
 

 

Polarimetric Scattering from a 3-D Rectangular Crack in a PEC 
Covered by a Dielectric Layer 

 
 

Mehdi Bozorgi and Ahad Tavakoli  
 

Electrical Engineering Department  
Amirkabir University of Technology, Tehran, 15914, Iran  

Mehdi_Bozorgi@aut.ac.ir, Tavakoli@aut.ac.ir 
 
 

Abstract ─A novel direct approach for calculation 
of the polarimetric scattering fields from a narrow 
3-D rectangular crack in an infinite ground plane 
underneath a dielectric layer is presented. Since 
the electromagnetic fields are directly calculated 
and thus the approach in inversible, this technique 
is suitable for microwave NDT applications 
where cracks of narrow width, arbitrary length 
and depth under a dielectric layer are frequently 
encountered. A set of coupled field integral 
equations (FIE) with logarithmic and 
hypersingular kernels are derived and then 
descritized by a collocation method based on 
Chebyshev polynomials. The results of this direct 
approach are in good agreement with non-
inversible full numerical FEM and MoM results.  

 
Index Terms ─ 3-D rectangular crack, Chebyshev 
polynomials, dielectric layer, integral equation, 
and polarimetric scattering.  
 

I. INTRODUCTION 
 To detect surface cracks in metals, several 

electromagnetic techniques are suggested [1-5]. 
Recently, far field polarimetric scattering 
measurements are proposed where common NDT 
techniques may not be practical such as in blast 
furnaces [6]. Oil, paint, electrical, and thermal 
coatings on cracks alters the scattering signature. 
For practical purposes, a solution that takes the 
dielectric coating effect into consideration is in 
demand.  

Electromagnetic scattering from a dielectric 
coated slot in conductors is an ongoing research 
using various computational techniques. Initially, 
Knops and Cohn studied the effects of a dielectric 

layer on top of an aperture [7]. Later, Chen solved 
the integral equation for a waveguide ended with 
a dielectric slab and provided some physical and 
mathematical explanations [8]. Nevels and Butler 
used electric vector potential and Somerfeld 
integrals to model the diffraction from a slot 
covered by a dielectric layer [9-10]. 
Electromagnetic problems are generally 
formulated by means of the electric and the 
magnetic potential integral equations (PIE) [11-
13]. Weak singularity of the Green’s function 
allows utilization of a variety of numerical 
methods [14]. On the contrary, the electric field 
integral equations (EFIE) and the magnetic field 
integral equations (MFIE) have strong second-
order singularity. Hadamard introduced the 
hypersingular integrals for solving Cauchy's 
hyperbolic partial differential problems as the 
finite part of a divergent integral [15]. An exact 
solution of the Hadamard integrals exists only in 
particular cases, where the hypersingular integrals 
are solved by approximate methods. One 
approach is transformation of the hypersingular 
integrals into singular or weakly singular integrals 
by various regularization techniques [16-18]. 
Another method that avoids singular point 
restrictions is the direct numerical computation of 
the finite part integrals by a variety of quadrature 
techniques. 

Recently, in applied mathematics, some 
innovative methods are suggested to solve high 
order singular integrals effectively [19-20]. Thus, 
a strong singular EFIE or MFIE can be solved 
directly without using potential vectors and 
consequently, some tedious numerical 
computations such as the curl operator are 
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eliminated. Here, an efficient approach based on 
finite part sense integrals is developed for 
calculation of electromagnetic scattering from a 
dielectric coated three-dimensional crack in a 
grounded slab.  

In Section II, a set of coupled integral equations 
are formulated via the continuity of the tangential 
magnetic fields. In Section III, the calculation of 
the green’s functions and in Section IV, the 
extraction of the singular terms leaving an 
integrable equation is presented. In Section V, 
proper basis functions by considering the edge 
boundary conditions are presented. Then, the 
resultant linear matrix is solved. The scattered 
field due to the equivalent magnetic current under 
a dielectric layer is then obtained in Section VI. 
In Section VII, the validity and efficiency of the 
proposed method for calculating the scattering 
fields of 3-D cracks under a dielectric layer is 
demonstrated by comparison with MoM and FEM 
results.  
 
