analyzed. It is 
shown that the application of the interval-based method 
allows achieving more general and approach-independent 
information on the robustness of a particular solution 
with a slight investment in terms of computations.  

The proposed approach can also be extended to other 
regression models describing further relevant 
performances controlling the electrical and thermal 
behaviour of the DHBT, such as common emitter 
breakdown voltage, max collector current density, etc. 
However, we explicitly remark that the main purpose of 
the present work is to show the effectiveness of the 
interval-based approach, rather than to perform a 
systematic and exhaustive design of the electronic device 
and hence only the variability of the max oscillation 
frequency with respect to physical and geometrical 
characteristics is discussed. 
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The paper is organised as follows. After a brief 
presentation of the Interval-based design approach in 
sect. II, two theoretical applications will be illustrated in 
sect. III. In sect. IV the model based design of the max 
oscillation frequency of a DHBT is discussed and in Sect 
V the main conclusions are drawn. 
 

II. INTERVAL-BASED ROBUST DESIGN 
 

The Performance Function (PF) describes the device 
performance as a function of ν design parameters, 

( )νxxxx ,,, 21 "= . Let us suppose that the objective is to 
find a solution, i.e. a set of nominal parameters values, 
which satisfies assigned design constraints. A robust 
solution is one which guarantees that the constraints are 
fulfilled also in presence of assigned parameters 
variations ( )ν∆∆∆=∆ ,,, 21 "  [3]. Around such solution 
the range of the PF is generally narrow, tending to a point 
if the PF is locally flat. Not all the robust solutions have 
the same characteristics. A robust solution which implies 
that the PF variations are localised at the boundary of the 
Region of Acceptability (ROA) may become a non robust 
one if one of the parameters exhibits a variation greater 
that the expected one. It is possible to discriminate the 
level of solution robustness by looking at the range of the 
PF. In fact, a robustness index can be simply obtained by 
considering the amplitude of the range function with 
respect to a given parameter variation. The lower is the 
amplitude of the range, the greater is the robustness. For 
example, if the PF is a function of one parameter x, as 
shown in Fig. 1, the robustness index with respect to a 
variation of ±∆ around the nominal solution x0 is given by 
the value w(fX) correspondent to, 
 

( ) ( ) ( )xfxffw
XxXxX

00

minmax
∈∈

−=  (1) 
 
w(fX) is the range width of f(x) when 

[ ] Xxxx =∆+∆−∈ 00 ,  and fX represents the range of the 
PF for such variation. 
 

 
Fig. 1. A monodimensional PF f(x) and the space of the 
range amplitude for a given parameter variation ∆. 
 

In the design process it would be useful to have an 
algorithm that furnishes w(fX) to obtain a biunique 
correspondence as shown in Fig. 1. Indeed, it is not easy 

to obtain w(fX) and an approximation of it is generally 
adopted, typically in discrete way, by computing the 
equation (1) for each point. Moreover, the algorithms 
available in the literature lead to an overestimation of the 
actual robustness of the PF, due to an intrinsic 
characteristic of equation (1). In fact, the research of the 
range of f(x) is conditioned by the presence of local 
minima/maxima and the quality of the result is somehow 
discretionary, since it depends on the choice of the 
parameters of the searching algorithm [4]. As a 
consequence, it may happen to select a robust one as a 
nominal solution that actually is not robust. Therefore, an 
underestimation of the robustness index must be adopted 
in order to guarantee its reliability and it can be obtained 
by means of an overestimation of equation (1). In fact, 
since the lower is the amplitude of the range, the greater 
is the robustness, an overestimation of equation (1) leads 
to an underestimation of the robustness of the nominal 
solution.  

The Interval Analysis (IA) is an arithmetic that 
furnishes a reliable inclusion of the true range of a 
function for a given interval of values of the variables. 
Therefore the overestimation of the range amplitude can 
be achieved by exploiting the peculiarities of the IA and, 
in particular, the “over-bounding” of the function [5-6]. 
The function bounding and a generic over-bounding in 
presence of a given uncertainty of the variable are 
depicted in Fig. 2. 

 

 
Fig. 2. Bounding (continuous lines) and over-bounding 
(dotted lines) of  f(x) for a parameter variation ±∆. 
 

The bounding is given by the two solid curves: the 
upper-bound, that is the locus of the maxima of the 
function f(x) when the parameter x spans the “moving” 
interval [ ] Xxx ≡∆+∆− 00 , , and the lower-bound that is 
the locus of the minima for the same moving interval. 
Instead, an over-bounding is given by the two dotted 
curves: they include the function bounding, i.e. represent 
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an overestimation of the upper-bound and an 
underestimation of the lower-bound. 

