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Abstract — This paper presents the computation of
static and quasistatic electromagnetic fields using asymp-
totic boundary conditions (ABC). Asymptotic boundary
conditions for eddy current problems due to external field
excitations are derived. For electrostatic fields, ABC-s
are used in conjunction with Laplace’s equation while for
quasistatic magnetic fields, ABC-s are employed in con-
junction with the integrodifferential finite element
method. The effect of outer boundary locations on the
accuracy of the simulation results is examined. This study
shows that in these cases, ABC-s can improve the compu-
tation accuracy compared to the usual truncation of outer
boundaries.

1. INTRODUCTION

The finite element method (FEM) is a powerful method for
the computation of electromagnetic fields. However, special
techniques must be used when the solution domain is infinite,
since the exterior region must be properly represented.
Researchers sometimes use a simple approach in which the
outer boundary is truncated with a Dirichler or Neumann
boundary condition. In addition, there are a number of well-
known techniques to modify the finite element method to
accommodate the open regions [1]. Examples of such
modifications are ballooning [2], infinitesimal scaling [3],
spatial transformations [4], infinite elements [5] and others.
Unfortunately, these modifications arc limited by various
shortcomings. An alternative approach is to combine the
finite element method with the integral equation method or
Green’s function approach to account for the open region.
Good examples of such combination are the hybrid finite ele-
ment - boundary integral equation method [6] and the
integrodifferential finite element - Green’s function method
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[7]. Usually, hybrid approaches destroy the sparsity of the
finite element matrices. The measured equation of invariance
(MEI) method, which was presented in [8], uses the assumed
charge distributions on the conductors to determine the rela-
tionships of the unknown potentials around outer boundaries.
The relationships thus obtained are subsequentdy employed in
the finite element or finite difference simulations. The MEI
method can preserve the sparsity of the finite element or finite
difference matrices. However, the proof of convergence for
this method has yet to be found in the published papers.

Recently, absorbing and asymptotic boundary conditions
have been used in conjunction with the finite element method
[91-[12]. The sudden popularity of the ABC is due to the fact
that it is local as compared to hybrid approaches. This local-
ity preserves the sparsity of finite element matrices. How-
ever, most of the studies are focussed on wave problems.
This paper applies the asymptotic boundary conditions to the
study of static and quasistatic problems. Although there are
studies using the ABC for static or quasistatic problems
[13]-[16], there are still unanswered questions such as the
effects of outer boundary locations on the solution accuracy.
In addition, the use of asympiotic boundary conditions for
eddy current problems due to external field excitations has

not been reported.

This paper investigates the employment of asymptotic boun-
dary conditions in conjunction with finite elements for the
computation of static electric and quasistatic magnetic field
problems. For the electrostatic problem, the electric scalar
potential and stored energy of two parallel infinitely long, cir-
cular cylindrical conductors are calculated. For the quasis-
tatic magnetic field problem, the ABC-s due to extemal field
excitations are derived and used for the calculation of the
induced eddy current power losses of an infinitely long, cir-
cular cylindrical conductor, excited by a uniform transverse
magnetic (TM) field,

The accuracy of ABC-s are compared with analytical and
known numerical results, where applicable, as well as brute
force truncations. The objective of this study is to evaluate
the usefulness and limitations of asymptotic boundary condi-
tions,



2. FORMULATION OF ASYMPTOTIC
BOUNDARY CONDITIONS

The essence of using the finite element method for the solu-
tion of unbounded field problems is the proper reprasentation
of the exterior region. The spectrum of the various tech-
niques for such solutions are not without shortcomings. The
recent flurry of work on absorbing and asymptotic boundary
conditions underscores the need for and importance of an
efficient technique suitable for the finite element implementa-
tion. The ABC-s resolve the difficulties associated with an
infinite boundary by emulating the field behaviour at infinity
on the finite boundary. The absorbing boundary conditions
are used for wave propagation and scattering. In this paper,
we are only concerned with asymptotic boundary conditions
which are derived for static or quasistatic fields.

The outer boundary used in the asymptotic boundary condi-
tions serves as an impedance junction to connect the region
internal to it with the region external to it. Such a connection
is facilitated by the surface integrals of the normal derivatives
of the unknowns which represent the flux continuity condi-
tions. As aresult, the derivation of asymptotic boundary con-
ditions centres on the representation of the normal derivatives
of the unknown scalar potentials.

For a source-free static field, the potential ¢, subject to suit-
able boundary conditions, is governed by Laplace’s equation

V2$=0 6}

For a two-dimensional problem, if the potential is zero at
infinity, the solution in the infinite exterior region in the polar
coordinates can be expressed as the following harmonic
expansions:

= i EE- cos (nb+,) 2

n=l

where a, and o, are the coefficient and phase angle of the
nth harmonic, respectively.

