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Abstract

This paper considers the computation of the multipole
moments of small chiral wire structures. The multipole
moments are reviewed and it is shown that the charge
induced on the wire must be accurately computed. A
quasistatic thin-wire Galerkin Method of Moments for-
mulation has been developed to numerically compute the
charge distribution.

The chiral structures under consideration are on the
borderline of “thin” and a Body of Revolution Method of
Moments formulation has also been developed for use as
a check on the accuracy of the thin-wire approximations.
1t is shown that the “standard” thin-wire formulation is
not sufficiently accurate, but the relatively simple addi-
tion of an end-cap greatly improves the convergence and
accuracy of the formulation with acceptable computation
cost.

Finally, the formulation is extended to include bent
wires, permitting the electric and magnetic dipole mo-
ments as well as the electric quadrupole moment to be
calculated for a small chiral structure.

1 Introduction

In 1979, Jaggard et al. [1] initiated the current interest of
the electromagnetic engineering community in artificial
chiral media at microwave frequencies. They used ap-
proximate electric and magnetic dipole moments to anal-
yse a material composed of single turn helixes randomly
distributed and oriented in vacuum. Since this work was
published, and in particular over the last several years,
there has been a substantial amount of research in this
field.

In addition to questions regarding the physical realiz-
ability of microwave chiral absorbing materials, there are
also questions relating to the theoretical basis of the con-
stitutive relations used to date. In [2] Graham, Pierrus
and Raab show that when using magnetic dipoles, one
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Figure 1: Chiral hook

needs to include the electric quadrupole term to maintain
the origin-independence of the Maxwell equations. In [3]
Raab and Cloete show that, for chiral elements much
smaller than a wavelength, the optical activity of a chi-
ral medium can be described by the electric quadrupole -
magnetic dipole approximation. The theory requires the
structures to be much smaller than a wavelength as the
scattering from the structures is approximated in terms
of only the first three multipole moments. It is also re-
quired that the spacing between structures is much less
than a wavelength — otherwise the composition will be
more of a diffraction grating than a continuum.

Construction of a practical medium to validate this
theory thus requires chiral structures much smaller than
a wavelength. To measure at practical microwave fre-
quencies (eg. 3 GHz) this limits the wire length to a
few millimetres, while physical restrictions limit the wire
thickness to no less than a few tenths of a millimetre, re-
sulting in “thick” thin wires.

In order to determine the accuracy of the current
theoretical models, the contribution of the electric
quadrupole term relative to the dipole terms needs to be
calculated. This necessitates the calculation of the differ-
ent multipole moments for a chiral structure. The sim-
plest possible chiral structure, a three dimensional hook
as shown in Fig. 1, was chosen such that the calculations
—- using thin wire approximations -—— would be as simple



as possible. This structure, at resonance, was also used
by Morin for a polarization selective surface [4]. The
main advantage of this structure is the ease with which
it can be arranged to simulate crystals in the various
point groups [5]. This will, however, not be considered
in this paper.

To compute the multipole moments, the charges and
currents induced on the chiral element are required.
Only the simplest structures admit analytical electrody-
namic solutions {even the simple half-wave dipole anal-
ysis found in most undergraduate electromagnetic text-
books uses an approximation to the current); for an ac-
curate solution of a bent structure such as the chiral hook
shown in Fig. 1, numerical methods must be used. The
well known method of moments {MoM) will be used in
this paper for this purpose. We will show in the next
section that a quasi-static formulation suffices for the
structures of interest, and that only the induced charge
needs to be solved.

Solving for the charge on a quasi-static thin-wire strue-
ture appears to be a rather simple problem (it is ad-
dressed in many post-graduate texts, for example [6]),
but we will show that computing multipole moments re-
quires that the induced charge be very accurately com-
puted. It will be demonstrated that the widely used thin
wire approximation must be used with circumspection in
this case. Following a brief discussion of the computa-
tion of the polarizability tensors, this paper first presents
an analysis of a very simple (non-chiral) structure — an
electrically short dipole — to test the validity of the tech-
niques. A moderately simple extension to the thin-wire
formulation is then used to compute the multipole mo-
ments of a chiral structure.

