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ABSTRACT

A numerical technique is presented for computing the potential distributions surrounding power
transmission and distribution lines of complex geometry. The technique employs a finite difference
solution using boundary-fitted coordinates. A newly developed finite difference solver code is coupled with
the existing EAGLE grid generation code to yield a system capable of solving for the electric potential
and field distributions surrounding complex configurations. A code validation example is presented which
consists of a sphere-to-ground electrostatic solution. Sample results are also presented for a distribution
line model.

INTRODUCTION

The voltage level at which a power transmission or distribution line fails (the critical flashover
voltage) is dependent on the physical configuration of the line under test. The cross-sectional geometries
of lines in use today vary widely given various supporting struclures, insulators and conductors. The
critical flashover voltage of a newly-designed configuration is commonly determined through construction
and experimental testing. In some cases, attempts at reproducing experimental results fail because the arc
traverses different paths to ground from test to test. In the design of transmission and distribution lines,
prediction of the failure point is often accomplished by comparing the new configuration to a
geometrically similar configuration which has previously been tested. A more effective method of
predicting the failure point of a given configuration is to determine the potential and field distribution
through computational means. This technique would greatly enhance the design of high voltage
transmission and distribution lines by providing the designer a tool to investigate changes in the insulation
properties of a given line due to minor design modifications without expensive experimental tests. An
accurate plot of the potential and field distributions surrounding the line would yield insight into the
maximum allowable voltage levels and the phenomenon of multiple paths to ground from failure to failure.



Computation of the electric potential distribution throughout some arbitrarily shaped two-dimensional
or three-dimensional region involves the numerical solution of the governing partial differential equation.
Since high voltage transmission and distribution lines carry either direct current or low frequency (60 Hz)
alternating current signals, the potential distribution for breakdown calculations may be determined
assuming no time variation. Under static conditions, the potential distribution is governed by either
Poisson’s or Laplace’s equation, depending on the distribution of free electric charge in the region of
interest [1]. The periodic placement of supporting structures along the length of any transmission or
distribution line makes the problem of modelling such a configuration inherently three-dimensional.

The representation of the surface boundary conditions is a critical factor in the accuracy of the final
solution to a given partial differential equation. The accurate numerical representation of surface boundary
conditions for a transmission or distribution line with a complex supporting structure is by no means
trivial. A particularly effective technique of accurately describing boundary conditions on an arbitrarily
shaped body is through boundary fitted coordinates (numerical grid generation) [2], [3], [4]. A curvilinear
coordinate system is defined in the region of interest such that ail boundaries in the region are coincident
with coordinate lines. The coordinate system describing the physical region is then transformed inio a
fixed rectangular computational field defined by a square mesh. The resulting system of finite difference
equations in the transformed or computational space consists of simply described boundary conditions.
The equations 1o be solved in the computational space are more complex than those in the original
physical space, but the accuracy of the solution is enhanced through the precise representation of the
surface boundary conditions in the computational space. The finite difference solutions to the equations
in the computational space are obtained using only grid points so that no interpolation between grid points
is required. The grid point placement is dictated by the field variation in the region of interest. Grid
points are concentrated in regions where the field variation is rapid while widely-spaced grid points are
used in regions where the field is near-constant.

The electric potential distributions computed in this research were obtained using a newly developed
solver code coupled with the existing EAGLE grid generation code [5] to yield a system capable of
solving for potential distributions surrounding transmission and distribution line configurations defined by
complex geometries. The grid system in the region surrounding the transmission line model of interest
is constructed using the EAGLE code. The finite difference method is utilized to solve the governing
partial differential equation over the domain of interest subject to the appropriate boundary conditions.

