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Abstract − This paper presents a Parallelized Multilevel 
Fast Multipole (MLFMA) Moment Method (MoM) code 
for analyzing the scattering and radiation from 
electrically large complex bodies modeled by Non-
Uniform Rational B-Spline Surfaces (NURBS). The 
bodies are represented by NURBS surfaces which are 
discretized without remeshing the original geometry. The 
basis and testing functions are defined and conformed to 
the exact representation of the geometry. This code has 
been parallelized using Message Passing Interface (MPI) 
and it has been successfully applied to the study of large 
bodies including complex and periodic multilayer 
structures where the real size and shape are very 
important. 

 
I. INTRODUCTION 

 
In recent years, the application of the MoM 

technique to the analysis of scattering from large and 
arbitrary objects has been achieved [1]. The application 
of the multilevel fast multipole technique to the MoM 
significantly reduces the computer requirements of 
memory and CPU-time for analyzing electrically large 
objects. 

In this paper the MLFMA technique [1] is applied to 
the analysis of complex objects composed of a perfect or 
real conducting electric and/or dielectric material, 
modeled by NURBS surfaces [2]. Using these surfaces, 
any arbitrary object can be represented with very little 
amount of information without loss of accuracy. In the 
application presented, the MLFMA technique is applied 
to quadrangular patches defined over small pieces of 
NURBS surfaces. These quadrangles totally conform to 
the real shape of the bodies under analysis. With the 
proposed method, it is possible to analyze the scattering 
field of large and complex bodies, including multilayer 
conformed periodic structures, taking into account their 
real finite size and shape. Thus, the electromagnetic 
kernel works with the original Computer Aided Design 
(CAD) model obtained from the general designing 
process and no remeshing of the geometry is required. 
This means that no representation error is added. 

The code has been improved for analyzing bodies 
composed of conductors and dielectric slabs, both 
modeled using volumetric rooftops. Both conductors and 
dielectric slabs can be limited by curved surfaces. Also, 
when the dielectric slabs are electrically thin, the “thin 
dielectric sheets” (TDS) approximation ([1]) is 
considered for reducing the CPU time. 

 To analyze electrically very large objects, a parallel 
version of the code has been developed. A MPI [3] 
paradigm has been used because it can be applied in both 
distributed memory machines and in shared memory 
ones. The goal is to analyze large objects with processors 
with relatively small memory and with an affordable 
execution time. 
 

 II. MODEL DISCRETIZATION 
 

Traditionally the geometrical models are defined by 
planar facets. The geometrical models for MONURBS 
are defined by NURBS surfaces. NURBS surfaces are 
parametric surfaces used as a standard format for 
exchange in CAD that permits the representation of 
complex objects with very little data. Figure 1 shows a 
NURBS surface in the real space and its definition in the 
parametric space. 

The geometrical model is discretized using 
quadrangular patches fully conformed to the exact shape 
of the body. Every surface is divided into quadrangular 
patches, thus resulting in a lower number of subdomains 
in comparison with other discretization techniques. In [4] 
the discretization is made in the parametric space, but the 
problem is that an equally spaced step in the parametric 
space can result in a non-equally spaced step in the real 
space. Thus, this can produce a higher number of 
subdomains in NURBS degenerated points that can give 
ill-conditioned problems. The new approach produces the 
discretization in the real space, thus resulting in a 
quadrangular mesh nearly uniform in the shape and size 
of the patches. Figure 2 shows the difference between the 
division in the parametric space and the real space. A lot 
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of patches are observed near the pole for the division in 
the parametric space.  
 

 
 
Fig. 1. Example of NURBS surface. 

 

        
      (a)                         (b) 

 
Fig. 2. Discretization (a) parametric space and (b) real 
space. 
 

III. ELECTROMAGNETIC KERNEL 
 
The moment method is applied in the parametric 

space, so the surface current is defined as, 
 

 ),(),(),(),(),( vuevuJvuevuJvuJ vvuu +=  (1) 
 

where u and v are the parametric coordinates, and 
),( vueu
and ),( vuev

 vectors are the derivatives in the 
parametric space.  

Modified rooftops and razor-blade functions are used 
as basis and testing functions, respectively [3]. Both 
functions conform to the quadrangular meshes previously 
described that can be arbitrarily curved (see Figs. 3 and 
4). 
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Fig. 3. Basis functions conformed to a curved conducting 
surface. 

 

 
 
Fig. 4. Testing function conformed to a curve conducting 
surface. 
 