2 The polarizability tensors

In [3] it is shown that the macroscopic electric dipole and
quadrupole moments and the magnetic dipole moment
are related to the excitation fields and their derivatives
via the polarizability tensors
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from which follow the general form of the constitutive
relations for chiral media [3]. In these equations a Greek
subscript denotes any of the three Cartesian directions
(x, y or z). Repeated subscript notation implies summa-
tion over the three components (the Einstein notation)
and V; implies the derivative with respect to 3. These
multipole densities can also be found by spatial averaging

of the multipole moments due to the discrete elements.
Thus the polarizability tensors describing a composite
medium can be caiculated from the multipole moments
of the inclusions. From [2] the first three multipole mo-
ments for a given charge distribution are given by:
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where p, J and r have their normal definitions.

As discussed in the introduction, the underlying the-
ory requires the structures to be much smaller than a
wavelength. The problem can thus be approached using
electroquasistatic approximations [7, Chapter 3] and is
formulated as a boundary value problem in terms of the
scalar potential, from which the unknown charges can
be solved. (Note that the structure is quasi-static and
not static, thus the current is non-zero and can be calcu-
lated from the spatial integral of the time derivative of
the charge.) Since calculating the charges from the cur-
rent implies a numeric differentiation process, directly
solving for the charges will have a distinct advantage.
This is the approach adopted here.

Consider the calculation of the dipole moment. It
is tempting to view this “observable” as fundamentally
similar to the computation of a radiation pattern or a
scattering cross-section, typically the type of output re-
quired from a full electrodynamic code, since all involve
an integration over the current (or charge in the present
case). It is widely accepted that the integration process
smoothes the effect of errors in the computed current.
However, this is not so with the dipole moment calcu-
lations. The reason is that the integrand in this case
involves the moment of the charge, that is the charge
weighted by the distance from the centre. Hence, er-
rors at the ends of the wire, which are normally insignif-
icant for the typical electrodynamic observables men-
tioned above, are magnified in this case; furthermore,
the charge is singular at the end of a wire, whereas the
current is zero.!

From this discussion it is obvious that an accurate
charge distribution is needed. Before using the thin wire
formulation with its desirable properties, the approach
must first be carefully validated for this application. This
will done using as a test case a single straight wire in a

1The electric dipole moment can also be foermulated in terms of
the integral of the current on the wire, which can be solved dynam-
ically. However, due to the short nature of the wires, significant
carrents can exist on the end-caps and the axial current cannot be
considered to go to zero at the ends of the straight section of wire.
The dynamic formulation is thus not a very attractive alternative.
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uniform electric field directed along its length, where, as
can be seen from Eqs. (1) to (3), only the dipole mo-
ment, p, is non-zero when referred to the centre of the
dipole. There are no exact analytical solutions available
for the charge distribution on a thin wire, and an ac-
curate numerical scheme was thus required to provide
reference data. Hence a body of revolution method of
moments (BOR MoM) formulation was developed, us-
ing the Galerkin approach.

3 Body of revolution method of
moments solution

The BOR formulation uses entire domain Fourier modes
for the circumferential expansion, and conventional sub-
domain basis functions along the generating curve (also
known as the generatrix). Mautz and Harrington’s work,
along with later extensions, has become one of the stan-
dard references for the full electrodynamic BOR MoM
formulation [8]. The present quasi-static formulation is
similar in concept, although the implementation is of
course greatly simplified by the quasi-static nature of
the problem.

The subdomain basis functions used were triangular
functions along the generatrix (generally referred to as
the ¢ direction [§]). This provides a first-order basis func-
tion in finite element terminology. Since the electric field
is purely z-directed, the charge is independent of ¢, and
hence only the zero-order Fourier mode is needed. The
charge may be visualised as being expanded in terms of
short cylindrical rings around the z-axis. Reflectional
symmetry was also exploited and only one half of the
wire was discretised.