A possible over-bounding can be easily obtained by 
applying the Interval Arithmetic to f(x) when the variable 
x is substituted by the interval X [5]. In fact IA is 
arithmetic defined on sets of intervals rather then sets of 
real numbers. An interval X is an ordered pair of real 
numbers [ ]baX ,=  such that, 

[ ] { }ℜ∈<<== bxawithbxaxbaX ,,,, , and all the 
values in X are equally probable. The sets of intervals on 
ℜ is denoted as Iℜ. The interval width is defined as 

( ) abXw −= . In the following we will refer to a 
symmetric interval [ ]∆+∆−= xxX , , centred around the 
nominal point x, whose width is 2∆. In presence of 
multivariate function, the IA treats the variables as 
uncorrelated. In presence of parameters variations, IA 
permits a straight determination of an interval that 
certainly includes the true range of a function; thanks to 
the “inclusion property” [5] and it can be suitably adopted 
in a worst-case design [7]. 

If the IA is applied to the Taylor series expansion of 
the PF around a nominal solution we obtain an interval, 
and if the nominal solution varies we obtain an interval 
function named Interval Taylor Extension (ITE) [2]. As 
an example, for a PF of a single parameter and for a 
generic point x0 representing a particular nominal 
solution, we have the following ITE, 
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where [ ] ℜ∈−= IY 1,1  is a constant interval and 
( ) ( )

!
0

k
xf k

k
k ∆=α . 

It results that [ ] ℜ⊂∆+∆−=∈∀ 00 , xxXx  
( ) ( )XFxf ITE∈ , where X is the compact given by a 

tolerance ∆ on the nominal parameter. Therefore, ITE is 
an inclusion of the range of f(x). The Width of ITE 
(WITE) for polynomial PF is characterised by the 
following properties [2]: 
a) It is a continuous, non differentiable function which 

can be expressed in symbolic form; 
b) It presents local minima positioned in the stationary 

points of the corresponding PF; 
c) A maximum variation of the parameters can be found 

such that WITE reaches its absolute minimum in 
correspondence of the most robust stationary point; 

d) Representing a valuable robustness index, it furnishes 
an accurate means for classifying the relative 
robustness of the stationary points. 

Therefore, thanks to the property (a), the robustness 
of the nominal solution can be evaluated by considering a 
continuous, non differentiable function, ( )( )XFw ITE  or 
WITE. In particular, if ( ) ( )νxxxfxf ,,, 21 "=  is a ν-
variate polynomial function of n-th order, then 

( )( )XFw ITE  is, 
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Besides, thanks to the properties (b) and (c), it is 
possible to obtain robust solution by solving the 
following minimization problem [2], 
 

( )( )( )XFw ITEx nℜ∈0

min  (4) 
 
rather than equation (1). In this way the problem of local 
maxima/minima point presents in equation (1) is avoided 
and the discretionary choice of the parameter of the 
searching algorithm is limited to the external minimum. It 
is useful to remark that equation (3) is an overestimation 
of w(fX) and the robustness index represented by WITE 
gives an underestimation of the effective robustness, as a 
result of “monotonic inclusion” [5]. Therefore equation 
(4) is not equivalent to equation (1), but the same 
overestimation guarantees that the true variation of the PF 
is certainly lower than that indicated by the WITE index, 
i.e. the particular solution is more robust than that pointed 
out. As a result, the reliability of the solution increases. 
Moreover, the robustness index represented by WITE has 
an analytic expression that can be treated in a symbolic 
way for any PF. Finally, this methodology can be 
extended also to generic functions which not necessarily 
are expressed in a polynomial form.  
 

III. THEORETICAL EXAMPLES 
 
A. A 9-th order univariate polynomial function 

In order to show the properties of the proposed 
approach for the monodimensional-case, let us consider 
the following 9-th order PF, 

 
( )

3.217.258.33134.224.0
014.0101.5108.9109.7

2345

6748698

++−+−+

+−×+×−×= −−−

xxxxx
xxxxxf  (5) 

 
In the interval x∈[1, 24] it shows 3 minima and 4 

maxima, two of which are located at the extremes of the 
compact as evidenced in Fig. 3. 
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Fig. 3. 9-th order univariate polynomial function. 

