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Abstract

We present a new method of computing mono-static
radar cross sections using a preconditioned Block GM-
RES iterative algorithm. The convergence properties of
this algorithm are analyzed using RCS error, equation
residual error and solution error. It is found that this
method is nearly an order of magnitude faster than di-
rect methods (LINPACK) for realistic method of mo-
ment problems.

1 Introduction

Tterative methods have long been the solver of choice for
sparse matrix problems coming primarily from finite el-
ement or finite difference techniques. In electromagnetic
scattering applications, these solvers quickly provide bi-
static RCS results, but are time consuming for full mono-
static data generation. Two approaches have been used
to make iterative solvers more efficient for multiple right-
hand sides and thus mono-static RCS calculations. They
both involve using information generated from the iter-
ates of one right-hand side to assist in solving others.

In [1, 2] a “seed” system is iterated and other right-
hand side vectors are projected onto the resulting Krylov
sub-space to approximate those solutions. Analyzed in
[3], the method in [1] converges best when the right-hand
side vectors are close together. For mono-static RCS
calculations, this refers to right-hand sides representing
incidence angles which are close. This limits the useful-
ness of this method since typically mono-static RCS is
computed over a broad range of angles.

The other approach [4, 5, 8, 7, 8], is to use block it-
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erative methods, i.e., directly solve multiple right-hand
sides simultaneously. These methods use the iterates
from all the right-hand sides in the block to approximate
all their solutions, and as a result converge significantly
faster than methods using only a single right-hand side.

When applying such iterative methods to dense maftri-
ces as encountered with the method of moments (MOM),
the first obstacle is the loss of symmetry (either real or
complex). While there are generalizations of usual itera-
tive methods for non-Hermitian matrices, the benchmark
algorithm for such matrices is GMRES [9]. It is appro-
priate for general matrices and directly minimizes the
residual error which provides a monotonically decreas-
ing convergence criterion.

The disadvantage of the GMRES algorithm is that one
must store all the Krylov vectors, rather than only the
current and previous two as in the familiar conjugate
gradient algorithm. Therefore, the storage goes up lin-
early with the iterations, and can become prchibitive for
large problems. The algorithm can be restarted, using
the current iterate as the initial guess and starting the
algorithm anew, but this slows convergence considerably
and the solution is no longer the minimum residual over
the whole Krylov sub-space.

The approach taken in this paper is to obtain conver-
gence as rapidly as possible, thus minimizing the storage
needed. This is achieved by using a sparse incomplete
factorization preconditioner and by using the block algo-
rithm. Then we make maximum use of the orthoncrmal
basis of the Krylov sub-space which is computed and
stored when running the GMRES algorithm. We note
that others have taken a similar approach [10, 3].

‘We use this block algorithm to solve for equally spaced
mono-static points over a range of angles. The interme-
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diate mono-static RCS values are computed as minimum
residual solutions to the equations using the previously
computed Krylov sub-space vectors. By examining in
detail the RCS error, the equation residual and the so-
lution error, we show that the efficiency of this method
is near the optimum, as indicated by the Nyquist sam-
pling rate. This technique provides additional solutions
without any additional matrix multiplications or precon-
ditioner applications, making them virtually free.

This combination of techniques is shown to compute

mono-static RCS, for a realistic MOM problem, almost

_an order of magnitude faster than single precision LU
factorization by LINPACK.

2 Preconditioned Block GMRES
Algorithm

This algorithm addresses the solution of the matrix equa-
tion 4z = b, where A is a n by n complex general ma-
trix, z is an n by m matrix, and b is an n by m matrix.
The GMRES algorithm is described fully in numerous
places, [9, 11}, and will not be explicitly discussed. The
only changes to the published algorithms is that in this
case, the scalars become m by m matrices, vectors are
n by m matrices, and the upper Hessenberg matrix in
GMRES becomes block m by m upper Hessenberg.

The GMRES algorithm minimizes the equation resid-
ual over a sub-space of the solution space (C™). At itera-
tion k, the algorithm has generated an orthonormal basis
for the Krylov sub-space Ky = span{b, Ab,..., AF=1b},
where span means all complex linear combinations of all
columns of the & n by m matrices in the set. Specif-
ically, GMRES finds the iterate 27 in the Krylov sub-
space K that minimizes the equation residual || Az? —b/||
for § =1,...,m, where z7 refers to the “jth” column of
z and ||z} is Euclidean (L) norm of z.

