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Abstract—In the framework of the electro-mechanical coupled
problems, the coupling between the magnetic diffusion and the
elastic deformation equations is treated numerically. A mixed
BEM-FEM approach for the electromagnetic part, and a FEM
approach for the mechanical part, are proposed. Advantages are
taken from a Lagrangian formulation of the problem.

1. INTRODUCTION

The use of forces and torques of electromagnetic origin is
spreading wider and wider in the world of industrial
applications. The interactions between electromagnetic fields
and mechanical systems could be divided into two categories:
weakly coupled and strongly coupled, depending on the level
of interaction between the two subsystems. In the first case
the evolution 'of the mechanical system on which the
electromagnetic forces are acting alters only slightly the
configuration of the electromagnetic field. It is possible, in
this case, to devise “two-step” numerical soluiion schemes,
solving first for the electromagnetic field in the previous
mechanical configuration, then evaluating the
electromagnetic forces, and finally updating the mechanical
configuration. In the second case, instead, it is mandatory to
solve for the electromagnetic field and the mechanical
deformation fogether, in a consistent way., This implies
considering the full coupled problem, since the conductors’
shape modifies the electromagnetic field map so strongly that
we cannot deny this effect, even in a first approximation.

A possible way to undertake these coupled problems is to
use a Lagrangian approach, solving them in a reference
configuration, and then “projecting” the solution in the actual
configuration.

Into the class of strongly coupled problems is included the

electromagnetic forming (13. This is an industrial process in
which the magnetic force generated by an excitation coil is
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exploited to give a certain shape to a piece of conducting
material.

In this paper we propose a method to freat
electromechanical coupled problems. To show the
performance of the method, the effect of an external magnetic
field on a piece of linear elastic conductor will be examined
(Fig.1). The problem can be considered as an extremely
simplified case of magnetic forming, as we neglect the
nonlinear mechanical behavior of the material, to focus our
attention on the electromagnetic aspect of the phenomenoit.

To numerically solve the problem, a Lagrangian mixed
finite elements-boundary elements method [2] is used; this
allows to discretize the conducting region only, and to treat
more effectively the contact with external objects, such as
forming devices.

In Section 2 the mathematical formulation of the problem is
given, while in Section 3 the numerical implementation is
discussed. In Section 4 an example of application of the
method is presented, and in Section 3 some conclusions are
drawn.

II. MATHEMATICAL FORMULATION

Let & be a region of space in which it is possible to
identify a conducting region Q_ (see Fig. 1). Let's assume for
the sake of simplicity that no source is present in the region
Q.. Let then Q, be the remaining part of . We aim to study



the deformation of the region Q. due to the presence of
electromagnetic forces.
The problem can be stated as:
{‘E(sc,t;x,e)=0

1
M(s,,.t;x,e)=0, D

where s, are vectors describing electromagnetic () and
mechanical (m) sources, boundary and matching conditions; t
represents the time; x and e are mechanical and
electromagnetic unknowns; E and A are operators describing
the evolution of the system, comprising the Maxwell
equations, the mechanical deformations’ laws, and the
constitutive relationships.

The Eulerian approach consists of solving (1) in the actual
spatial domain 2, thus using the same reference frame for the
whole evolution. This is the typical electromagnetic point of
view. In the continuum mechanics context, instead, the most
usual point of view is the Lagrangian approach. This consists

in introducing a reference configuration £ (for example the
initial one) and describing the actual configuration by using a
placement function u: Q—Q. Of course, every spatial
quantity, including the electromagnetic field distribution, has
to be transformed in a consistent way.

In (1) the mechanical operator A has to be expressed, as Z,
in the actual {(Eulerian) frame. However, if the Lagrangian
approach is used for the mechanical equations, and the
electromagnetic equations are also formulated within this
approach, a complete Lagrangian form of (1) can be obtained
[31:

‘EL(‘S;,IZ,Q;H,E)=0 (1’)
My (5 1) =0

where u is the placement function and the symbol ~ identifies
variables defined on the reference (Lagrangian) frame. It
should be noted that in (17 the placement # substitutes the
spatial co-ordinate X. In fact, u completely describes the
actual shape of the system, while the force distribution is
implicitly contained in A4 .

The Lagrangian approach offers a number of advantages
[31-[5]. In particular, when using this approach, the
dependence on the domain geometry appears only via the
unknown placement function », while the definition domain is
fixed. In this way, we dont have to worry about the
modifications of the material properties of various regions of
space, as these properties are defined on the matter itself, and
transform covariantly with the geometry of their definition
domain.

Furthermore, as the Lagrangian definition domain is fixed,
no explicit velocity term appears in (17). Of course, the
velocity, defined in the Lagrangian framework as the time
derivative of the placement, appears again when considering
the transformed, Eulerian, quantities.