 
The Taylor series expansion of such a function 

around the nominal solution x0 can be expressed as, 
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Let us choose the interval X∈Iℜ characterised by a 

radius ∆ coincident with the variation of the design 
parameter and centred in its nominal value. By 
substituting x with X in equation (6) and proceeding with 
the IA we obtain the FITE(X) corresponding to equation 
(5). It results ∀x∈X=[x0-∆,x0+∆]∈Iℜ 
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or ( )XFf ITEX ⊆ . Moreover, we get w(fX)≤w(FITE(X)) 
(overbounding IA property). By simple algebra the 
FITE(X) can be rewritten as, 
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with the same significance of kα and Y as in the previous 
section. In this case the WITE is given by, 
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In the examined range w(FITE(X)) has 31 non 

derivable points, 5 of which corresponding to the       
roots of f’(x) in the range [1,24], i.e. xk 

∈{20.08,16.97,12.32,7.74,3.48} ⊂ [1,24]. These are 
points of minimum of w(FITE(X)) for each considered ∆ 
(Fig. 4).  

The absolute minimum is one of these points and 
w(FITE(X)) gives a precise information concerning the 
relative robustness of the stationary points, as evidenced 
by the light grey curves in Fig. 4. In particular, the 
relative magnitude of the robustness coincides with the 
values of the curves (light grey squares) in such points. 
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Fig. 4. WITE and w(fX) for the 9-th polynomial function. 
 

The MRSS is found in x0=16.97 for ∆∈{0.5,1}. It is 
also evident that the amplitude of the PF range, i.e. the 
solution of (1), can be obtained by means of a discrete 
analysis for each nominal point: it corresponds to finding 
the difference between the max and min in the considered 
interval. The resulting curve, obtained by linear 
interpolation between two contiguous points, is 
discontinuous. Its level of accuracy can be improved by 
considering a greater number of points. The w(FITE(X)) 
instead, is a continuous function (curves without marker 
in Fig. 4) described by a symbolic expression which is 
valid for each nominal solution. Besides, in addition to 
the sorting in terms of robustness of the stationary points, 
an over-bounding is achievable without additional 
computational efforts (Fig. 5).  
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Fig. 5. ITE function bounding for δ=1. 

 
B. A 3-rd order bivariate polynomial function 

The properties and the reliability of the ITE are kept 
also in presence of multidimensional PFs. In order to 
show the simplicity of the proposed approach also for 

65LAMBERTI, TUCCI: INTERVAL-BASED DESIGN OF MICROWAVE POWER TRANSISTOR



multivariate problems, we take into consideration the 
case of 2-variate function f(x) that is the case of 
dependency on 2 design parameters. Now we suppose 
that f(x) is the following 3rd order polynomial PF (Fig. 6), 

 

( )

3
1

2
21

2
221

2
1

2
2
121

0,
21

2245

23, 21

21

21

21

xxxxxxx

xxxxaxxf ii
n

nii
ii

iii

−+−+−

++== ∑
≤+
=

ν…

 (10) 

 
The PF (equation 10) has a local maximum in [0, 0] 

for ( ) [ ] [ ] 2
21 5,55,5, ℜ⊂−×−∈xx  where it shows also a 

very smooth region. 
It can be expressed in the ℜ domain by means of its 

complete Taylor series around a nominal solution 
x0=(x10,x20)∈ℜ2, 
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then, by substituting the vector x∈ℜ2 with the interval 
vector [ ] [ ]( )220220110110 ,,, ∆+∆−∆+∆−= xxxxX ∈Iℜ2 
we obtain the ITE of equation (10) [8], 
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with ( )2211 , YYY ∆∆=∆  and Yi=[-1,1]∈Iℜ ∀i=1,2. 
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Fig. 6. A bi-variate PF. 

Due to the IA properties, the previous computed 
FITE(X) contains the PF in equation (10) ∀x∈ 

[ ] [ ]( )220220110110 ,,, ∆+∆−∆+∆−= xxxxX , ( ) ( )XFxf ITE∈ , 
i.e. it is an overbounding of equation (10) in presence of a 
∆i variation around the nominal parameter solution x0i, 
∀i=1,2. 

By using the binomial coefficients to express the 
power of a sum, the equation (12) leads to the following 
expression, 
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number and Y1=Y2=[-1,1] are constant intervals. 
The equation (13) can be useful to understand the 

resulting analytic expression of its width, given by 
equation (3). In fact, for n=3 the width of FITE(X) can be 
expressed as follows, 
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The equation (14) is a positive non-differentiable 

function with potential minima in αk,h=0. In particular, by 
considering k=1 and h=0,1, the following system must be 
solved, 
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The system in equation (15) corresponds to 

cancelling the gradient of f(x), 
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and to find a stationary point of f(x), if the Hessian matrix 
eigenvalues have equal sign [9], such occur in the local 
maximum in Fig. 6. In fact, if we look at the Fig. 7. 
where the WITE obtained for ∆1=∆2=1 is depicted, it is 
possible to verify that the width of FITE(X) is minimum 
just in [0,0] and it corresponds to the MRSS. 
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Fig. 7. WITE for the PF of the application II. 
 