II. THE  SCATTERING PROBLEM 

Assume a dielectric filled rectangular crack of 
a b c   in an infinite ground plane is coated with 
a dielectric slab of height d and arbitrary 
permittivity and permeability of 2 2, (Fig.1). 
This crack is illuminated by an arbitrary polarized 
plane wave. Using the surface equivalence 
principle, we can write the scattered fields in 
terms of the equivalent magnetic current 
distribution, M


on the crack as: 

 
. ., ,s e s h

M ME HG M G M 
  

                          (1) 

 
where e

M G  and 
h

M G  are magnetic dyadic Green’s 
functions (DGFs). The h

M G  is the Green’s 
function for the magnetic field H

 generated by 
the magnetic current M


. In addition, the notation 

,  means the integration of products of the two 
functions. The integral equation is constructed by 
enforcing the continuity of the total tangential 
magnetic field on the aperture of the crack under 
slab that separates region 2 from region 3. Thus, 
we have: 

region1 region2
tan tan tan(2 , 0) ( , 0) ,tH HM J H M J    
     

   (2) 
where tH  is the total tangential magnetic field in 
the absence of the crack. Equation (2) is broken 

into a pair of coupled Fredlholm's integral 
equations of the first kind: 

t

t

( ) ( )

( ) ( ) ,

C h D h C h D h
x M xx M xx x M xy M xy y

s s

C h D h C h D h
y M yx M yx x M yy M yy y

s s

H G G M ds G G M ds

H G G M ds G G M ds
 

 

     

     

 

 

        (3) 

where ,
C h

M x yG  and ,
D h

M x yG are the magnetic 
green’s functions of the crack and the grounded 
dielectric slab when the source and the 
observation points are both on the ground plane 
(z=0). Here, a direct approach is used to convert 
the electric or magnetic integral equations into a 
simple system of linear equation based on finite 
part sense integrals [19]. Initially, the behavior of 
the Green’s functions is studied for extraction of 
the singular terms.  
 

 
Fig. 1. Geometry of a narrow 3D-dimensional 
rectangular crack in an infinite ground plane 
underneath a dielectric layer.  
 

III. DERIVATION OF  DGFs 
The most common method of deriving the 

DGFs is by means of Fourier transform and 
differential methods. Closed-form formulations of 
the DGFs for multilayered media using complex 
image method are reported in [21-29]. The well-
known TL model is also used in addition to 
complex image method to find the spectral 
components of the stratified medium [22]. In Fig. 
2, a magnetic current source is assumed on the 
infinite ground plane underneath the multilayered 
media. Figure 3 depicts the circuit equivalent 
transmission line model where the dielectric 
impedance is terminated by the free space wave 
impedance. The space domain Green’s functions 

d 
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are obtained by applying the Sommerfeld 
transformation to the TL model as [26]: 

 
   2

2 2
1 0 0

2
sin cos

cos( , , 0) ,
h e

h et t
t txx

Y Y
Y Y

k
G k z z s s s







 

     
 

(4) 

 21 0
2sin

2
1( , , 0) sin ,
2

h e
h et t

t txy
Y Y

Y Y
k

G k z z s s







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(5) 

( , , 0) ( , , 0),yx xyG k z z G k z z                                      (6) 

   2

2 2
1 0 0

2
sin cos

cos
( , , 0) ,

h e
e ht t

t tyy

Y Y
Y Y

k
G k z z s s s








   
 

 
     

(7) 

where 2 2
i i ik      and 2 2

x yk k k    are 
cylindrical propagation constant and wave 
number, respectively. In the above equations, 

 nS are the Sommerfeld integrals that are solved 
by the proper selection of branch cuts and 
integration paths [30]. 
 

 
Fig. 2. The equivalence principle and image 
theory for a crack in an infinite ground plane. 
 