The mechanical operator M is usually coupled to the
electromagnetic one via the electromagnetic force. In the
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frame of Lagrangian approaches, this force can be effectively
defined as the opposite of the derivative of the
electromagnetic energy (or as the derivative of the coenergy),
with respect to the placement x. The conditions for the
evaluation of the derivative depend on the particular choice
for the electromagnetic variable.

For example, by choosing to express the coenergy Cem in

terms of the magnetic field H [3], we have:

Fop = accn;gﬂ,u) ; @

Currents
fixed

Note that, in a general coupled problem, each change of a
mechanical variable implies a corresponding change in the
electromagnetic variables, and vice-versa. In the particular
case of weakly coupled problems, the electromagnetic
variables @ are not strongly affected by the modification of
the mechanical variables; therefore it is possible to state that,
considering a variation Au of the placement (defining the
domain geometry):

- - (3)
e(u+Aurze(u) .

An analogous relation holds for the mechanical vanable
with respect to variation A€ of the electromagnetic quantities.
In this case, it is possible to solve the coupled problem in two
successive steps, using the preceding value of the
electromagnetic variables.

On the other hand, if the approximation (3) does not hold,
or holds only for unacceptably small changes in the
mechanical variables, we have to solve (1) together.

A. Electromagnetic Equations.

Using the usual symbols, we express the electromagnetic
model in the magneto-quasi-static limit as:

VxH=7J
aﬁ ich
VXxE=——0
(4)
{Vxﬁz-js mﬁv,

where J is the source current density, and we will suppose

that there are no sources in .. The variabies in f!c and Q
are connected by the usual continuity relations, and proper
initial and boundary conditions are 1o be supplied.

Equations (4) are easily seen to be covariant by properly
redefining the electromagnetic quantities and the operators
acting on them [3]. The whole formulation gains clarity and
simplicity from the use of a more suitable mathematical
framework, like the differential geometry [6].

As concerning the constitutive relationships in the
Lagrangian framework, it should be noted that they are no
more simple tensorial products, but more complex



transformation laws between different mathematical objects
that depend on the domain deformations [7]. To avoid
cumbersome notations, we will hide this process into the
usual expressions, in such a way that the constitutive
relationships keep the usual form:
B=§.LH (5)
J =cE

In (5), o and i may be related to the Hodge operator [3].
Anyway, for the sake of simplicity, in the following they are
referred to with the usual terms, namely conductivity and
permeability of the material considered.

As we adopt a Lagrangian scheme, no velocity term is
present in the model. Of course, as told above, the field in the
actual configuration is obtained by transforming the
Lagrangian quantities by means of the placement function u;
when doing this, it can be easily seen that the fields obtained
in this way have the same formal expression as those obtained
using the Eulerian approach {7].

In the following we will consider the case of a simply
connected, axisymmetric conductor with an external driving
magnetic field H. In this case the most effective variable is
the reaction magnetic flux per radiant vy, defined, in a
cylindrical coordinate system, as:

V(7.2) = [B,(p.2)==pdp . (6)
0

where Eiis the Z component of the magnetic flux density due
to the induced currents. As the flux is a point-wise quantity, it
transforms in a very easy way. ¥ (7 )=y (u(¥)).

With this choice, in the conducting region the
electromagnetic model reduces to the following differential
equation:

Ly +o% = —o¥s @
T T
where the operator L is defined as:
g 313 (19F0) 9z aﬁ(l’_azaf~ _ 8)
dr 9T \ MT or o7 ) dz 3% kT 3z 92

and w, is the flux due to the source currents.
In the external vacuum region, an integral formulation can
be given:
— 1 ~aGadl

- =g idT +
v aszv AR ©)
where k=1 in Q,, and x=0.5 on the boundary 9Q, . supposed

to be regular enough; G is the fundamental solution of the
Laplace problem in cylindrical coordinate, i.e., the flux in (r,
z) generated by a filamentary current in (p, £):
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(10)

2
Glr.z:p.5) = Zlfn'%ﬁﬁl —%JK(k)— E(k)} :

and k=J :”p o
(r+p)~+(z-0)°

'elliptic integrals of the first and second kind respectively.

: K and E are the complete

Therefore, the electromagnetic model reduces to (7) and
(9), plus initial, boundary and continuity relations. In
particular, the flux on the boundary of the conducting region
is imposed to be continuous with its normal derivative, and
this gives the required link between (7) and (9).