Furthermore, if the contour plot of WITE is kept in 
to account (Fig. 8), we can obtain additional information 
about the behaviour of the PF without computational 
efforts. 
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Fig. 8. WITE contour plot for the PF of the application II 
and the MRSS (*) in the variability box (rectangle). 
 

In fact it is possible to highlight the flat region 
around the stationary point of f(x) by considering the 
wide equipotent area around the MRSS. Such an 
information can be give to the designer a degree of 
freedom for his choice, that can adopt, for example, a 
wider tolerances on the nominal parameter to perform a 
lower cost design or that can pick up a nominal solution 
between the commercial value that are in the equipotent 
area of robustness. 

 
IV. ROBUST DESIGN OF THE MAX 

OSCILLATION FREQUENCY OF A DHBT 
 

In order to apply the proposed method to a real 
design problem we consider the max oscillation 
frequency of a Double-Heterojunction Bipolar Transistors 
(DHBT). Such devices have been proposed for 
microwave power applications (up to 20GHz), e.g., in 
airborne radars or mobile phones, because of their high 
output power, and superior power efficiency with respect 
to Single Heterojunction Bipolar Transistors (SHBT) [1] 
and [10]. 

The second Heterojunction between base and 
collector, which is added in DHBT in order to increase 
the common-emitter breakdown voltage, however, 
perturbs the electron flow across this junction, a problem 
that can be tackled by means of a GaAs spacer between 
the base and collector (Fig. 9). In order to examine the 
critical dependence of the DHBT performances on the 
physical and geometrical parameters of the spacer and 
collector, without recurring to lengthy and costly 
experimental realizations, simple behavioural 
mathematical models are considered [1]. In particular, 
polynomial forms interpolating the numerical values 
obtained from suitable simulation experiments (for 
specified operating points of the device) are employed to 
study the variability of relevant performance 
characteristics as a function of some major factors 
describing the structure and the processing of the 
component through a Design of Experiment (DoE) 
approach [11].  

In our study we follow the same approach and focus 
our attention to the PF represented by the max oscillation 
frequency fmax of the DHBT. Indeed, the procedure can 
also be extended to other relevant performances, such as 
common emitter breakdown voltage, max collector 
current density and static current gain, controlling the 
electrical and thermal behaviour of the DHBT. However, 
since the main goal of the present work is to highlight the 
effectiveness of the interval-based approach, rather than 
to perform an in-depth design of the DHBT, only the 
variability of the fmax with respect to physical and 
geometrical characteristics is discussed. 

In particular, we use the same interpolating 
polynomial adopted in [1] and compare our results with 
those reported there. With reference to Fig. 9, the 
following expression describes the influence on fmax of the 
impurity concentration (x1) and the thickness of the base–
collector spacer (x2), the impurity concentration (x3) and 
thickness of the collector (x4), 
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Fig. 9. Schematic setup of a collector-up DHBT [1]. 
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where the variables have been normalized. In Table  the 
adopted intervals of variation of the four actual 
parameters values ix̂  are reported. As usual in 
experiment design in presence of non-isodimensional and 
inhomogeneous factors [12], they are normalized in        
[-1, 1] by using the coded values xi, ∀i=1,…,4. 
 

Table 1. Interval of variation of the four 
considered factors. 

 

 values 
 min max 

1x̂  [log[cm-3]] log(5×1015) log(1×1018)

2x̂  [nm] 15 60 

3x̂ [log[cm-3]] log(5×1015) log(8×1016)

4x̂  [µm] 0.2 1.2 
xi ,∀ i=1,2,3,4 -1 1 

 
By imposing the minimization of the fmax  variations 

in presence of an assigned uncertainty on the four design 
parameters ( )%15,5.1log%,30,2log=δ , the objective 
function to be analysed is given by, 
 

( ) ( ) ( )( )δ,minminmaxmin 0maxmax xfxfxf
DxDx
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∈∈
. (18) 

 
It is an optimization problem on a discrete parameter 

space defined by the set of pairs of the min/max values 
achieved by the performance function in the hyper-cube 
whose side length is given by the variations vector δ 
moving in the hyper-space D⊆ℜ4 around a nominal 
solution x0. By adopting the ITE approach, the problem 
can be more easily formulated as an unconstrained 
optimization problem corresponding to the search of the 
minimal amplitude of the ITE, w(FITE(X)). In particular, 
the ITE can be expressed as, 
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where 

[ ] [ ] [ ] [ ]44044033220220110 ,,,,,,, δδδδδδδδ xxxxxX −−−−=−  due 
to the presence of absolute, x1 and x3, and relative, x2 and 
x4, tolerances. 