FORMULATION

Given some static distribution of electric charge, the resulting electric scalar potential (V) may be
determined as a function of position by solving the appropriate boundary value problem. The differential
equation which describes the potential distribution in a region of (free) electric charge is Poisson’s
equation given by

vy = _P (1)
A

where V7 is the Laplacian operator, p is the electric charge density (C/m®) and € is the permittivity (F/m)
of the medium. In a region where no free charge is present, Poisson’s equation reduces to Laplace’s
equation:

V=0 . (2)

The solutions to Poisson’s and Laplace’s equations are obtained by enforcing the appropriate boundary
conditions to the general solution of the respective differential equation. These boundary conditions may
be expressed in terms of the scalar electric potential, the vector electric field E (V/m) or the vector electric
flux density D (C/m*). The static electric field is defined in terms of the electric scalar potential by



E=-VV 3

where V is the gradient operator. Thus, boundary conditions described in terms of the vector electric field
may be related to the electric scalar potential using Equation (3). The general equations which describe
the behavior of the electric field and flux across a surface discontinuity are well known [1,6,7] and are
given by

Ax[E,~E ]=0 1C))

and
- [DZ—DI] =Py (5)

where (E;,D;} are vector quantities in region 1, (E,, D,) are vector quantities in region 2, and # is a unit
normal to the surface which points into region 1. The vector electric flux density is related to the vector
electric field by

D=¢E ) (6

The boundary conditions in Equations (4) and (5) can be related to the scalar potential using Equations
(3) and (6) which vields
Ax [(VV) -(VV),]=0 D

and
A [e (VV) -, (VV),]=p; . (8)

Equations (7) and (8) represent the general boundary conditions for the scalar potential across a surface
discontinuity.

In cases where an isolated conductor is located in an applied electric field, the resulting conductor
potential is unknown ("floating" conductor). When a conductor is placed in a static electric field, a charge
distribution is induced on the conductor surface which produces a zero-valued electric field everywhere
inside the conductor yielding a constant-valued potential throughout the conductor. The total surface
charge on the conductor remains unchanged given any applied electric field distribution. From Gauss’
Law, the integral of the normal component of the electric flux density over the outer surface of the
charged conductor (S) yields the total charge on the conductor such that

fp-ds=Q (©)
§

where the direction of ds is an outward pointing normal (ds=1# ds), ds defines the differential surface
element on the conductor surface and Q is the initial value of total charge on the conductor. The integral
defined in Equation (9) may be expressed in terms of potential by relating the electric flux density to the
potential which yields

[era-(ww)las=-0 (10)
§
where the dielectric surrounding the conductor is assumed to be isotropic.

Assuming the transmission or distribution line model is composed of perfect conductors and lossless
dielectrics, the regions of interest with regard to potential and field computations (external to the
conductors and throughout the dielectrics) are charge-free. Thus, a solution to Laplace’s equation is
required. Given a curvilinear coordinate system defined by (§7,£%,&7), the Laplacian operator in non-
conservative form [2] is given by

3 3 3
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where the subscripts on V denote partial derivatives and g” is the contravariant metric tensor. The
clements of the contravariant metric tensor are defined as dot products of the contravariant unit vectors
(normals to the curvilinear coordinate surfaces denoted by &') which yields

gi=ata’ . (12)

The Laplacian term in Equation (11) may be written as
ViLk=gip, (13)

where P, is a control function evaluated in the course of the grid generation and is then available to the
Laplace solver as coefficients with fixed values at each grid point. Laplace’s equation can now be written
as

3 3
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The first and second order derivatives found in Equation (14) are represented by central difference
approximations and the overall equation is solved using the successive over-relaxation (SOR) iterative
technique.

Four basic boundary conditions on the scalar potential are required in the formulation of the numerical
model: the Dirichlet boundary condition, the Neumann boundary condition, the material interface
boundary condition and the floating conductor boundary condition. The Dirichlet boundary condition is
characterized by a scalar potential which is constant on a particular boundary. The surface of all
conductors are defined as Dirichlet boundaries since they represent equipotential volumes. The application
of the Dirichlet boundary condition is trivial using boundary-fitted coordinates. Scalar potential values
are fixed at grid points on the specified surface (£'=constant) and these values are preserved throughout
the iterative process.

The Neumann boundary condition is defined by a zero-valued normal derivative of the potential on
a given boundary. The Neumann boundary condition is applied at the outer boundaries of the volume
enclosing the transmission line model. The normal derivative to the coordinate surface on which Eiis
constant is given by

Vv, %Y———-‘/lzzg”’g, (15)
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g

which viclds
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as the Neumann boundary condition on the given surface.