The use of an integral formulation for the external region
has two advantages, particularly valuable in the perspective
of a numerical solution of the problem. First of all, in this
way we have to discretize only the conducting region, thus
obtaining a better approximation with the same computational
burden. Secondly, when the conductor touches an obstacle,
no remeshing is needed in spite of the change of topology of

To seek for an approximated solution of (7) and (9), a
Galerkin approach can be applied. Let's assume that the flux
and its normal derivative belong to a suitable functional space
5. In the hypothesis that the normal to the boundary is
directed along z on the rotation axis, this space can be Lzo,
i.e., the space of square integrable functions vanishing on the
z axis. Equation (7) becomes:

| Vi Vaslad -

L P
& ur dr
¢

i#

[ Sodati=- | S§,add vaes, (11)
a’ = af T
and (%) becomes:
L godf+ | of | =92 Lt
2,5 a5 |, eF 9wl Jor
3O = = 12
- a I-—l:cxé-l:—dr’ L i =0 (12)
o, lag T o ol

Vet € S not vanishing on 92,

where A=dy/on is the normal derivative of the flux due to the
induced currents, and J represents the Jacobian matrix of the
placement function z.

In this framework, and supposing that the material is linear,
the electromagnetic force density can be expressed as the
opposite of the derivative of the magnetic energy density
while keeping the flux fixed:

= of 1 ~. 2
= | —(V ;
o au[;Z( v }Lixed

flux

(13)



B. Mechanical Equations

In this paper, for the sake of simplicity the conducting
material is assumed to behave as an elastic material. We will
further assume that the deformations are small enough for the
linear elastic approximation to hold. As told above, this is not
reasonable in the magnetic forming process because, by
definition, a forming process implies a permanent
deformation; anyway, the plastic theory would only intreduce
a nonlinear mechanical relationship, which does not alter the
structure of the electromagnetic model.

In this hypothesis we have [8]:

£ E(l~v) —
vV |——————V 14
px+ ((I+v)(l-2v) x]+ a4
E ~

x i) N
where X is the deformation of the material, E is the Young
modulus, v is the Poisson ratio, and p is the mass density. In
this case w=up+X, where u; maps the underfomed
configuration onto itself.

For the mechanical model, 2 weak formulation can also be
obtained by applying the standard Galerkin approach:

E(l-v)
1+v)1-2v)

VX(

'V
20+ v){1-2v)

VidQ, +

| opxdQ, + Ve v
a, 0
E

j Vg " (15)
&, 21+ vi(1=2v)

VxXdQ, = ja"f;mdﬁv
o

v

Vo € S xS vanishing on 98, .

III. NUMERICAL APPROACH

By using a FEM approach to treat the conducting region,
and a BEM approach to treat the vacuum region, we obtain
the numerical electromagnetic model:

dkw) N
ar =L TERTE (16)
Ay +Bi=0

where w and A are the nodal flux vector and the normal
derivatives vector on the boundary, respectively. Both w and
) are described in the same finite dimensional base for .5 [2].
The resulting ODE system is solved with a Cranck-Nicolson
scheme.

Numerical advantages are obtained when modifying the
formulation in the vacuum region in such a way that a self
adjoint operator results, thus feading to symmetric matrices.

The matrices appearing in the discretized Lagrangian
model are to be assembled at each time step. They are in
general different from the Eulerian corresponding ones, since
we have to back project the relations that hold in the actual
configuration onto the reference one. Anyway, when
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assuming a linear behavior for the placement function » with
respect to the position vector in the reference frame (which
we do), the Lagrangian approach amounts simply to
assembling the Eulerian matrices at each time step, as the
Jacobian matrix J becomes constant.

Adopting also a standard FEM approach to discretize (15),
we obtain [9]:
Mi+Kx=f an

where M is the mass matrix, Kis the stiffness matrix, f is -

the forcing vector, and x is the nodal displacement vector.
The resulting ODE system is solved with a Newmark
scheme.
The final coupled system,

4Ly
—"at—; +ROOY +C(0A—3(x)=0
Ay + B(x)A=0 (18)

ME + KX - f(y,1.5)=0,

is, in general, nonlinear, as the electromagnetic matrices
depend on the placement of the mesh nodes, while the forcing
term in the mechanical subsystem depends, in a nonlinear
fashion, on the magnetic flux.

The inversion of (18) 1s rather cumbersome, as we have to
modify the matrices of the system at each time step. In
addition, their re-assembling has to be performed at each step
of the nonlinear solver. In order to simplify the solution of
(18), some approximations can be introduced, depending on
the time step amplitude and on the deformation amplitude.

The strongest simplification is well suited for the weakly
coupled systems. It consists in solving at each time step
alternatively for the electromagnetic variables, using the
mechanical deformation found at the preceding time step, and
then for the mechanical variables, using the electromagnetic
quantities already found.