By employing the dependences of the four variables 
the ITE becomes, 
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whereas the remaining terms of the expression are null. 
The equation (20) gives an over-bounding of the 

performance function: given the particular nominal 
solution, x0 and by assigning, through the vector δ, the 
variation that each parameter can assume, the 
performance function will be certainly included in the 
range of values defined by the particular interval FITE(X0). 
By using just the over-bounding of the function we have 
an overestimation of the maximum value of the equation 
(17) and an over-estimation of its minimum value: their 
difference can be used to evaluate the robustness of each 
solution. In such a way we can use the problem of 
equation (4) to obtain a robust solution. In particular, if 
we adopt an easy uniform grid of 11 points for each 
coded parameter in the range [-1, 1] and we evaluate the 
minimum of the 114 ITE amplitudes, we obtain that it is 
in the nominal solution reported in Table at the ITE 
column. In such nominal point the max oscillation 
frequency is fmax=74.455 GHz and the equation (20) gives 
the inclusion of the range of possible values that the 
performance of equation (17) can assume in presence of 
the considered δ variation. It is reported in the last row of 
Table 1. Moreover, by looking at Table 2, we can observe 
that in this particular solution point the amplitude of the 
range of the performance function is almost 3.251 GHz. 
Instead, the Optimal Robust Solution (ORS), reported in 
the same Table  at the column ORS, is achieved by the 
authors in [1] through an adaptive random search. Indeed, 
this approach is not easy in the same way and depends on 
the choice of suitable setting parameters. A nominal value 
of fmax=74.786 GHz is obtained for the PF and an 
inclusion of the range of its possible values as the interval 
FITE(X)=[72.777,76.223] GHz is also achieved. This last 
interval is easily obtained by evaluating once the equation 
(20). Therefore, the range of the PF is 3.446 GHz, bigger 
than that obtained by the ITE solution. Hence, if we adopt 
the ORS approach the robustness decreases of about 6% 
with respect to that achieved by the ITE. 
 

Table 2. Actual nominal values and interval of 
inclusion of the PF for ITE and ORS. 

 

 ITE ORS 

10x̂  [cm-3] 7.07×1016 5.7×1016 

20x̂  [nm] 37.5 40 

30x̂ [cm-3] 4.59×1016 2.5×1016 

40x̂  [µm] 0.4 0.33 
FITE(X0) [GHz] [72.593,74.844] [72.777,76.223]

 
The ORS solution is more favourable than that based 

on the ITE approach if the maximum value of the 
oscillation frequency is the first designer’s objective. In 
fact, in such solution the PF range is larger but it is also 
shifted toward higher frequency values. The designer 
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must decide which aspect is prevalent for his scope. 
Actually, the ITE approach furnishes, without particular 
settings and additional computations dependent on 
designer’s ability, a look-up table indicating the range of 
the PF and its amplitude in presence of a given parameter 
variation  δ for each considered nominal solution. By 
using such table the designer can choose a solution rather 
than another by exploiting at the same time the 
information concerning the maximization of the PF and 
the minimization of its variation. 
 

V. CONCLUSIONS AND REMARKS 
 

An interval-based approach to the robust design with 
applications to a specific performance of a Double 
Hetero-junction Bipolar Transistor (DHBT) for 
microwaves applications has been proposed. The 
considered performance function is the max oscillation 
frequency of the DHBT, obtained by a regression model 
from numerical results. The use of the Interval Analysis 
allows to efficiently implement the worst case approach 
for determining the minimum variation of the 
performance in presence of uncertain parameters. The 
physical and geometrical parameters affecting the 
performance are considered implicitly uncorrelated and 
uniformly distributed in an assigned range and therefore 
all their combinations are kept into account. The robust 
design is obtained by means of an overestimation of the 
amplitude of the performance function range. The 
procedure allows to achieve a greater robustness of the 
solution without assuming approach-specific settings and 
performing additional computations dependent on 
designer’s ability. The implemented approach can also be 
extended to other single relevant performances 
controlling the electrical and thermal behaviour of the 
device or employed in a multi-objective optimization 
problem. This last aspect is now under study and will be 
dealt with in forthcoming communications. 
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