Note that the Krylov sub-space K, is formed using all
the columns of b. This permits information generated by
all the simultaneous solutions to assist in approximating
each solution vector. This differs for the usual, one so-
lution at a time, algorithm where the solution vector is
restricted to the Krylov sub-space generated by only its
right hand side vector. This “information sharing” [2] is
what accounts for the aceeleration of convergence of the
block algorithm.

We precondition this system with a sparse incom-
plete LU preconditioner. That is, we actually solve a
transformed system AZ = b, where A = AU~'L~! and
£ = LUz, where L and U are the sparse incomplete lower
and upper factorization matrices. Having solved for %,
we may compute the original solution as z = U~'L™'z.
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For notational simplicity we will drop the tilde notation
with the understanding that the preconditioning is going
on in the background.

The preconditioner used is one we and others have
found exceedingly effective in sparse matrix applications
[8, 12]. It is easily constructed by taking a generic LU
factorization algorithm and, as each row and column of
L and U are generated, only the “large” terms are kept,
thus making the rows and columns of L and U/ sparse.
The criterion for “large” we found most effective is that
they exceed a certain fraction of the diagonal entry. That
is, matrix element i;; of L is kept if L;; > fraction *
Itr where k = min(,j) and the matrix element u;; of
U is kept if u;; > fraction = 1.0 {the diagonal of U is
identically 1.0) where fraction is a non negative number
typically around 0.01.

In addition, partial pivoting is performed in this calcu-
lation in an attempt to insure stability of the incomplete
factorization. These types of factorizations can be un-
stable, resulting in no algorithmic convergence, with or
without pivoting. We have not evaluated the effective-
ness of pivoting in promoting stability since instances
where the algorithm is unstable are rare. However, it
does not cost much computationally and is the numeri-
cally prudent procedure.

3 Numerical Properties

In order to briefly outline the general characteristics of
the preconditioned Block GMRES algorithm we present
several examples. They involve the solution of a rank
1024 general complex dense matrix generated by a 3-D
method of moments code. The sampling rate is nomi-
nally ten to twenty triangular patches per wavelength.
It is important that the sampling rate is in the range
of normal use, for we found that grossly under or over-
sampled problems converged much differently than nor-
mally sampled ones.

The effects of varying the number of simultaneous so-
lutions, m, on the convergence rate are shown in Fig.
1. Here, a single solution is obtained, five solutions
obtained simultaneously and ten solutions obtained si-
multanecusly. There is clearly accelerated convergence
with increasing block size, although not as much as ex-
perienced with sparse matrices and reported in [6, 7, 8]
where the number of iterations required were reduced by
a factor nearly equal to the block size.

Note that for a block size of m requiring n iterations,
m % n matrix vector multiplications are performed, but
that m solutions are produced so that the number of
matrix vector multiplications per solution is the same as
the number of iterations. Therefore, the numerical work,
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Figure 1: Convergence rates as a function of block size.
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Figure 2: Convergence rates as a function of precondi-
tioner completeness.

represented mainly by matrix vector multiplications, also
decreases with increasing block size.

To demonstrate the effect of preconditioner complete-
ness, we have adjusted the “fraction” parameter to ob-
tain incomplete LU factorizations of varying degrees of
completeness. A 10% complete preconditicner is one
where the number of non-zeroes of L plus those of U are
10% of n? (the number in the matrix A4). The more com-
plete the preconditioner, the closer it is to the LU factors
of the matrix and a 100% complete preconditioner is ex-
act and will cause convergence in 0 iterations.

Figure 2 shows, to no one’s surprise, that the better
the preconditioner the faster the convergence. However,
note that most of the benefit is achieved in the 11.8%
complete case. Using a more complete preconditioner
than this gives little additional reduction in the number
of iterations. Considering the fact that the time spent
computing the preconditioner is very close to the com-
pleteness percentage multiplied by the dense factoriza-
tion time, completeness percentages around 10% appear
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Figure 3: Convergence rates as a function of restart in-
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optimal. This has held true in general and in practice
we use this range of compieteness.

If storage of the Krylov vectors becomes prohibitive,
the algorithm can be restarted. This is accomplished
simply by discarding the computed Krylov sub-space,
using the current iterate as the initial guess and starting
the algorithm from scratch.

To demonstrate the behavior of the algorithm when
restarted, we consider solving one solution without
restarting, restarting every 10 iterations and restarting
every 5 iterations. ILU(T) preconditioning was used
where the factors U and L are both 11.8% complete.