A floating conductor is an equipotential volume but the conductor potential is an unknown value.
Thus, the initial charge condition defined in Equation (10) must be coupled with the Dirichlet boundary
condition for a floating conductor. Such a boundary condition can be enforced by integrating the normal
component of electric flux over the conductor surface or over some surface enclosing the conductor. Both
methods of integration produce similar results but the structure of the corresponding grids are totally
different. Integrating over a surface enclosing the conductor allows for a multi-block grid with a smaller
number of blocks than integrating over the conductor surface, The advantage of using a smail block
system is to obtain better control of the grid distribution in the regions of interest and to reduce the /O
overhead needed to transfer iterative data from block to block.



The material interface boundary conditions are applied at dielectric-dielectric interfaces and conductor-
dielectric interfaces. The tangential electric field boundary condition of Equation (7) is implicit in the
formulation since the scalar potential is assumed to be continuous across the boundary. The normal
electric flux boundary condition of Equation (8) on the coordinate surface where &' is constant may be

stated as
3
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where g¥ and & are the contravariant metric tensors evaluated on the grid at the interface in region 1 and
region 2, respectively.

COMPOSITE-BLOCK GRID STRUCTURE

The curvilinear cocordinate system mentioned in the previous section is constructed using the EAGLE
grid generation code. The EAGLE code is a composite (multi-block) algebraic or elliptic grid gencration
system designed to discretize the domain in and around any arbitrary shaped three-dimensional region.
The concept of the composite-block structure is described in detail in [5].

Fundamental to the curvilinear coordinate system is the coincidence of some coordinate surface with
cach boundary of the physical region. The physical region of interest in divided into contiguous
subregions (interfacing hexahedrons), and each subregion can be transformed to a rectangular block in the
computational space, with a grid generated within each subregion. Each subregion has its own curvilinear
coordinate system irrespective of that in the adjacent subregions. Each subregion, defined by six generally
curved sides, is transformed to a rectangular computational region on which the curvilinear coordinates
are the independent variables. In principle, it is possible to establish a correspondence between any
physical region and a rectangular block in the computational space, but the resulting grid may be too
skewed for a complicated geometry. In such a case, the given physical region must be subdivided into
smaller blocks until the resulting grid satisfies the user-defined grid criterion with regard to skewing.

The general curved surfaces bounding the sub-regions in the physical space form internal interfaces
across which information must be transferred. In the computational space, the information must be
transferred from the side of a given rectangular block to the corresponding side of the adjacent block.
These two sides of the adjacent blocks correspond to the same physical surface. The interface is treated
as a branch cut on which the function value is solved just as it is in the interior of the blocks. The
interfaces of the blocks are not fixed, but are determined by the solver. The most straightforward
technique to employ is to provide an extra layer of points surrounding each block. These surrounding
points represent points across the given interface just inside the adjacent block. This relationship is
maintained throughout the iterative procedure. The goveming partial differential equation is solved by
point SOR iteration using a ficld of locally optimum acceleration parameters. These optimum parameters
make the solution robust and capable of convergence with strong control functions.

CODE VALIDATION EXAMPLE

An analytically solvable electrostatic problem is attempted in order to validate the code. The problem
considered here is that of a conducting sphere over ground. The sphere over ground problem is solved
numerically and compared with the equivalent problem of two isolated conducting spheres. For the two
sphere problem, the electric field along the line connecting the sphere centers may be expressed as an
infinite series using images as given in [8]. This problem has similar characteristics to the power
distribution line problem in that one is intcrested primarily in the electric field and potential in the region
between the conductors while these quantities are less critical away from this region. Also, the outer



boundary of the sphere-to-ground problem has the same general characteristics of the
transmission/distribution line problem with a ground plane on the floor of the region and the remainder
of the ouier boundary on which the potential is unknown.