Here, the spectral-domain Green’s function is 
approximated by a pole-residue term plus an 
asymptotic function [26-28]. Thus, 

2 2

2 R ( )
( ) ,

( )
n

p p
b k m m m

n p
n m m

k k
G k a e

k k
  


 

 
                  (8) 

R ( )p
m mk  represents the residues of G at real poles 


p
mk . The Prony coefficients na  and nb  are found 

by using GPOF and choosing the path C by 
avoiding the poles (1 )

1 max 1/ 1 0.1 , 0 1.2 /tk k t j e t k k
       

shown in Fig. 4 [26]. In our case, the cracks are 
not only small but also close to the metal 
surface. Therefore, the lateral wave effects 
are small. Thus, on the conductor (z=0), we 
could use the approximation of DGFs. 
Utilizing Hankel transform, 

2 2 1/ 2
1

2 2 3/ 2
0

( ) ( 1)( )( ) , 0,1.
( )

n
k n

n n n

ne J k k dk n
  

  
  


 

 

  
 

    (9) 

Thus, 0,1S  in (4)-(7) are approximated as:  
2 2

1 1 2 2

1( ) ,
2 2

n n
m m n

m n n

b bjS H k R a
b






  

 
  


 

           (10) 

0 0 2 2 3

1( ) .
2 2 ( )

n n
m m i

m n n

j a bS k R H k
b

    
  


                  (11) 

Since the observation points are close to the 
source on the ground plane, the surface waves are 

dominant and the residues must be calculated 
precisely. The method of [31] is used for 
extraction of poles and calculation of residues. 

For the computation of the Green's functions of 
the cavity, various approaches such as Ewald's 
method are available [32- 34]. Here, we used the 
approach of [34] for deriving the dyadic Green’s 
functions of the cavity because the singular 
behavior is represented as a sum of infinite 

  

 
Fig. 3. Transmission line model of a magnetic 
source on a grounded slab. 
 
harmonics. Since in many applications including 
NDT, the crack width is much smaller than the 
wavelength and the crack length, the DGFs are 
approximated by the lowest order mode of the 
crack [35]. Thus, the space domain Green’s 
functions on the crack are [36]: 
 

 
Fig. 4. The integration path in the k -plane for the 
sommerfeld integral. 
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1
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
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2 2
3

1

sin ( ) sin ( ),
. tan

yC h
M yy y y

p z z

k k
G D k y b k y b

k k c






                 (15) 

where 
2x a

k 
  , 

2


y
p

b
k , 2 2 2

3 x yz k k kk   , 

3( )2/ j abD   and pn is the Neumann’s symbol(1 for 
p=0 and 2 for p >0).  
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IV. SINGULARY EXTRACTION 
The singularities in equations (4)-(7) are 

encountered when the observation point is on the 
source, i.e. x x  or y y   By expanding of the 
Hankel’s functions around y y , display second-
order hypersingularity and logarithmic 
singularity. Next, (4)-(7) are rearranged as: 

1
2 3

2

( , ) ( , )log ( , ),D h xx
M xx xx xx

f x xG f x x x x f x x
x x


     


                    (16) 

 
0,D h D h

M xy M yxG G                                                 (17) 
1

2 3
2

( , )
( , )log ( , ),yyD h

M yy yy yy

f x x
G f x x x x f x x

x x


     


            (18) 

where 1,2,3f are smooth functions obtained by the 
method of [6]. Note that the above procedure is 
repeated for all values of y  and y  where x x  .  

The complete harmonic series of (12)-(15) 
either converge very slowly or diverge [6, 37]. 
Additionally, any truncation of the series creates a 
large error due to the miscalculation of the 
remainder of the series at xx   [6]. Therefore, 
the efficient approach of [37] is used to extract 
the singular terms of the harmonic series of (12)-
(15). Considering a high enough number of 
modes (i.e., p>p0), the series coefficients are 
approximated as: 

31 1 ( )
.tanz z

o p
k k c p

  , 21 ( )
.tan

y

z z

k
o p

k k c
  , 2 2

3 31 ( ).
.tan

y

z z

k k
p O p

k k c p


  
 (19) 

Finally, by substituting (19) in (12)-(15) and 
using the analytic simplifications of [6], the crack 
dyadic Green’s functions are derived as: 

0

2 2
3

1 2

0

( )sin ( )sin ( )
cos ( )cos ( )

[ log ],
. tan

C h
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M yy y y yy yy
p z z
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k k c y y


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
  (22) 

where 1,2,3
, ,x yg    are derivable nonsingular functions 

[6].  
 