Less rough approximations consist in substituting into the
matrices L, R, € and the vectors § and f their polynomial
expansion with respect to the variable x. For example, with
reference to the matrix L, it is possible to state that:

(19)

L{x) = Li{x,) _8__L A
= + +... .
L{x) = L(x, i X

£

Similar expressions for the other matrices and for the vectors
hold. The more terms we use, the better the approximation
[10]; if we limit (19) to the first term, we obtain the so-called
sensitivity analysis [11].

Of course the simplification to be used should be chosen
on the basis of the desired degree of approximation, and on
the amplitude of the time step.



TABLEI

MECHANICAL PARAMETERS
Mechanical “soft” case “hard™ case Copper
Parameters
Young modulus 200 10%{Pa] 200 107 [Pa] 110 10° [Pa]
Poisson ratio 0.26 Q.26 0.26
Mass.density 80 [Kg./m3] 800 [Kg.fm3] 8970 [Kg/m?)

V. APPLICATION EXAMPLE

The proposed approach has been implemented into a C
code named “ALEPH-2D”. It has been used to simulate the
behavior of the very simple spheroidal conductor depicted in
Fig. 2, considered from the mechanical point of view as a
linear elastic material. This hypothesis gives the example no
practical application, but the code can easily be generalized
to treat plastic deformations, which have on the other hand
great practical importance. The conducting material is
supposed to have the same conductivity ¢ as copper. The
exciting field H, is supposed to be uniform and directed
along the z-axis, while its time dependence is reported in Fig.
3.

Two situations are considered, with two sets of mechanical
parameters, reported in Table I, together with those of the
copper, for reference. The mechanical parameters are
modified with respect to the copper to highlight their impact
on the level of coupling between the electromagnetic and
mechanical equations.

In Fig. 4 and in Fig 6 are reported the magnetic fluxes at
the point (1.0, 0.0) for the two sets of mechanical parameters.

The curves are obtained with 50 and 500 time steps, by
keeping fixed the electromagnetic subsystem matrices L, R,
C and the vector § (weak coupling limit), or updating them at
each time step, and solving the resulting nonlinear system
with the Picard algorithm. In Fig. 5 and 7 are reported the
variations of the r co-ordinate for the point P in Fig. 2 in the
same cases.

It is easy to see that, in the case of 500 time steps, no
differences arise between the weak and the strong coupling
schemes. When the time discretization is coarser, instead, the
weak coupling reveals 10 be a poor approximation in the
simulation with the “soft” material. This lack of accuracy is
not serious for the magnetic flux, but becomes important if
considering the mechanical displacement.

o 2=08m & eysitation field
. i Hs
Fig. 2 - Example geometry
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Fig. 5 - Displacement along  in the soft material case

When considering the “hard” material, instead, the
mechanical deformation is much lower, and no evident
difference occurs in either the variables. This confirms that
the validity of the weak coupling should be tested against
time step and displacement amplitudes.

V. CONCLUSIONS

In this paper a numerical method for treating the
electromechanical coupled problems has been presented. The
solution of this class of problems should be undertaken by
taking into account that:
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A. the coupling between the -electromagnetic and
mechanical equations prevents in some cases the possibility
to face independently the two sets of equations,

B. the resulting numerical model is nonlinear due to the
dependence of the electromagnetic matrices on the
displacement and to the nonlinear character of the
electromagnetic force.

The mechanical equations are local by nature ags they hold
only where the stressed material is present. Unfortunately, the
electromagnetic equations describe nonlocal phenomena, thus
typically requiring a model describing the whole space. This
can be overcome by adopting an integral approach that allows
to consider the external field effect by means of a suitable
boundary equation.

Advantages can be taken by introducing a Lagrangian
formulation to face the whole model, as usual for the pure
continuum mechanics problems. In this way, the integration
domain remains fixed, in spite of the mechanical

deformations, and no explicit velocity term appears in the
equations. Furthermore, if a suitable formulation in the
external region is adopted, symmetric electromagnetic
matrices are obtained.

In this framework, in order to treat more effectively the
resulting numerical model, some useful simplification can
easily be applied, as the weak coupling approach, or the
sensitivity anaiysis.

On the basis of the exposed considerations, a Lagrangian
FEM-BEM code has been created (ALEPH 2-D), designed to
treat electromechanical coupled problems. The formulation
leads to nonsymmetric matrices, but this problem can be
easily solved.

Tts effectiveness has been shown with a simple numerical
example, representing z rough schematization for the
magnetic forming technique, which is a challenging problem
due to its strongly coupled nature.

Work is in progress to treat more complex mechanical
constitutive relationships, as nonlinear elasticity and
plasticity, as well as magneto-hydro-dynamics.
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