Figure 3 shows clearly the deleterious effects of restart-
ing. The lower curve is the convergence without restart-
ing. The convergence rate of both the middle and upper
curves, restarting at 10 and 5 iteration intervals respec-
tively, slows each time the algorithm is restarted. Con-
vergence of GMRES without restarting is similar to a
conjugate gradient algorithm, while with restarting ev-
ery iteration reduces to simple gradient descent, a no-
toriously bad method. This behavior is well known and
serves to emphasize that convergence must be obtained
quickly so that restarting is not necessary.

4 Mono-static RCS Calculation

Faced with the task of solving Az = b with possibly hun-
dreds of right-hand side vectors in a typical mono-static
RCS, the block algorithm helps tremendously, but not
in an obvious way. Blindly taking some or all of the
right-hand side vectors and iterating runs into trouble
quickly. It is no surprise that the right-hand side vectors
for closely spaced angles are nearly linearly dependent.
This causes both numerical problems and slow conver-
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gence in the block algorithm.

Numerical difficulties stem from the orthogonalization
of the Krylov vectors which, if nearly linearly dependent,
is unstable {especially if a large number of simultaneous
solutions are attempted). While there are schemes for
“deflating” the system, i.e. dynamically removing lin-
early dependent vectors [10], this is a situation to be
avoided.

The slow convergence is also due to this near linear de-
pendence, causing the corresponding Krylov sub-spaces
to be nearly the same, thus not “enriching” each other.

. This behavior was analyzed numerically and theoreti-
cally in [3] where it was shown that block iterative meth-
ods are most advantageously applied when the right-
hand side vectors in the block are widely separated. Our
scheme, used to calculate the mono-static RCS, avoids
both numerical troubles and slow convergence.

Consider computing the mono-static RCS for angles 0°
to 180° every degree. We take as a block, for example,
the right-hand side vectors for 0°, 10°, ..., 180° (stride =
10°). The right-hand side vectors associated with these
widely separated angles are very linearly independent.
Convergence will be rapid with no numerical difficulties.
The solutions corresponding to the intermediate angles
will be “filled in” the following way.

The task which requires all the computational effort
in the GMRES algorithm is the computation of an or-
thonormal basis for the Krylov sub-space for which the
matrix has an upper block Hessenberg representation.
We make maximum use of this wealth of information
contained in this basis and representation of the matrix.

Once this basis and matrix representation are com-
puted, the minimum residual solution to any right-hand
side vector, not just those involved in the computation of
the Krylov sub-space, may be computed easily and effi-
ciently by projecting onto the Krylov sub-space. There-
fore, the minimum residual solutions to the right-hand
side vectors corresponding to intermediate angles are
computed using the Krylov sub-space computed from
the primary right-hand side vectors.

We apply this algorithm to the computation of the
mono-static RCS, as described above, of a perfectly con-
ducting frustrum 4 long with end diameters of 2\ and
1. Using a sampling rate of 10 to 20 triangles per wave-
length, our 3-D MOM code required 3570 unknowns.

For convergence, the ideal criterion would be to know
how many iterations are required to obtain a given ac-
curacy in the RCS values. This, however, is impossible
in general since it requires knowledge of the exact RCS
with which an iterative method would not be needed.
The accuracy of the RCS is controlled by the solution
accuracy. This too is not computable in general, again
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Figure 4: Mono-static RCS, Stride = 15°

because the exact solution is not known. What can be
monitored is the egquation residual from the algorithm,
and inferences must be made of the other errors.

However, for the purposes of this evaluation, both the
exact mono-static RCS and solution vectors are known
(as calculated by LINPACK) and thus we may monitor
the RCS and solution errors to evaluate the algorithm.

It was determined by experimentation that specify-
ing an equation residual of 10~2 ( —2 Bels ) for the
algorithm convergence limit was sufficient to produce
accurate (overlay) RCS values and this value is used
for all examples. The preconditioner completeness used
was 10%, which gives the best reduction of the iteration
count while minimizing the time spent computing the
preconditioner. With these parameters, convergence in
all examples occurred in only 10 iterations.

We will vary the interval between the angles (the
stride) of the right-hand side vectors to investigate how
coarsely these may be chosen and thus how efficiently
the mono-static RCS may be computed. However, first
we must estimate how coarse is reasonable.