Due to the singularity of the charge at the end of the
wire, the distribution varies more rapidly towards the
end of the wire. Thus it is advisable to use a non-uniform
discretisation along the vertical part of the generatrix
(the side of the dipole). On the end-cap the discretisation
is uniform. The basis functions are shown in Fig. 2. The
length of the last segment on the dipole side, bz, is set
as close as possible to that of the segments on the end-
cap, and the segments increase linearly in length towards
the centre of the dipole.

The quasistatic MoM formulation is given in Ap-
pendix A while Appendix B shows some detail on the
evaluation of the integrable singularities which are un-
avoidable in the BOR MoM formulation.

The resulting charge distribution, for a 3 mm long wire
of diameter 0.3 mm in a uniform electric field of 1 V/m
directed along its axis, on one half of the wire length,
is given in Fig. 3. The dipole moment for this wire was
calculated using the charges from the BOR MoM code.
Doubling the number of segments resulted in less than
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0.01% change in the dipole moment. This result was
thus taken to be a good reference value and is used to
normalise the dipole moments in Fig. 4.
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Figure 2: The basis functions on the wire. Note that
the whole figure is rotated around the z-axis and is sym-
metric about the z = 0 plane. At the corner, b,y and
brx are joined to form a single basis function such that
continuity of the charge is ensured.
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Figure 3: Comparison of the surface charges for the
different techniques. The horizontal axis is the ¢-axis, a
length parameter that follows the generatrix. (First it
follows the z-axis along the surface of the dipole, then
goes inwards along the - direction on the end-cap.) The
3 mm long wire of diameter 0.3 mm was excited by a
uniform field of 1 V/m along its axis.
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Figure 4: The dipole moments, for a 3 mm long
wire with diameter 0.3 mm in a uniform electric field
of 1 V/m in the axial direction, plotted against the
number of segments. The moments are normalised by
p = 9.305x10~%° as calculated by the BOR MoM code.

4 The thin wire technique

The electrodynamic solution of thin wires has been ex-
tensively studied, initially using analytical techniques
(work which reached its peak with the King-Middleton
approximate formulas of the 1950’s {9]) and more re-
cently using numerical methods, in particular the MoM.
The widely used Pocklington formulation is almost 100
years old. Despite the very simple physical structure, so-
phisticated treatments are required for highly accurate
and stable computations. In particular, the following re-
quire attention: the end-cap treatment, the source region
modelling, and a method for handling thicker wires. All
can and have been handled using a BOR MoM formula-
tion, but this a computationally expensive solution, and
the BOR MoM formulation is obviously not applicable
to bent wires. Janse van Rensburg’s doctoral thesis ad-
dresses the first two points (end-caps and source region
modelling) [10]. Burke and Poggio incorporated an ex-
tended thin wire formulation and a simple treatment of
wire ends in NEC-2 (this is not a full end-cap treatment)
[11, pp. 10-30]; Burke extended this in [12, pp. 28-31].
Popovié et al. describe a careful treatment of end-caps
of flat or hemispherical shape [13, pp. 79-89]. Peterson
[14] presents results showing how the careful treatment
of end-caps is necessary for a properly converged solu-
tion. Fortunately, the source region modelling problem
is not a concern with the present scattering formulation.

However, the electrogquasistatic solution has received
very little attention (certainly in the high-frequency lit-
erature). We will now consider the standard thin wire
formulation as given by [6, Chapter 12]. A crucial part

of the formulation is the reduction of the problem from a
two-dimensional surface charge to a one-dimensional line
charge. This is known as the thin-wire approximation
and has been widely used in powerful numerical electro-
magnetic codes such as NEC-2. The thin-wire approxi-
mation is very attractive, since it removes a dimension
from the problem and also avoids the singularity inherent
in the formulation. However, the formulation has some
restrictions, not least the obvious requirement that the
wire indeed be thin!

It is intuitively obvious that for a “thick” wire, the thin
wire approximations are invalid; Collin has presented a
very elegant discussion of the theoretical reasons for the
failure of the approximation [15, p. 67~72]. He showed
that the high spatial frequency component of the equiv-
alent line current (which the thin-wire MoM codes com-
pute) grows exponentially if the number of harmonics is
such that the spatial period becomes less than about 7a,
where a is the wire radius. Collin’s analysis used entire
domain basis functions, but simnilar caveats apply when
using subsectional basis functions; it is important to en-
sure that the discretisation is coarse enough to ensure
that these harmonics are kept to a minimum. Of course,
the discretisation must also be fine enough to adequately
sample the actual spatial variation of the current (or
charge); for sufficiently thin wires, there is a large sta-
ble (converged) region between these two requirements,
but for thick wires it is possible to move directly from the
under-discretised to the over-discretised regimes without
the solution evidencing any form of convergence.