The electromagnetic kernel of MONURBS can use 
the Electric Field Integral Equation (EFIE), the Magnetic 
Field Integral Equation (MFIE), the Combined Field 
Integral Equation (CFIE) or the Hybrid Integral Equation. 
For instance, for the EFIE calculation, the coupling 
between two subdomains i and j is calculated in the 
parametric space, taking into account both the inductive 
and the capacitive terms. For the inductive term we have, 
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where )',( rrG  is the Green function and m, n are the 
subpatches that define the subdomain. For the capacitive 
term, 
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The calculation of the moment method matrix 

elements is one of the most computational expensive 
steps. The integrals shown in equations (3) and (4) are 
calculated using the Gauss quadrature method. All the 
surface integrals are evaluated in the rectangular 
parametric space of the corresponding subpatch (u, v 
parametric coordinates, shown in Fig. 3). This is not 
difficult because only a variable change in the integration 
is required. The computation of the impedance matrix 
terms is optimized by computing once and storing the 
value of the integrand functions at the Gaussian integral 
points. These values are used in many integrals. Also, all 
the parameters of the subpatches (normalized currents, 
points, derivatives, etc.) are computed once and stored in 
the geometrical preprocess to avoid further 
recomputations when the coupling between subdomains 
is being calculated. 

The Fast Multipole Method (FMM) has been 
implemented and applied to reduce the memory and 
CPU-time. The coupling between subdomains is 
calculated using the multipole approximation [1], 
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the aggregation, the translation and the disaggregation 
terms, respectively, of the FMM. The aggregation term is 
calculated using, 
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where m, n are the subpatches of the subdomain, k̂  is the 
wave vector and cr is the center of the FMM region 
where the subdomain lies. The disaggregation term is 
calculated using, 
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In addition, the MLFMA has been implemented as 

an extension of the FMM. The number of levels can be 
chosen by the user. The aggregation and disaggregation 
terms of the highest levels are obtained from the lowest 
level terms using interpolation-anterpolation with matrix-
vector product [1].  

Modified volumetric rooftops and razor-blade 
functions, [5], defined over curved domains are 
considered (Fig. 5) for the analysis of dielectric bodies. 
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Fig. 5. Basis and testing functions totally conformed to 
volumetric dielectric bodies. 
 

A parallel version of the code has been developed to 
be used in both distributed and shared memory machines. 
This version is based on MPI. The geometry of the 
problem is immersed into a gridded MLFMA space (Fig. 
6). Each processor of the grid computes the coupling that 
affects the Moment Method unknowns of the cells 
associated to this processor (computed rigorously or by 
the multilevel fast multipole approximation). To achieve 
this goal, each processor needs data computed in others 
processors. This information is obtained by exchanging 
explicit messages through a network. All processors 

cooperate in the resolution of the system of equations 
when a problem is solved.  

 

  
 

Fig. 6. Problem distribution between processors in the 
MPI MLFMA application. 

 
IV. RESULTS 

 
Test cases have been tested with MONURBS in 

several areas of application such as Radar Cross Section, 
radiation patterns of antennas on board and analysis of 
multilayer periodic structures like frequency selective 
surfaces and reflect arrays. 

The first case we present here is the analysis of the 
FLAMME stealth aircraft (see Fig. 7). In this case, a very 
accurate representation of the actual shape of the aircraft 
is required. The Bistatic RCS has been obtained for a 
sweeping angle φ ranging from 206º to 360º and θ = 90º 
at a frequency of 3 GHz.  

 

 
 
Fig. 7. Geometrical model of FLAMME aircraft.  

 
Figures 8 and 9 compare the simulated and the 

measured values for polarizations VV and HH, 
respectively. A good agreement between the simulations 
and the measurements can be observed in both figures. 

The next example analyzed is the perfect electric 
conducting NASA almond case shown in Fig. 10. The 
case was proposed in reference [6]. The geometry is 
defined by the following parametric equations (all 
dimensions are in inches), 
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where d, the length of the almond, is 9.936 inches. The 
Monostatic RCS of the almond have been obtained at 7 
GHz for HH polarization, θ = 90º and a sweep angle φ 
ranging from 0º to 180º.  
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Fig. 8. Measured and computed Bistatic RCS values for 
FLAMME aircraft, HH polarization. 
 
 

To show the advantages of the proposed mesh based 
on NURBS over meshes based on triangular facets, the 
almond has been analyzed with MONURBS and FIESTA 
codes. FIESTA is a moment method code that uses a flat 
triangular mesh, RWG basis functions and a fast direct 
solution of the moment method linear system of 
equations, [6]. The almond has been analyzed considering 
6, 10, 20, and 40 subdomains per wavelength. The 
numerical results are also compared between with 
measurements. 

Table 1 shows the number of unknowns required by 
both numerical approaches for the different number of 
divisions considered for the geometrical mesh. 
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Fig. 9. Measured and computed Bistatic RCS values for 
FLAMME aircraft, HV polarization. 
       

 
 

Fig. 10. Geometrical model of the NASA almond.  
 
 

Table 1. Number of unknowns for the two 
kinds of meshes considered. 