V. SOLUTION OF THE COUPLED 
INTEGRAL EQUATIONS 

Direct integral equation solvers (DIES) 
straightforwardly solve the Integral equations 
with logarithmic or hypersingular kernels [38]. 
This method directly computes the finite part 

integral by numerical quadrature techniques that 
avoid the boundary singularities [19-20]. The 
magnetic currents at the edges of the crack are 

( , ) ( , ) ( , ) ( , ) 0.x yM a y M a y M x b M x b              (23) 
Please note that ( , )xM x b , ( , )xM x b  , ( , )yM a y  and 

( , )yM a y are unknown magnetic currents on the 
crack and may tend to infinity at edges. By setting 

, , /s s x x a   and , , /t t y y b  , the integral equation 
interval is transformed to ( 1,1), , ,t t s s   . Next, the 
magnetic currents are approximated by finite 
series of products of two independent basic 
functions that satisfy the boundary conditions of 
(23). The first basis is a ‘pulse’ function and the 
other is a weighted Chebyshev polynomial of the 
second kind. Thus, 

2
1

1 1
1 ( ),( , ) ( )

nt n

M N

x m n m
m n

s P t tM s t A U s
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 
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and  
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1
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  
           (25) 

where m nA    and m nB    are unknown coefficients that 
must be calculated. P  is the pulse basis functions 
of width ,m ns t    where 1 1( )m m m ms s s s        , 

1 ( 1)m m m ms s s s        . Additionally, mU is the mth 

degree Chebyshev polynomial of the second kind. 
Using the zeros of ,m nU   , nt and ms , the surface of 
the crack is discretized to M N  non-equal 
elements. Hence,  

cos , 1,...
1m

m
m M

M
s 
 

  
and cos , 1,... .

1n
n

n N
N

t 



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By substituting (24) and (25) in (3) and 
collocating at each nt and ms  on the crack we 
have: 
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where 2
11 ( )( , ) ( )
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x
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y
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       .Subsequently, the 
coupled integral equation of (27) is represented in 
a linear system as:  
   

 
, ,

,
, ,

x y
xx mn xy mnx

x yy yx mn yy mn

K O K OH A
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                    (28) 

where A and B are 1 MN  unknown  matrices that 
include unknown coefficients of (28) and are 
represented as 11 1 21 2 1[ ,... , ,... ,... ... ]tN N M MNA A A A A A A    and 
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11 1 21 2 1[ ,... , ,... ,..., ... ]tN N M MNB B B B B B B    . An arbitrary incident 
wave of Fig 1 can be decomposed into a parallel 
(E) and a perpendicular (H) Polarizations as: 
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where 1 02 /k    is the free space wave number 
and i and i  are the incidence angles. The 

tangential magnetic field ( t
x yH H x H y 

   ) in the 
absence of the crack could be calculated by 
Fresnel’s laws [39].  
 

VI. FAR FIELD SCATTERING 
Upon solving (3), the equivalent magnetic 

current on the crack is calculated and then, the far 
field due to this embedded source in the grounded 
slab is obtained [13, 40-41]. Following the 
approach of [41], approximate closed form 
solution of f H

M G
  and f E

M G
  are found by using the 

inverse Hankel transform. Thus: 
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  (30) 
where 
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j t Ym m
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m n

J XP ab A m j t e
X

    
  
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(31) 
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m n
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 
 

  
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 (32) 

In derivation of xP  and yP
 the following 

mathematical relation is used. 

 
1

2
1

1

( )1 ( ) ( 1) .x m m
m

J xx U x e dx m j
x

 




             (33) 

The  th order Bessel function of the first kind is 
denoted by J and where 1 0cos sinoX k a     and 

1 0sin sinoY k b    .  
 