Using too fine a discretisation often results in errors
around the end points of the wire; the undesirability of
this for polarizability calculations is evident from the
discussion in section 2. Generally it is accepted that, for
the full electrodynamic formulation, the segment length
to wire diameter ratio must be greater than two.

The present formulation was implemented with pulse
basis and testing functions (i.e. a Galerkin approach)
in a similar fashion to that described in [6]. The charge
distribution was approximated as a line charge and the
potential matched at the outer radius of the wire. (This
is the thin-wire approximation already discussed.) The
result for the 3 mm wire, shown in Fig. 3, was done
with 10 segments on the wire — hence a segment length
equal to the wire diameter. It can be seen that there
is a considerable error near the end of the wire due to
the over discretisation. This error is clearly unaccept-
able when computing the multipcle moments. However,
using fewer segments also resulted in large errors, as long
segments cannot follow the charge singularity at the end
of the wire. The ratio used here seems to be the opti-
mum: half of the normal dynamic requirement that the
minimum segment length must be larger than twice the
wire diameter.
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The dipole moment for the 3 mm wire was calcu-
lated using the charges resulting from this formulation.
The charges were also calculated using a formulation im-
plementing triangular basis and testing functions. The
dipole moments for these two cases are plotted against
the number of segments used in Fig. 4. Tt is clear that al-
though the results throughout the graph are within 15%
of the values computed with the BOR, MoM formulation
the convergence is poor and, without the reference data,
one would be hard pressed to decide which discretisation
gave the correct result.

Using the charge calculated by the body of revolution
code it is found that the end-cap contributes almost 20%
towards the dipole moment for the test case. Thus it can
be expected that the thin wire technique will give erro-
neous results, since the end-cap is explicitly excluded
from this formulation. An attractive solution to this
problem is the inclusion of an end-cap term, and this
will be considered in the next section.

5 Thin wire formulation with an
added end-cap

The thin-wire technique was expanded by adding one
more basis function — a flat disc of constant charge den-
sity to model the end-cap.? With the axis of the wire in
the z-direction and the end-cap located at z’, the poten-
tial of the end-cap at any position (r, @, z), given by the
inner integral in Eq. (7) of Appendix A, is

2= e r dv’ dg’
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increasing the complexity of the formulation. One more
weighted sample of the field is thus needed. This is ob-
tained by an integral over the end-cap area.

It is important to note that this introduces an asym-
metry into the impedance matrix of the moment method
formulation.® Changing from placing the charge on the
axis (and sampling on the surface at the radius) to plac-
ing charge at the surface (and sampling on the axis) now
results in the transposition of the impedance matrix —
with a quite significant effect on the charge distribu-
tion. (For the standard straight thin-wire formulation
the problem is symmetrical and it is irrelevant whether
the charge is viewed as on the surface of the wire and
the sampling on the axis or wice versa). In accordance

2This is only an approximation as the actual charge distribution
on the end-cap is much more complicated.

3This is due to the fact that the testing and basis functions for
the end-cap are the same, whilst for the axial segments, the basis
functions lie on the wire surface and the testing functions on the
axis. For the end-cap, the equivalent of a line charge would be a
point charge at its centre.

with physical prineiples, the charge is placed on the wire
radius and the potential sampled on the axis — thus
the outer integral in Eq. (7) of Appendix A reduces to a
line integral. Sampling on the axis greatly simplifies the
potential of the end-cap to

¢ =2r(v/a?+ (z—2')2 — |z — ')

where |z ~ 2} is the distance from the end-cap. Compu-
tation of the “self-term™ of the end-cap results in similar
singularities to those experienced with the “seif-term”
calculations discussed in Appendix B.