 

 Unknowns 
Divisions NURBS RWG 

6 1700 3753 
10 4810 8862 
20 19730 30492 
40 80198 99915 

 
 

Comparing the results obtained with the NURBS 
based mesh and the flat faceted mesh, it can be noticed 
that 6 subdomains per wavelength are not enough to 
obtain good results. In this case there are several 
differences between the two numerical approaches and 
the measurements (Fig. 11). If the number of divisions is 
increased, the results obtained by the two methods 
converge to the same values. However, the number of 
unknowns required by both approaches is different; the 
mesh based on NURBS requires fewer unknowns than 
the triangular flat faceted mesh. Comparing with the 
measurements, both methods provide good results for ten 
or more subdomains per wavelength (Figs. 12, 13, and 
14). 
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Fig. 11. Comparison between the monostatic numerical 
RCS values obtained using 6 subdomains per wavelength 
and measurements. 
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Fig. 12. Comparison between the monostatic numerical 
RCS values obtained using 10 subdomains per 
wavelength and measurements. 
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Fig. 13. Comparison between the monostatic numerical 
RCS values obtained using 20 subdomains per 
wavelength and measurements. 
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Fig. 14. Comparison between the monostatic numerical 
RCS values obtained using 40 subdomains per 
wavelength and measurements. 
 

MONURBS can be also used for obtaining the 
radiation patterns of antennas on board complex 
structures. Here the case of an antenna placed on a mock-
up of the satellite Jason I is presented. The mock-up has a 
size of 2.220 m x 1.558 m x 1.507 m and it is shown in 
Fig. 15 with the antenna location highlighted. This case 
has been analyzed at 2.2 GHz and the results, shown in 
Fig. 16 for the cut φ = 67.5º, agree with measurements 
made by the CNES in an anechoic chamber. The number 
of unknowns is 152.867 and the simulation lasted for 4 h 
28 m on an AMD Opteron 2.4 GHz one processor 
machine. 
 

 
 
Fig. 15. Geometrical model of Jason-I. 
 
The analysis of multilayer periodic structures could be 
also conducted with MONURBS using the MLFMA. 
Several complex multilayer periodic structures have been 
analyzed and compared with measurements, showing 
good agreements. 
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Fig. 16. Comparison between measurements and 
simulations.  
 

 

The first complex multilayer periodic structure is the 
dual three layer reflect array, [7], shown in Fig. 17. The 
reflect array was designed to generate two pencil beams 
for TV SAT broadcasting pointing at Europe (11.45 GHz 
– 12.75 GHz H polarization) and USA (11.45 GHz – 11.7 
GHz V-Polarization). The electrical model, shown in Fig. 
18, has three layers of periodic structures, several 
dielectric layers and the ground plane. The reflect array is 
elliptical with axes at 1036 mm and 980 mm. The number 
of unknowns considered for the analysis at 12.1 GHz is 
1.508.275. 

 

 
Fig. 17. Three layer reflect array. 
 

 

 
Fig. 18. Electrical description of the reflect array. 

 
The results obtained for both polarizations at 12.1 

GHz are shown in Figs. 19 and 21, while the 
measurements are shown in Figs. 20 and 22. For the H 
polarization, the location of the pencil beam is right, and 
is so wide like in the measurements. The contour plots of 
the dBi are at the same level.  

For the V polarization, the location of the pencil 
beam is right and the shape is very similar to this one 
obtained in the measurements. This polarization is less 
sensitive to the dielectric effect. 
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Fig. 19. Contour plot of dBi for the H polarization. 
Simulation performed at 12.1 GHz.  
 

 
 

Fig. 20. Contour plot of dBi for the H polarization. 
Measurements.  

 
The results obtained with the code and the 

measurements performed at a frequency of 11.05 GHz for 
the V polarization are shown in Figs. 21 and 22. A good 
agreement between the simulations and the measurements 
can be observed. 
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Fig. 21. Contour plot of dBi for V polarization. 
Simulation performed at 11.05 GHz. 
 
 

The second periodic structure analyzed is the circular 
reflect array shown in Fig. 23. It has a radius of 130 mm, 
a dielectric layer thickness of 0.381 mm and εr = 2.2. The 
primary source is located at (0 mm, 0 mm, 65 mm) and 
the central design frequency is 94 GHz. This reflect array 
has been designed and measured by Laboratoire 
d’Electronique Antennes et Télecommunications, 
University of Nice, France. Fig. 24 shows the 
comparisons between the measurements and the 
simulations for the E plane. There is a good agreement 
between the measurements and the simulations in a range 
from 0º to 20º.  

 
 

 
 

Fig. 22. Contour plot of dBi for V polarization. 
Measurements. 
 

  
 

Fig. 23. Circular reflect array.  
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Fig. 24. Comparison between measurements and 
simulation for the reflectarray at 94 GHz. 
 
 

  V. CONCLUSIONS 
 

An application of the MLFMA has been presented to 
the analysis of scattering of complex bodies modeled by 
NURBS surfaces. These surfaces are a powerful tool to 
represent complex bodies with accuracy. New basis and 
testing functions defined over the NURBS 
surfaces/volumes of the model are considered, reducing 
the number of unknowns and obtaining good results 
compared with measurements as is demonstrated through 
several cases.  

A code named MONURBS based on the techniques 
presented here has been implemented. The code is a 
versatile tool for successfully analyzing scattering and 
radiation problems from complex structures. MONURBS 
is commercially available. 
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