
 

Abstract — We use a spatial harmonic analysis 
(SHA) method to homogenize optical metamaterials 
with a negative refractive index; the method provides a 
more general approach than other methods for estimat-
ing the effective index of materials arranged of cas-
caded elementary layers. The approach is validated for a 
single layer and a triple layer two dimensional metal 
grating. 
 

Index Terms — Negative Index Metamaterial, Spa-
tial Harmonic Analysis (SHA), Homogenization. 
 

I. INTRODUCTION 

The refractive index (n n in′ ′′= + ) is the key pa-
rameter in the interaction of light with matter. While n ′  
has generally been considered to be positive, the condi-
tion 0n ′ <  does not violate any fundamental physical 
law, and materials with negative index have some re-
markable properties. Such materials are called negative-
index materials (NIMs), and in these materials the phase 
velocity is directed against the flow of energy. There are 
no known naturally-occurring optical NIMs. Optical 
properties of such media have been considered in early 
papers by Mandel’shtam  [1] and Veselago  [2]. Proof-
of-principle experiments  [3] have shown that artificially 
designed materials (metamaterials) consisting of split 
ring resonators (SRRs) and metal wires can act as NIMs 
at microwave wavelengths. NIMs drew a large amount 
of attention after Pendry predicted that NIMs can act as 
a superlens allowing for an imaging resolution which is 
limited not by the wavelength but rather by material 
quality  [4]. 

A. Homogenization of an Elementary Layer 
 

A possible approach to designing negative index ma-
terials is a periodic array of elementary coupled metal-
dielectric resonators. This work takes a closer look at 
approaches which simultaneously provide fast calcula-
tion of the field inside a given metamaterial arranged of 
elementary periodic layers and calculation of its effec-

tive parameters. 
First we review an established approach to homog-

enization of a thin layer of NIM. For a given mono-
chromatic incident light, it is possible to measure the 
complex reflectance and transmittance coefficients (r  
and t ) and then unambiguously retrieve the refractive 
index of the NIM sample. This effective parameter can 
be conveniently obtained from the characteristic matrix 
of a homogeneous film at normal incidence  [5]. 

Here we consider an effective layer of NIM over a 
homogeneous thick substrate with a refractive index 2n , 
as shown in Fig. 1. The conservation of the tangential 
electric and magnetic fields at the first interface gives 
the standard boundary conditions (BCs), 0 1H H= , 

0 1E E= . Then, using the definitions of the complex 
reflection and transmission coefficients ( 0 0,r ir E E= , 

1 1,t it E E= , and 1 1,r ir E E= ), we have 

1

1
0 1

1 t
r r

      =       
V D V , (1)
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Fig. 1. Simplified approach to the homogenization of a 
thin equivalent layer of NIM on top of a thick sub-
strate with a refractive index n2. The equivalent layer 
is characterized by the effective permittivity and per-
meability. Note that r2 = 0, provided that the layer is 
not illuminated. 
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where V  is a rotation matrix. 

1 1

1 1

−  =    
V , (2)

and 

1
1

1

0

0 1

η−  =    
D , (3)

where 1 1 1η µ ε=  is the effective impedance of the 

NIM layer with effective permeability 1µ and effective 
permittivity 1ε . 

Then, using the scaled thickness of the layer, 
1 12δ π λ= ∆ , with the transport matrix 

1 1

1 1
1

0

0

n

n

e

e

ι δ

ι δ

−   =    
A , (4)

i.e., backpropagating 1r  and propagating 1t  up to the 
second interface we arrive at the equation 

2 211
1 1

1 2

n tt

r t
−

     =         
D VA . (5)

Combining (1) and (5) gives the following form 

0 2 21 1
1 1 1

0 2

1

1

r n t

r t
− −

 −    =   +      
D VA V D . (6)

From the above we have 

0 2 21 1 1 1
1 1 1

0 2

1

1

r n t

r t
− − − −

 −    =   +      
V D A V D  (7)

or  

( )
( )

( )
( )

1 1

1 1

0 0 1

2 2 1

0 0 1

2 2 1

1 1

1

1 1

1

n

n

r r
et n

r r e

t n

ι δ

ι δ

η
η

η
η

−

 + + −      +      =    + − −      − 

. (8)

Then, multiplying the components of each vector from 
both sides we arrive at 

( )
( )

2 2
0 2

1 2 2 2
0 2 2

1

1

r t

r t n
η

+ −
= ±

− −
, (9)

while summing up the components and using (9) gives 

( )

2 2
0 2 2

1 1
0 2 0 2

1
cos

1 1
r n t

n
r n r t

δ
− +

=
 + + − 

. (10)

Equation (6) can be written in another manner as  

0 1 2=Q M Q , (11)

using 
0

0
0

t

r

  =    
Q , 

2

2
2

t

r

  =    
Q , and 1

1 1 1 1
−=M S A S , 

where 1S  is the symmetric matrix, 1
1 1

−=S V D V . Note 
that for a single layer on a substrate, 2 0r =  and 0t  is 
the incident field. 