The potential caused by the basis functions on the
sides of the wire is reasonably constant on the end-cap,
and their contributions are computed by using the value
at the centre of the end-cap weighted by its area. (The
“self term” is, however, integrated over the full area.)
The charge distribution calculated with this technique 1s
also shown in Fig. 3.

The graphs of the dipole moments (Fig. 4) show that
incorporating the end-cap does indeed have the desired
result of stabilising the convergence — which is now not
only stable but also accurate within about 2% of the
BOR MoM result. It is interesting to note how neglect-
ing a significant physical feature in the numerical model
(the end-cap in the standard thin wire formulation) can
impact in unexpected ways, such as in poor convergence.
As one would expect, the formulation using pulses con-
verges more slowly than when using triangles.

The most important feature of this graph, however,
is that the pulse formulation remains stable for signifi-
cantly larger number of segments compared to triangular
basis functions (up to a segment length equal to wire di-
ameter). The reason for this is presently not clear. Both
formulations converge to the same value. Using pulses
leads to a much simpler formulation and, even with dou-
ble the number of segments, shorter computing times
than when using triangles. Hence this last formulation
~— viz. a Galerkin pulse basis function thin wire (with
end-cap) MoM approach — was the one finally adopted.
The runtime of this technique on a 486 PC was a few
minutes compared with a few seconds for the standard
thin wire technique (and two hours for the BOR MoM
formulation!) For these time scales the added expense
of the end-cap is certainly worthwhile, considering the
increase in stability, and the computational cost is still
much less than that of a full two-dimensional treatment
{even one exploiting symmetry).

6 A chiral element
The chiral element is the bent wire shown in Fig. 1. As

for the straight wire, sampling for all the wire segments
is done on the axis, with the charge placed on the wire
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Figure 5: Structure of bend segment.

radius. When sampling on field segments that are not
on the same straight section of wire, and are far enough
away from the source segments (at least two segments in
between them), the source charge was approximated by
a line charge on the axis.

The bend requires some special treatment. It is con-
structed by sweeping the wire cross section along the
angle ¢ through 90 degrees as shown in Fig. 5, thus
joining the two straight wires. The bend is modelled by
a single curved segment with the charge placed on the
wire surface; this is consistent with the straight segment
treatment. When sampling the potential caused by this
segment, the integral over the field segment {the outer
integral in Eq. (7)) is done analytically,® but the source
integrand has to be evaluated numerically. Sampling of
the field on the bend is done on the axis by numerical
integration over @ (measured in the same way as 8').

This treatment of the bend is much more rigorous (and
mote complex) than merely having a sharp corner. It was
implemented to check the effect of the bend and avoid the
uncertainty regarding the position of the surface charge
in its immediate vicinity. Increasing the radius, r,, of
the curved segment from r, = a, which is as small as
the code will allow, to r, = 2a decreased g¢,, for a z-
directed field® by about 3%. Hence it does not appear to
have a significant contribution to the calculation of the
moments.

The end-cap is treated as a disk for the straight wire
section that it terminates; for the other wire sections, it is
handled as a point charge on the axis. Treating the end-
cap as a point charge removes the expensive calculations

4Except in the case of the “self-term” or the interaction with
the other bend where the field integral is also done numerically —
thus requiring three numeric integrations.

3This is the moment most sensitive to the radius of the bends.

necessary when integrating over the endcap without sig-
nificantly affecting its potential at these wire sections.
As an example, the charge is calculated for the struc-
ture in Fig. 1 with 3.12 mm long z- and y-axis legs,
3.14 mm z-axis leg and wire diameter 0.3 mm. The ra-
dius of curvature at the two bends in the wire is 1.5
times the wire diameter.® The charge distribution for
the structure excited by uniform 1 V/m z- and 2-directed
fields is shown in Fig. 6. Consideration of Fig. 4 led to
the conclusion that the optimal segment length is equal
to the wire diameter. This required 10 segments on a
3 mm leg. Fig. 6 shows the respective charge distri-
butions calculated with 8 segments on the front leg (27
basis functions including the two bends and the two end-
caps’) and with 12 segments on the front leg (39 basis
functions). It is clear that the charge distribution con-
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Figure 6: Surface charge in nCm™2 for a chiral hook
with I; = §, = 3.12 mm, I, = 3.14 mm, wire radius
a = 0.15 mm, and r, = 1.5a; in an excitation field of
1 V/m using respectively 27 and 39 basis functions. E,
and E, in the graph indicate direction of the applied

electric field.