Differentiation of (2) with respect to r leads to

-i - ):n = cos (n6+a,) 3)
The division of (2) by r yields
_v &
= 2=‘1 el cos(nf+o,) Ch]
Summation of (3) and (4) produces
g—f + i:— = in —— cos (nO+0t,)
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If we omit the third and higher harmonics, the dominant error
will be determined by the second harmonic and we have

% + % - :—32005(294—(12) 0

Equation (7} can be subsequently rewritten as

L2069 ®

The first order asymptotic boundary operator is therefore
By=—+— 9

Consequently, the first order asymptotic boundary condition
is

B,($)=0 (10)
If we let u=B ¢, then
oo aﬂ
U= gg(l-n) T €08 (n8+a,) (11)
The derivative of 1 with respect to r is
8_1: =— Z (l—n)(1+n) 2 cos (nb+o,) {12)
a=2
The ratio of u 10 7 is given by
2o Z(l—n) cos (nb+a,) (13)
Therefore,
ou L 36 Y (n—2)n— 1) n+2 cos(n@+0,,)  (14)

or r &

It is obvious that the dominant error is due to the third har-
monic. Thus,

ou  3u_,82
g + ” —2’_5 cos (S6+os) (15)

Equation (15) can be represented by

3_u+ 3T"‘=0(r'5)

ar (16)



The second order asymptotic boundary operator is therefore

B=(2+ L+ h=00%  av

Due to the presence of the second order radial derivative
*¢/ar? in (17), the second order asymptotic boundary opera-
tor cannot be used directly for the finite element implementa-
tion. To overcome this difficulty, we rewrite (17) as
2

a r ar
To eliminate the second order radial derivative, we substitute
(18) back into the Laplace’s equation in the polar coordi-
nates. The resultant second order asymptotic boundary
expression is

__2. 1&

—— =0+ 19

or 3r 3r Je? {19
As a result, the first and second order asymptotic boundary
conditions can be subsequently expressed as
)

2 —arw+b12 L

(20)

where a (r) and b {r) are given as follows:

a(r)z—%

[}

b(r)=0 for first order ABC

al(r)= —%—; b(ry= 3i for second order ABC

3. FINITE ELEMENT IMPLEMENTATION

For a generalized Helmholtz equation of the form

V-(pVe)+k’q0=0 21
we can use Galerkin’s criterion to transform it into
jl_ [pYW-Vo — k2qWoldv = jr, pW%ds

+ J‘l_ pW%—%ds (22)

where p and g are related to material properties and angular
frequencies, W is the weighting function which is the same as
the interpolation function of the finite elements, I'; is the reg-
ular Neumann boundary and T, is the asymptotic boundary.

In the case of static electric fields, (21) is reduced to
Laplace’s equation,

In the case of time-harmonic quasistatic magnetic fields, (21)
can be transformed into the integrodifferential equation in the
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conductors [17] and Laplace’s equation outside the condug-
tors with p comresponding to the reluctivity of the medium
and k2 representing jo. These transformed equations are
amenable to the use of asymptotic boundary conditions by the
substitution of the appropriate asymptotic boundary expres-
sions into the surface integrals involving the asymptotic
boundaries,

4. APPLICATIONS

To iliustrate the application of ABC-s, we smdy an eleciro-
static potential problem and a quasistatic magnetic field prob-
lem.

4.1 Electrostatic Problem

The elecmrostatic problem consists of two parallel infinitely
long circular cylindrical conduciors as shown in Fig. 1. The
two conductors are at potentials of 1 and -1 volt, respectively.
The potential distribution and stored energy are calculated
and compared with analytic and published results [13]. Due
to symmetry, only the upper region (above the line CB) is
discretized.

Fig. 1 Two circular cylindrical conductors with
different potentials,

Figures 2 and 3 depict the potential distributions along the
lines AOB and CD, respectively. Table 1 shows the stored
electric energy. It is noted that the ABC improves the calcu-
lated results. While the homogeneous Newmann boundary
condition (no-ABC FEM) can yield very accurate potentials
along the line AOB (see Fig. 3), it produces much larger
errors along the line CD. The asymptotic boundary condi-
tion, however, renders accurate solutions at both AOB and
CD. The asymptotic boundary is at a radius of 6m in Ref,
[13). In this paper, the asymptotic and the homogeneous
Neumann boundaries are both half circles with a radius of 5m
and centred at O.

Table 1 Stored Electric Energy ( X107

ABCFEM
0.3855

NO-ABC FEM
0.3631

Ref. [12]
0.3%46
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Fig. 3 Potential distribution along the line CD.