The geometry of the sphere-to-ground problem is shown in Figure 1 where D is the sphere diameter,
S is the spacing between the sphere surface and the ground plane, and B is the dimension of the cubical
outer boundary. The particular geometry chosen is D=100cm, S=50cm and B=20D. Note that the x
coordinate origin is located at the sphere cenier and extends downward to the ground plane. Thus, the
domain of interest for field comparison purposes is 50cm<x<100cm. A three block, h-type grid is
generated in the given volume of interest with a total of 88,263 grid points. Comparisons of the computed
electric field with analytic results are shown in Figures 2 and 3 using two distinct outer boundary
conditions. A constant potential of V=0 is assumed on the ground plane and on all outer boundaries for
the first boundary condition (Figure 2). For the second boundary condition (Figure 3), the ground plane
potential is again assumed to be V=0 but the Ncumann boundary condition is enforced on the other outer
boundaries. In both cases, excellent agreement is found between the analytic and computed results.

The uniform V=0 outer boundary condition described above is viable for problems involving
conductors of limited extent in all three dimensions such as the sphere-to-ground problem. However, for
problems involving conductors which span the entire spatial domain in one or more dimension, such as
a transmission or distribution line model, the constant cuter boundary condition is inadequate and the
Neumann boundary condition may be applied. The Neumann boundary condition, which forces the
computed equipotential contours to lie normal to the outer boundary, yields appropriate behavior in the
vicinity of the ground plane where the equipotential contours "follow" the ground plane. Negligible errors
in the electric field are experienced in the regions of interest by choosing the outer boundaries sufficiently
far away as shown in the sphere-to-ground example.,
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Figure 1. Sphere-to-ground geometry.
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Figure 2. Comparison of the analytical sphere-to-ground electric field
with computed results given V=0 on all outer boundaries.
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Figure 3. Comparison of the analytical sphere-to-ground electric field with computed results
using the Neumann boundary condition on all outer boundaries excluding the ground plane.

POWER DISTRIBUTION LINE MODEL

The critical flashover voltage of a typical distribution line configuration was studied experimentally
by Jacob, et. al. in [9]. The distribution line model shown in Figure 4 is a simplified version of the
experimental configuration analyzed in the aforementioned study. Insulators, crossarm braces and
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mounting hardware components have been omitted in the distribution line model to simplify the geometry
of the resulting grid. A detailed description of the distribution line numerical model is given in Table 1.
Conductors A, B and C represent the three high-voltage conductors (phases) while conductor N is the
neutral wire and conductor G is the vertical ground wire,

Several configurations of charged, floating and grounded phases were studied experimentally in [9].
A single phase was charged in order to measure the critical flashover voltage of the phase-to-ground and
phase-to-phase failures. Two of the models considered in [9] are analyzed here and designated as model
#1 and model #2, For model #1, the B phase is charged with the A and C phases floating. For model
#2, the B phase is charged while the A phase is grounded and the C phase is floating. The ground plane,
conductor N and conductor G are held at O volts for both models. The potential of the charged conductor
is assumed to be 1 volt for both models.

The volume enclosing the three-dimensional distribution line model is defined by (—400" < x < 200"),
(0" £ y £ 1200") and (90" < z < 90") with the axis of the pole located along the y-axis. A four-block
grid system is constructed with the grid points distributed throughout the volume as illustrated in Figure
5. Note that the grid points are concentrated in the region of interest surrounding the conductors in the
vicinity of the pole. A total of 96,525 grid points were used to determine the three-dimensional potential
distributions: 75 in the x-direction, 39 in the y-direction and 33 in the z-direction. The computed
potential distributions are plotted over surfaces defined by k=constant where k is the grid point index in
the z-direction (k=0 defines the plane where z=-90", k=33 defines the plane where z=90"). Due to the
grid structure, the surfaces defined by k=constant ar¢ not planar in the vicinity of the pole as shown in
Figure 6.

RESULTS

The potential distributions are computed for both model #1 and model #2 given the charged conductor
(phase B) is charged to 1 volt. The resulting potential distributions are plotted over constant k surfaces
in the vicinity of the charged conductor. The potential distributions surrounding model #1 for k=1, k=17
and k=19 are shown in Figures 7, 8 and 9, respectively. The corresponding potential distributions
surrounding model #2 for k=1, k=17 and k=19 are shown in Figures 10, 11 and 12, respectively. The
potential difference between the equipotential contours is 0.02 volis.