verged very well. The graphs le almost on top of each
other, with only a small difference near the ends and
bends. This is due to the fact that the field is sampled
at different points for different segmentations. As one
would expect, the E;-excited charge is anti-symmetrical
around the centre of the z-axis. Note also the small peaks
at the bends — which is to be expected as a sharp corner
would have caused a singularity.

As the charge distribution is convergent around this
point, it was finally calculated using 10 segments on the
front leg (33 basis functions in total). This charge dis-
tribution was used in Egs. (1) to (3) to calculate the

$These dimensions arose from practical considerations in man-
ufacturing an artificial crystalline medium.

"The straight part of the z-leg is shorter due to the two bends
subtracting from it, and requires one less segment.
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| Es-excitation | E.-excitation
Pz 2.12x10"1% | -1.81x10-1°
py || -6.79x107%° [ 1.81x10~1
p. || -1.81x10-1° | 3.88x10-1°
=a I 5.29x107%8 | -1.41x10-%
x| -1.66x10-% | 1.41x10-%
Qrx 5.56x10~22 | -4.03x10~%2
gez || -3.33x10-%% | 2.84x10~%
Qyy || -1.54x10722 | 4.03x10~%
gy || -1.07x10-%2 | 2.84x107%
9zz 6.95x 1023 0

Table 1: Multipole moments for a chiral hook with I; =
[, = 3.12 mm, I, = 3.14 mm, wire radius ¢ = 0.15 mm,
and r, = 1.5¢; in a unity uniform field.

multipole moments shown in Table 1. The current den-
sity was found by integrating the charge along the wire
and differentiating with respect to time. Note that the
time derivative of the electric quadrupole moments are
of the same order as the magnetic dipole moments.

Formulating the problem without the end-caps and
calculating the moments for the same number of seg-
ments as used for Table 1 yielded moments within 1% of
the values in the table. However decreasing or increasing
the number of segments led to poor convergence similar
to that shown in Fig. 4. Note that the dipole moments in
Fig. 4 are also almost equal at 10 segments which is the
number used here. Hence, the advantage of the end-cap
is in stabilising the convergence.

With the multipole moments known, the multipole
moment densities and medium parameters can be calcu-
lated. An artificial crystalline medium was designed with
the lattice and orientation of the structures as shown in
Fig. 7. The spacings in the plane of the paper are 6.5
and 8 mm respectively and the disks are repeated in the
z-direction at intervals of 9.3 mm.

With a host dielectric constant of 1.09 this resulted in
dyadic medium parameters [5]

€z = 1.01x10~ = 1.14e,
€, = 1.06x107 = 1.20¢,
frp = —w2.54x1071°
£. = w255x10-16

for the anisotropic constitutive relations
D e-E+j¢-B
H = jE" E+u;'B.

i

These have been rigorously derived [5] and are in the
so-called Post-Jaggard form [16].

Figure 7: Disklike building element of the crystal. The
thick lines are situated in front of the plane of the paper
and the thin ones at the back.

At 3 GHz this medium would yield a rotation of 6.5
degrees per metre of the polarization plane of the electric
field. The rotation is counter clockwise when viewed in
the direction of propagation. The parameters given here
were used to predict the rotation inside a waveguide.
Agreement of the order of 13% was obtained between
predictions and measurements, which is good when con-
sidered in the light of probable sources of error [17].

7 Conclusion

This paper has discussed the computation of the mul-
tipole moments of an electrically short chiral hook. To
obtain the desired result, the charge distribution induced
by a uniform electric field was required. It has been ob-
tained via a quasi-static boundary value problem, which
was solved using a variety of moment method formula-
tions. A rigorous body of revolution MoM formulation
has been presented. Results computed using this BOR
MoM code converge rapidly and these computations have
been used as a base-line for numerical investigations on
thin wire MoM formulations.