Let us assume that the target is enclosed in a sphere of
radius 2 and assurmne that this is in the far field so that
the fields are band limited to the free space wavelength
on this sphere. This is not strictly true, but this estimate
will bound our estimate. Sampling at the Nyquist rate
of 2 samples per wavelength implies a maximum stride
is somewhat less than 15°.

Figure 4 shows the comparison between the exact RCS
and that generated by the iterative algorithm for a stride
of 15°. The ticks on the “Angle” axis are the locations
of the right-hand side vectors that are directly iterated,
while the intermediate values are generated by the al-
gorithm described above. There are unacceptable errors
present in the RCS.
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Figure 5: Equation and solution errors: stride = 15°

Figure 5 shows the relative equation residual error and
the relative solution error

[l Azs — bl [lzx — A8l
10g10 “b” 4 loglﬂ “A_lb” (1)

respectively for the stride = 15° case. Here we see that
even though the equation residual (and solution error) is
small at the angles directly iterated (indicated by the tick
marks on the horizontal axis), it is large in between. This
indicates that the stride is too large and the fields are
under sampled so that the Krylov sub-space generated
by the iterated angles does not span the solution vectors
for the intermediate angles. This result is not totally
surprising since sampling theory tells us that we have
violated the Nyquist sampling theorern.

Iterating the right-hand sides in the block to an even
smaller residual (—3 Bels) made no difference in these
results. The residuals in between the iterated angles
were still so great that accurate RCS values were not
obtained.

At this point, the algorithm could be applied to the
solutions that do not yet meet the error criterion (this
is always an option). However, judging from the graph
of residuals, virtually all the intermediate values would
have to undergo further iteration and there is a more
efficient way to generate these intermediate angles.

Reducing the stride to 12° produces very different re- -

sults. The RCS values are in overlay agreement and are
not shown. The equation residuals and solution errors
are shown in Fig. 6. Here we see that reducing the resid-
uals at the iteration angles (tick marks) also reduced the
residuals of the intermediate values, enabling an accu-
rate RCS. This value of stride is probably at or some-
what finer than the true Nyquist rate. Note that the
equation residual and solution error still increase in be-
tween the iterated angles (tick marks), just not as much
as in the 15° case.
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Figure 6: Equation and solution errors: stride = 12°
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Figure 7: Equation and solution errors: stride = 10°

Finally, reducing the stride further to 10° again pro-
duces overlay RCS values. The residuals are shown in
Fig. 7. Here, the pattern of the residuals does not
even show characteristics of the stride, indicating that
the Krylov sub-space of the iterated angles well approx-
imates the solutions of the intermediate values.

These tests indicate that the right-hand side vectors
which make up a block to be directly iterated may be
sampled only slightly finer than the Nyquist rate and
that the solutions for the intermediate right-hand side
vectors are well approximated by the Krylov sub-space
computed from the iterates.

This is an important guide in the use of this algorithm
because it factors in the optical size of the scattering ob-
ject. For small objects, the RCS has no character at all
and no one would be surprised that it could be sampled
coarsely with a large stride. However, large objects have
very complicated cross sections and right-hand sides sep-
arated by too large an angle may have nothing in com-
mon at all, and may not be well approximated by each
other’s Krylov sub-space. This has been shown to be the
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This algorithm’s ability to directly iterate only a sub-
set of the desired mono-static angles has important im-
plications for what must be the bottom line comparison,
wall clock time per mono-static point.

Figure 8 shows the comparison of wall clock time ver-
sus number of mono-static points for the direct LU fac-
torization solution method (single precision LINPACK)
and the (double precision) iterative method described for
both the stride = 10° and stride = 12° cases. Note that
the performance of the iterative solver is not overly sen-
sitive to number of right-hand sides. All these timings
were conducted on a SUN SPARC 10 rated at approxi-
mately 17 MegaFLOPS (double precision LINPACK).

The initial time for LINPACK is how long it took to
perform the LU factorization, while the slope of that
curve indicates the time necessary to perform forward
reduction and back substitution for each solution.

The initial time for the iterative method is the time
necessary to compute the incomplete LU factorization
preconditioner, a small fraction (~ 10%) of the time
required for the complete LU factorization. The steep
slope of the iterative curves indicates the time necessary
to solve the initial block of solutions with the Block GM-
RES method. The final and flatter slope of these curves
indicates the time required to generate the intermedi-
ate solutions using the previously computed Krylov sub-
space vectors. These results are generated very quickly
since there are no dense matrix multiplications, precon-
ditioner application, or Krylov vector orthogonalizations
involved.