B. Nomenclature of Matrix Functions 
 

To simplify the notations (and further programming), 
nomenclature for matrix functions is defined in parallel 
with direct matrix notation. First, we introduce a general 
2 2×  matrix partitioning function (w ) with partitions 
comprised of four different m m×� �  square matrices 
( 0,0 0,1 1,0 1,1, , ,w w w w ): 

( )
0,0 0,1

0,0 0,1 1,0 1,1
1,0 1,1, , ,
w w

w w w w
w w

   =     
w . (12)

Second, using (12) we add a partitioning function ( s ) 
for arranging four bi-diagonally symmetric partitions 
combined of two m m×� �  matrices ( 0s  and 1s ): 

( ) ( )
0 1

0 1 0 1 1 0
1 0

, , , ,
s s

s s s s s s s s
  = =   

s w . (13)

Then, using (12) and a m m×� �  null matrix ( o ) we 
suggest to define another function (d ) for making a 
diagonally partitioned matrix of two m m×� �  matrices 
( 0b  and 1b ) as 

( ) ( )
0

0 1 0 1
1

o
, , o, o, o

b
b b b b b

   = =    
d w . (14)

In addition, the following constant rotation matrix ar-
ranged of 2 2m m×� �  identity matrices ( i ) is used 
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( )
i i

i, i, i, i i i

−  = − =    
i w . (15)

Finally, a stacking function ( c ) is defined for a 
stacked vector made of two equal vectors ( 1v , 2v ) with 
m�  components as 

( )
1

1 2
2

,
v

v v v
  =    

c . (16)

Thus for example, (2)-(4) and (11) can be rewritten 
using (12)-(16) for 1m =�  as 

( )0 0 0,t r=Q c , ( )2 2 2,t r=Q c , (17)

( )1 1
1 ,n ne eι δ ι δ−=A d , ( )1

1 1 ,1η−=D d , =V i . (18)

C. Basics of SHA in Cascaded NIM Layers 
 

Equations (9) and (10) provide an easy approach to 
the characterization of thin metamaterials. With this 
simple assumption it is thought that a cascaded bulk 
material can be arranged using a stack of q  equivalent 
layers with an effective transformation ma-
trix 1q q −=M SA S . In general, this straightforward ap-
proach assumes that the spatial harmonics of each layer 
interact only with the same harmonics of other layers in 
the stack. In essence, this loose assumption ignores any 
transformation of a given incident harmonic into the 
spatial harmonics of different order, which are either 
reflected or transmitted. To illustrate this issue, consider 
another approach to obtaining effective parameters of a 
multilayer NIM arranged of thin infinite elementary 
layers with periodic distribution of elementary materi-
als. Essentially, the enhanced method follows the recipe 
for a classical case of stratified media (see for example, 
 [6]- [11]). 

We note that a variety of rigorous algorithms have 
been based on SHA for diffraction gratings. After the 
publications of Burckhardt  [7], Kaspar  [8], and Knop 
 [9], a very similar method was introduced by Moharam 
and Gaylord  [10]- [12]. Analytical approaches to the 
problem were shown by Botten and McPhedran  [13]-
 [15]. An alternative to Botten’s method was discussed 
by Tayeb and Petit  [16]- [18]. Due to space constrains, 
here we only give a brief list of early publication; a lar-
ger review will be published elsewhere. 

We start with monochromatic Maxwell’s equa-
tions E Bιω∇× =

G G
, H Dιω∇× =−

G G
 arriving at 

2 2 lnk n H H Hε= ∇×∇× −∇ ×∇×
G G G

, 
2 2 lnk n E E Eµ= ∇×∇× −∇ ×∇×

G G G
. (19)

In addition, using 0B∇ ⋅ =
G

 and 0D∇ ⋅ =
G

 we 
have 

lnH Hµ∇ ⋅ = −∇ ⋅
G G

,  

lnE Eε∇ ⋅ = −∇ ⋅
G G

, 
(20)

and finally 

( )2 2 2 ln

ln ,

k n H H H

H

µ

ε

+∇ =−∇ ∇ ⋅

−∇ ×∇×

G G G

G  

( )2 2 2 ln

ln .

k n E E E

E

ε

µ

+∇ =−∇ ∇ ⋅

−∇ ×∇×

G G G

G  
(21)

D. Bloch-Floquet Waves in Cascaded 2D Layers 
 

A simpler 2D example is used here to illustrate the 
approach because derivations for the spatial harmonic 
analysis (SHA) in 2D are less difficult. Consider a sin-
gle period ( l ) of an infinite interface of a free-space 
domain with the domain of a material characterized by a 
set of step-wise continuous permittivity values ( 1,1ε , 

2,1ε , … ), as shown in Fig. 2a. 