The initial "guess” for the potential values has a significant effect on the number of iterations required
for a prescribed accuracy. The first results were obtained by assuming a zero-valued potential at all grid
points as the starting values. A significant reduction in the run time was obtained for both three-
dimensional models by utilizing the corresponding two-dimensional results as the initial values on the
surfaces normal to the axes of the wires. The two-dimensional results are those associated with the same
distribution line minus the pole, crossarm and vertical ground wire. As expected, the potential disttibution
of the three-dimensional model approaches that of the two-dimensional model as one moves away from
the supporting structure.

Several physical effects associated with discrete components of the numerical model have been noted
for the configurations which were analyzed. The effect on the potential distribution of a floating
conductor of small cross-sectional dimension is found to be minimal. Conversely, a floating conductor
can alter the potential distribution considerably if the conductor cross-section is of significant physical
dimension. The floating conductor represents an equipotential volume (surface) so that the resulting
equipotential contours in the surrounding medium must wrap around the conductor. The equipotential
contours on the end faces of the volume enclosing the three-dimensional model over perfect ground are
predominantly horizontal below the charged conductors since the contours must "follow” the ground plane
(equipotential surface). The effect of a vertical ground wire located on the supporting structure is to pull
the equipotential contours upward as one moves from the end face toward the supporting structure such
that the equipotential contours wrap around the ground wire. A large electric field is generated in the
vicinity of the ground wire as the equipotential contours crowd together. The effect of the wood pole is
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Figure 4. Three-dimensional distribution line model.
(See Table 1 for detailed description.)

Enclosing Volume - [-400"<x<200", 0"<y<1200", -80"<z590"]
Ground Plane - Perfectly conducting ground plane (x-z plane)

Pole - Southern pine (£=3.5¢,) 50 ft. pole, 10" diameter, axis
of the pole lies along the y axis

Crossarm - Southern pine (¢=3.5¢,) 10 ft. crossamm,
120" %x4.5"x5", centerline of crossarm is 44 ft. above

the ground plane

Conducters - Each conductor is modelled as a filament,
A Phase - wire axis located at x=-356", y=541.25"
B Phase - wire axis located at x=—27", y=541.25"
C Phase - wire axis located at x=56", y=541.25"
Neutral (N} - wire axis located at x=3", y=595"
Ground wire (G) - wire axis located at x=35", z=0"

Table 1. Description of the distribution line model.
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Figure 5. Three-Dimensional Distribution Line Model Grid.
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Figure 6. Cross-Sectional Contours in the Vicinity of the Pole.
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Figure 7. Model #1 Potential Distribution (k=1). Figure 10. Model #2 Potential Distribution (k=1).

Figure 9, Model #1 Potential Distribution (k=19). Figure 12. Model #2 Potential Distribution (k=19).
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to reduce the electric field as one moves from the surrounding air into the wood. This reduction in the
electric field is caused by the bending of the equipotential contours away from the air-wood interface
inside the wood region.

A more realistic model of the distribution line studied in [9] must include the insulators and associated
mounting hardware. Of particular interest is the metal bolt on which the insulator is mounted. This bolt
would be modelled as a perfect conductor and thus represent a floating conductor of significant cross-
sectional dimension. This floating conductor would be located in close proximity to a charged conductor.
The resulting equipotential contours surrounding the bolt would crowd around the equipotential volume
creating a large electric field. In such a manner, the effect of the bolt would be to alter the flashover path.
The present research forms the basis for further work in which the physics of the air breakdown process
are incorporated into the code in an attempt to actually predict the critical flashover voltage using a
computational model.

CONCLUSIONS

The potential distributions surrounding a three-dimensional distribution line model has been computed
by solving Laplace’s equation throughout the enclosing volume. The partial differential equation solution
was carried out using a newly developed solver code coupled with an existing grid generation (EAGLE)
code. The code allows for a system model which consists of charged and/or floating conductors along
with multiple dielectrics. Given a three-dimensional transmission or distribution line model, using the
corresponding two-dimensional solution (the solution for the transmission line without the supporting
structure) as the initial value on each cross-section of the enclosing volume enhances the convergence
properties of the solution significantly. The actual potential distribution on the end faces of the enclosing
volume are found to be quite similar to the corresponding two-dimensional solution.
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