Note that final slope for the iterative solver curve
is less than that of the LINPACK curve. This says
that once the initial vectors are solved with the itera-
tive method, the intermediate solutions are obtained at
a faster rate than by (single precision) back substitution

Mono-static RCS Computation

and forward reduction with LINPACK. Thus, if the RCS
were sampled finer (unnecessary by not uncommon), the
iterative solver would fare even better in comparison.

The solution time for solving each right-hand side indi-
vidually with GMRES would include the preconditioner
calculation time and have a slope greater than the slope
for the initial block of iterated solutions. This curve
would extend off the graph, being the most inefficient by
far.

The iterative method (double precision) is over 4 times
faster than the direct solution (single precision) on a
mono-static RCS problem where it has previously been
assumed that direct solution methods had the great ad-
vantage.

5 Summary

A preconditioned block iterative solver has been pre-
sented which computes the multiple solutions required
for mono-static RCS calculations significantly faster
than the universally used direct solver. The precondi-
tioner used is of sparse incomplete type where the spar-
sity pattern and completeness are determined dynam-
ically by the numerics of the factorization and not by
a priori assumptions. We have found in this and other
cases that this type of preconditioner is superior to those
where the sparsity pattern is chosen independent of the
numerics.

This iterative method is applied directly to solve right-
hand side vectors corresponding to angles which differ by
a constant (large} stride and subsequently the interme-
diate right-hand side vectors are solved using the com-
puted Krylov sub-space. A criterion, based on Nyguist
sampling theory, is given to assist in choosing the maxi-
mum stride and thus obtaining maximum efficiency.

As was shown in [3] and observed by us, the block
algorithm converges faster if the right-hand side vectors
in the block are not too close together. However, as
was shown here, if the right-hand side vectors in the
block are too far apart, the calculated Krylov sub-space
does not span the solutions for the intermediate angles.
This results in inaccurate approximations for the solu-
tions at the intermediate angles and reduced efficiency.
The rule presented here of sampling slightly finer than
the Nyquist sampling rate has in this case, and others,
proven to be reliable in predicting the maximal effective
stride.

It is also worth noting that if the right hand side vec-
tors in a block are too far apart, convergence will also
slow. It is easy to construct examples where right-hand
side vectors belong to orthogonal invariant subspaces of
the matrix. In this case, the block algorithm is no more
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effective than iterating each right-hand side individu-
ally. Therefore, the right-hand side vectors must be close
enough together so that their Krylov sub-spaces enrich
each other but not so close as to be redundant.

Before the tests shown in this paper were run, it was
determined experimentally that requiring that all the rel-
ative equation residuals be less than 1072 ( —2 Bels ) was
sufficient for overlay cross sections. With this conver-
gence criterion, the algorithm converged in 10 iterations
in all cases. However, this is not a definitive statement on
error analysis. The RCS depends only upon the smooth
) part of the solution, so if the solution error is of high
frequency, a “low accuracy” solution can give accurate
RCS values. Since the solution error is not normally
known (you have to know the exact solution, which we
did in this case), one must estimate it from the equation
residual.

However, estimating solution error from equation
residual is also not straightforward. Understanding it
requires explicit knowledge of the eigenvalues and eigen-
vectors of the MOM matrix. Figures 5, 6 and 7 show
in places over 1 Bel (approximately 1 significant digit of
accuracy) difference between the relative equation resid-
ual and the relative solution error, while in other places
the difference is much less. This difference also depends
strongly on the completeness of the preconditioner. A
convergence criterion which will guarantee accurate so-
lutions or RCS with the minimal number of iterations is
still not a reality.

This solution method has been extremely reliable and
is becoming the method of choice in our work. We
have used it to compute the mono-static RCS for a rank
12,000 MOM matrix on a DEC Alpha workstation. The
performance was as presented here, almost an order of
magnitude faster than direct LU factorization. Not too
long ago, this was a problem that could only be done on
a CRAY. :

There is significant potential for parallel processing in
this algorithm. The block algorithm provides yet an-
other dimension that may be exploited in parallel com-
putation [5] for the algorithm itself and the dense matrix
multiplications. More importantly, the block algorithm
permits the application of the preconditioner to be par-
allelized, a significant achievement since the recursive
nature of forward reduction and back substitution has
hindered attempts at parallelizing this to date.
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