The problems arising with the thin-wire formulation
for a structure that is on the borderline of “thin” have
been discussed. It has been shown that because the ob-
servable required from the code is the moment of the
charge, the charge must be computed accurately at the
ends — precisely where the thin-wire MoM formulations
are expected to be least accurate. Results have been
presented that show that the conventional thin-wire for-
mulation does not properly converge for these structures.
It has been demonstrated that a moderately straightfor-
ward extension to the thin-wire approach, viz. addingan



additional basis function to represent the end-cap, gives
sufficiently accurate and converged results (within 3% of
the BOR MoM result). The code used the same basis
and testing functions, i.e. a Galerkin MoM formulation.

The emphasis of this paper has been the accurate com-
putation of multipole moments. These moments can be
used to predict medium parameters in the low-frequency
regime as briefly described in section 6. The multipole
moment calculations are not valid for higher frequencies,
but at these frequencies the medium constructed with
the chiral elements described here may start behaving
more like a diffraction grating than a continuum. The
predicted parameters have been experimentally verified.
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A Quasistatic MoM formulation

In this appendix we formulate the quasistatic MoM. In
the quasistatic formulation the static free-space Green’s
function is used. Thus the charge is the solution of the
integral equation

&) =2+ [

where ®;(r) is the applied potential in the absence of the
scatterer and &(r) is the boundary value for the potential
over a given boundary area. In this paper the applied
field is uniform; for example &;(r) = ~z for a z-directed
field.

In the method of moments the surface charge distribu-
tion, p(r), is modelled as the sum of a given set of basis
functions, b,(r), defined on the surface, S,

pr) = anba(r) ()

_ ) (4)

dme,|r — /|

with the unknown coefficients, a., determining the dis-
tribution. The unknown coefficients can be found by
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solving Eq. (4) to yield an approximate charge distribu-
tion. This is done by multiplying the equation with a
number of testing functions #;(r) and integrating over
the area 5. Using N basis and N testing functions this
results in a matrix equation

my1 - Man miN - - v
a3
: an =
mi1 s Myn m;N . vi
ay
| TN MNn myN | TN
where

v =

4me, / t () (®(r) — ®:(r)) da {6)

/ f t(lz_br(fl' ) 4o’ da )

such that the calculation of m;, involves four integra-
tions in total. The inner integral yields the potential due
to b,(r’), while the outer integral samples the potential
over a given region.

For a conducting body the boundary potential, ¢(r),
is a comstant. For a thin wire, symmetrical about the
origin, ®(r) = 0 by inspection. In the case of the chiral
structure this constant is, however, unknown. As this
introduces another variable in the MoM formulation an-
other equation is necessary. This condition is provided
for by requiring that the total charge on the wire be zero.

Min =

B The BOR MoM formulation

The BOR MoM formulation requires careful attention to
certain details and this appendix addresses the compu-
tation of the potential and the associated singularity for
the self terms of the BOR MoM matrix.

Here these functions are independent of ¢ and can be
written as b, (z) along the dipole side and b.(r) on the
endcap. Because of the non-uniform segmentation, the
potential of each basis function must be computed —
translational symmetry cannot be used — so it is impor-
tant to do this efficiently.

The applied potential is required to produce a uniform
z-directed field in the absence of the wire thus ®;(r} =
—z. As the boundary condition the wire surface must
be an equipotential surface. With the structure placed
symmetrically about the z-axis the boundary potential
is zero. Thus the excitation vector is

Vi= 4ireof bi(D)zda
5

where [ 1s a parameter that can be either z or r depending
on where the testing function is located. As discussed
earlier, the testing functions are the same as the basis
functions and thus denoted b;(1).

The matrix entry m;, for basis functions along the
dipole side was determined from the integral

bi(Dba(z)ar

./s./s Viz— z’)25+ r;+ a? —

where [ is as defined before. The inner 2’ integral was
done analytically and the ¢'-integral numerically. The
result is proportional to the potential caused by b,(z)
and is independent of ¢ — thus the outer ¢ integra-
tion merely results in multiplication by 27. The outer
l-integration was also done numerically.