VII. RESULTS 
Here, few numerical examples that demonstrate 

the validity of this approach are presented. 
Assuming 0.1 , 0.8 ,a b   20.25 , 0.1 , 3.2 0.1c h j       
and 3 1   in the configuration of Fig. 1, the 
calculated magnetic currents distribution xM  

and yM  at the center of the crack (x=0 and y=0) 

for 00i   and 045i   are depicted in Fig. 5 and 

Fig. 6 for parallel (E) and perpendicular (H) 
polarizations, respectively. 

Then, the bistatic polarimetric radar cross 
sections ( ,HH VV

bi bi  ,
VH
bi ) at a constant observation 

elevation angle 045o   are compared with the 
fully numerical approaches of FEM and MoM for 
a crack with the dielectric cover (WD) and 
without the dielectric cover (WoD) as shown in 
Fig. 7.  

The dielectric cover causes VV
bi   to rise slightly; 

however, the other bistatic radar cross sections 
decrease by 8 dB. Figure 8 represents the same 
results for a constant observation azimuth angle

00o  . VV
bi  is almost constant while the bistatic 

cross polarizations increase and HH
bi  decreases 

compared to uncovered crack. As shown, the 
results are in a good agreement with full 
numerical approaches.  

 

 
Fig. 5.  Comparison between magnetic current 
of DIES  and  FEM for the crack of Fig. 1 with 

0.1 , 0.8 ,a b   20.25 , 0.1 , 3.2 0.1 ,c h j      3 1   
for horizontal polarizations (H-Polarization) when 

0o
i  and 45o

i  . 
 
In the above examples, M = 17 and N=35 with 

the dielectric cover and M=13 and N=29 without 
the dielectric cover generated accurate results. 
When the frequency, the permittivity, or the 
length of the crack increase, the Hankel’s 
function arguments and the crack propagating 
modes increase as well and thus, the number of 
collocation points should increase for adequate 
accuracy. On the other hand, due to the highly 
oscillatory integrals, an inappropriate high 
number of M and N reduce the calculation 
efficiency without any sensible improvement [42-
43].  
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Fig. 6. Comparison between magnetic current of 
DIES and MoM for the crack of Fig. 1 with: 

0.1 , 0.8 ,a b  
20.25 , 0.1 , 3.2 0.1c h j       and 3 1   

for vertical polarizations (E-Polarization) at 0o
i   

and 45o
i  . 

 

 
Fig. 7. Bistatic radar cross sections (RCSbi) of the 
crack in Fig. 1 at various observation angles o  
with 0.1 , 0.8 ,a b   0.25 ,c  0.1 ,h 

2 3.2 0.1 j   and 3 1   at 0o
i  . 

 
A rapid convergence of these integrals is very 

important in minimizing CPU time. For integrals 
that include Bessel and harmonic functions, an 
extended Levin’s collocation method of [43] is 
used that approximates the oscillatory integrals. 
On a 2 GHz Pentium4 PC of 1G RAM, the 
computation time of FEM (HFSS), MoM (FEKO) 
and our method (DIES) for the dielectric covered 
crack of Fig. 6 are 38.136, 32.751, and 18.225 
minutes, respectively. Please note that the 
calculation of oscillatory integrals in (3) is the 
most time consuming computation of DIES. 

Examination of the results shows that the crack 
dielectric cover alters the RCS signature 

significantly even for thin layers. Surface waves 
are also a contributing factor in RCS reduction 
where the dielectric layer acts as a waveguide that 
traps the wave and thus reduces the scattered 
energy. 

 

 
Fig. 8. RCSbi of the crack in Fig. 1 at various 
observation angles

0 with 0.1 , 0.8 ,a b   0.25 ,c   
20.1 , 3.2 0.1h j    and 3 1   at 0o

i  and 45o
i  . 