4.2 Quasistatic Magnetic Field Problem

The quasistatic magnetic field problem consists of an
infinitely long circular cylindricat conductor excited by a uni-
form transverse magnetic field as shown in Fig. 4. The
induced power loss in the conductor is calculated and com-
pared with analytic results [17] and results obtained with the
hybrid integrodifferential finite element - Green’s function
method [18).

By=0.707T

|

6=0.00356m
aldo=3.97

outer boundary

Fig. 4 A circular cylindrical conductor
excited by a TM field.

It should be noted that in this eddy current problem, the z-
component of the magnetic vector potential A is composed of
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Two termg; one is the source term and the other is the reaction
term. It is the reaction term, not the source term, that satisfies
the ABC-s. Therefore, it is necessary to make appropriate
rransformations to accommodate this. In this 2D problem,
the z-compenent of the magnetic vector potential A is
denoted by A hereafter.

The integrodifferential equation governing 2ddy currents in
the conductor is given in [7] as

Joads _
jcdS -

&V’A — jOoA + joo 0 23)

Let A be the total magnetic vector potential, it can be
expressed as

A=A, +A, (24)
where A, is the reaction magnetic vector potential and A, is
the source magnetic vector potential. A, satisfies the asymp-
totic boundary conditions. If the asymptotic boundary is cir-
cular, we have

0A _0A, 04,
or " or o )
From (20), we have
0A, 0’4,
=, =@MA ¥ b)) o] (26)

oA
Substituting for A, and —— from (24) and (25) into (26)

or
leads to
A _ P4 _ P4 04
ar = AOXA-A)+BO T - 25+ @)
Rearranging of (27) produces the following expression
0A _ o2A
i a(r)+b(r) 37 +M, (28)
where M, is given by
M= e, ~ by e O 29)
L =—a(rA, - b(r P + >

Substituting (28) and (29) into the integrodifferential finite
element equation accomplishes the asymptotic boundary for-
mulation for eddy current problems due to external field exci-
tations.

If the outer boundary is at a sofficiently large distance from
the eddy current conductor, the normal derivative of the reac-
tion magnetic vector potential can be assumed to be zero.



Therefore, (25) can be rewritten as

JA 04,
or or

(30)

Substitution of (30) into (22) leads to the inhomogeneous
Neumann boundary condition integrodifferential finite ele-
menits.

In this eddy curmrent problem, the uniform transverse mag-
netic field can be represented by the source magnetic vector
potential as follows [19}:

A, =—-Bgrcosd 3D
where B, is the source flux density and 6 is as shown in Fig.
4,

Fig. 5 shows calculated power loss errors using first and
second order ABC integrodifferential finite elements. Fig. 6
illustrates the loss errors employing the inhomogeneous Neu-
mann boundary condition integrodifferential finite elements,
The power loss error using the hybrid integrodifferential
finite element - Green’s function method is 0.12% [19]. In
these plots, the abscissa is the ratio of the radius R of the
outer boundary and the conductor skin depth 8.
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Fig. 5 Power loss errors using first and second order
ABC imegrodifferential finite elements as a
function of the locations of the outer boundary.

It is noted that ABC-s using integrodifferential finite ele-
ments, like the hybrid integrodifferential finite element -
Green’s function method, can provide very accurate results,
On the other hand, inhomogeneous Newmann boundary con-
dition can only yield accurate soluticns when the outer boun-
dary is sufficientdy far away from the conductors (R/8 is
greater than 45). It is also observed that the second order
ABC is generally better than the first order ABC and the
ABC boundary need not be placed far from the conductor to
obtain accurate results. It is sufficient to place the outer
boundary half a skin depth away from the conductor surface.
The mesh generation of the outer region also bears impact on
the solution accuracy. The meshes should not be severely
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Fig. 6 Power loss errors with the inhomogeneous
Neumann boundary condition as a function of the
locations of the outer boundary.

unequilateral.

Since ABC with finitc eiements preserves the sparsity of the
finite element matrices, it is a better choice compared to
hybrid approaches in terms of computer memory and pro-
gramming complexities.

5. CONCLUSIONS

This paper presents a study of the computation of static and
quasistatic electromagnetic fields using finite elements with
the asymptotic boundary conditions. Asymptotic boundary
conditions for eddy current problems duc 1o external field
excitations are also derived. The effect of outer boundary
locations on the solution accuracy is investigated. The study
reveals that the employment of asymptotic boundary condi-
tions improves the calculation results compared to the use of
homogeneous and inhomogeneous Neumann boundary condi-
tiens. The accuracy of finite elements with ABC-s, like
hybrid approaches, is very satisfactory. For eddy current
problems, it is sufficient to place the outer boundary half a
skin depth away from the conductor surface.
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