The m;, entry for the basis functions on the cap was
calculated from the integral

dr’ d¢’ di d¢

] f bi(Nbn(r')r' v
sJs\/(z =22 +r2+r7 -
(8)

where the inner r'-integral was again algebraically eval-
uated and the ¢-integral numerically. Here again the
outer ¢ integral resulted in multiplication by 27 and the
outer l-integration was also done numerically. Note that
7' = +L/2 on the two caps respectively.

In both cases there is a singularity at ¢' = 0, when
the testing and basis functions coincide (the self-term
in MoM parlance). Consider, for example, the inner in-
tegral when calculating the self-term for the innermost
basis function on the cap — bgg in Fig. 2. If the length
of this basis function in the r-direction is d, the basis
function can be written as

d2' d¢' dl do

2ra cos ¢’

2rr’ cos ¢

d—r

b}m(f‘) =
and the inner integral in Eq. (8) becomes

d-r)d-7)r'r

2T
[ s

- / / (d=r}d=7)r'r dr' g’
d2\/r? 4+ r'2 — 2rr' cos ¢’

r{d—r)
d2

dr' d¢’

— 2rr' cos ¢’

[r(3r cos ¢’ — 2d)

+ (d — 3rcos ¢')y/d? + 72 — 2dr cos ¢*

+ 7(2r — 2d cos ¢’ — 3rsin? ¢') x
r-rcosd

d—rcosd’ +/d2+r? —

lo
& 2dr cos ¢'

where the symmetry of the ¢’ dependence is utilised —
the integral between 0 and 27 can be written as two times
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the integral between 0 and . It is clear that the third
term in the ¢’-integrand will be singular at ¢ = 0. This
singularity, present at any value of r, can be removed by
subtracting a term

r(2r — 2d cos ¢’ — 3rsin® ¢') log(1 — cos ¢')

which can be integrated algebraically using®

]log(l—cos¢)d¢ = —wlog2
o

/W cos¢ log(l —cosg)dy = -7
o
/ sin? ¢ log(l — cos¢)d¢ = 3iwn(3-log2)

0

after expanding the factors. The remaining integrand®
contains a logarithm that is singular at r = d. At this
value of r it is simplified to

r
log d—rcosd’ ++/d? + r? — 2dr cos ¢’
= log !
1 — cos ¢’ 4 1/2(1 — cos ¢')
1+ cos¢’

log sin ¢'(sin ¢’ + 1/2(1 + cos ¢’))

from which the singular logsin ¢’ can be extracted and
integrated analytically between 0 < ¢’ < %. The remain-
ing term is then integrated numerically (also between
0 < ¢ < %) and the original integrand integrated nu-
merically between I < ¢’ < 7. The analytic integration
requires the further integrals

/5 log(sing)d¢ = —Flog2

0

/5 cos ¢ log(sing)de = —1
6

/3 sin ¢ log(sing)dg¢ = F(1—log4).
0

This process unfortunately leads to the subtraction of
a large component due to the analytic integration of the
singularity from an almost equally large component due
to the remaining numeric integral. Thus a few signifi-
cant digits are lost and the numeric integration has to
be done to a very high degree of accuracy. This prob-
lemn was overcome by dividing the singular component
by w, the integration interval, and subtracting it as a
constant from the integrand. Thus the two numbers are
subtracted before the approximation caused by the nu-
merical integration, requiring much less severe restric-
tions on the accuracy of the numerical integration to

8 Calculated with Mathematice 2.0.
9Note that loga + logh = log ab.

achieve the same final accuracy. The self-terms for the
other segments result in similar singularities, which can
be subtracted in a similar fashion.

Numeric integration was done with Simpson’s rule and
halving the interval each time until the results had con-
verged to within 1072 of the last result. The convergence
requirements for the inner integral had to be stricter than
for the outer integral to converge properly, and 10~% was
chosen. The charge on the test case wire was calcu-
lated by this technique using 40 segments on the cap
and 44 along the axis. About four decimals of accuracy
were used in the numerical integrations and the condi-
tion number of the MoM matrix was sufficient to preserve
this accuracy when inverting the matrix.
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