 
Table1: Some material with their dielectric 
constants 

material permittivity 
Air 1 

Polystyrene 2.2 
Epoxy 3.5 

Glass,Mica 6 
GaAs 13 

 
Figure 9 depicts the variations of RCSbi for 

various dielectric constants of Table 1 for 
0.2a  , 1b  , 0.25 , 0.1c h    and 3 1 

 at 
030i  and 030i  . By increasing the dielectric 

constant, RCSbi drops down at first and then 
slowly increases due to an increase in the 
electrical thickness of the substrate that excites 
additional surface wave modes. Thus, an increase 
in the excitation energy in the crack causes RCSbi 
to rise. On the contrary, as the dielectric constant 
increases to a large value such as 2 13  , the high 
reflectivity at the air-dielectric interface reduces 
the RCSbi. As the dielectric constant increases, the 
minimum RCSbi as a function of elevation angle 
shifts to the left. In addition for 2 6  , the RCSbi 
is smoother and the scattering beam width widens 
for high permittivity. Referring to Fig. 9, the 
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energy density in the forward scattering region     
(180 360o o

o  ) is higher than other directions 
due to specula reflection. 

 

 
Fig. 9. RCSbi of the crack in Fig. 1 versus 
observation angles o  or materials of table 1 
where 0.2 , 1 ,a b   0.25 , 0.1c h    and 3 1  at 30o

i   
and 30o

i  . 
 

 
Fig. 10. RCSbi of the crack in Fig. 1 versus 
observation angles o for different dielectric 
thicknesses where 0.2 ,a   1 ,b  0.25 , 0.1 ,c h  

2 2.5 0.05j    and 3 1   at 45o
i   and 30o

i  . 
 
In conclusion, the dielectric constant of the 

layer does not have a monotonic effect on 
polarimetric scattering cross sections. In order to 
study the influence of the substrate thickness, a 
crack with 0.2a  , 1 ,b  0.25 ,c 

2 2.5 0.05j   , 3 1   and 0, 0.1 ,0.2 ,0.4 ,0.6h      
is illuminated at 45o

i  and 30o
i  and the RCSbi 

variations are shown in Fig. 10.  

As dielectric thickness increases, the RCSbi in 
the forward scattering region increases while in 
the exciting source region (0 180o o

o  ) decreases. 
The RCSbi dips for co-polarization at 180o

o   and 
360o

o   and for cross-polarization at 0 90o   and 
270o

o   are thickness independent. Similar to the 
influence of the dielectric constant, the dielectric 
thickness effect is not monotonic as well, noting 
that the surface waves are more prevalent in this 
case.  
 

VIII. CONCLUSION 
Most approaches in the literature use the 

electric and the magnetic potential integral 
equations to solve electromagnetic problems. 
Here, a direct field method is developed to solve 
the magnetic integral equations of a three 
dimensional rectangular crack in a grounded slab 
covered by a dielectric layer. This invertible 
solution is in demand in inverse scattering and 
NDT applications. The approach efficiently 
solves the integral equation by extraction of the 
hyper-singular terms and then descritizing the 
integral equation. The two-dimensional integrals 
include strong singularities that are approximated 
by ad hoc quadrature rules leading to a linear 
system of equations. In addition, the calculation 
of the oscillatory integrals is expedited by Levin’s 
method that is developed in applied mathematics. 
A good agreement is observed with MoM and 
FEM solutions that are full numerical and non-
invertible. In addition, the sensitivity of the RCSbi 
to the permittivity and thickness of overlaying 
layer is investigated. In general, the dielectric 
layer alters the polarimetric scattering signatures 
of a crack in a non-monotonic manner. 

 
Appendix:   SOME QUADRATURE 

RULES 
In equations (22-24) and (26-28), 

hypersingular, logarithmic and ordinary integral 
are present. An expression for the hypersingular 
integrals is in the form of [44]: 

1
22 1/ 2

1

1

1

(1 ) / ( ) ( ) ( ),
M

j j
j

t s t f t dt w s f s






                  (A.1) 

where ( )f t is a given regular function and M is a 
integer. Here,  

cos /( 2) , ( 1,2,..., 1)j Mj j Ms     ,                          (A.2) 
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( )(1 ) / ( ) 0m mU t t s t dt T s m 



              (A.4) 

and mT is the mth degree Chebyshev polynomial of 
the first kind.  
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