Provided that a TM ( ˆH h= ⋅z
G

) boundary-value 
problem is taken, then only the tangential components 
of the H and E field distributions over l  are required in 
this case. A local coordinate system is introduced, with 
a unit normal ( x̂ ), a unit transverse vector ( ẑ ) and a 
tangent unit vector ( ŷ ). Then, consider two scalar fields 
(h  and d ) as the distribution of the transverse magnetic 
field ( ˆh H= ⋅z

G
) over l  and the distribution the electric 

field ( ˆd Eε= ⋅y
G

). A monochromatic Maxwell equa-
tion ( )ˆ ˆh dιω⋅ ∇ × = −y z  couples the fields 

( ) 1d i hω − ′= , (22)

where the normal derivative of h  is denoted 
ˆh h′ = ⋅∇x . 

The core of any SHA approach is the transformation 
of the fields from a physical space to spatial spectral 
space using available proper functions ( mg ). Provided 
that h  and mg  are sets of discrete values obtained at a 
uniform grid on l , these sets are considered as two vec-
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tors (h  and mg ). The sum max

max

p m
p pp p
g gν∗

=−∑  is consid-

ered here as a scalar product of two vectors ( ), m
l

g gν , 
where p  is a point of the grid on l  arranged of 

max2 1p p= +�  points. Note that the proper functions 
mg  are orthonormal on l , i.e. ( ) ( ), m

l
g g mν δ ν= − . 

Let us isolate the first elementary layer, for example, 
as shown in Fig. 2b. The magnetic field is defined by 

1 ,1 ,1
m m m m
t t r rm

h g c g c
∞

=−∞
= +∑ , where m

tg  and m
rg  are 

transmitted and reflected elementary fields of order m . 
In essence, the field 1h  is decomposed into elementary 
fields (the Bloch-Floquet waves), which are orthonor-
mal on l . In a truncated approximation, maxm m≤ , 

the vectors mg  can form a p m×� �  matrix g , 

max2 1m m= +�  and the complex magnitudes of the 
reflected and transmitted fields ( ,1

m
rc  and ,1

m
tc ) can be 

taken as the components of two different m� - dimen-
sional vectors ,1rc  and ,1tc . Then, the magnetic field in 
matrix form is defined by 1 ,1 ,1 ,1 ,1t t r rh g c g c= + .  

The Bloch-Floquet theorem allows for the separation 
of variables, 1 1tg v u=  and 1

1 1rg v u−= , where u  is an 
m m×� �  matrix exponential, 1 ,1exp xu k kxι= , of a 

proper values matrix, ,1
m
xk ; and 1v  is a p m×� �  matrix 

constructed of orthogonal vectors 1
mv . For the free-

space case, indices in u , v , and m
xk  are dropped, and 

the proper functions u  are defined through 

( )21m m
x yk k= − , where 1

0sinm
yk m lλ φ−= +  and 0φ  

is the angle of incidence (shown in Fig. 2b). The wave-
front 1 2

expm m
yv p k kyι−= �  is just an orthonormal Fou-

rier component of the mth order. 
 

1) Eigenvalue Problem 
 

To obtain both ,1xk  and 1a  for a given elementary 
layer, where the permittivity of elementary materials (a 
piece-wise continuous function 1ε ) is periodic in the y  
direction but constant in the x direction, it is necessary 
to attain an eigenvalue problem formulation. In this 
case, 

2 2
1 1 1 1 1 0yk h h f hε +∇ − ∂ = , (23)

where f  is the logarithmic derivative, 1 1lnyf ε= ∂ , 1ε  

and 1
1ε
−  are p p×� �  diagonal matrices, and 2k  is a sca-

lar. 
The above equation can then be rewritten using 

( )1
1 1 1 ,1 1 ,1t rh v u c u c−= − . Next, introducing 1a  as an 

m m×� �  matrix mapping an orthogonal basis 1v  into the 

free-space basis v , ( 1 1v va= ), substituting ( )1
1 yv f v kι −  

with ( )1 1 1 1
1 1 1y y yk v v v vk v vkι ε ε ι ε− − − −−  and using 1γ  for 

1
1v vε− , 1γ�  for 1 1

1v vε− −  and i  for the m m×� �  identity 
matrix, (23) is further simplified as 

( )2 1
1 ,1 1 1 1ix y ya k a k kγ γ− = − � . (24)

The transform 1a  is required because in contrast with 
the free-space case, each wavefront 1

mv  in an elemen-
tary inhomogeneous layer is not a single Fourier com-
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Fig. 2. (a) Interface of an elementary layer of NIM 
with free space; (b) an isolated elementary layer; (c) 
a cascaded multilayer NIM. 
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ponent anymore; however, as a ‘physical function’♦ it 
still can be expressed as a superposition of Fourier 
components. Note that equation (24) is written in an 
eigenvalue form since 2

,1xk  is a diagonal matrix. The 
equation can be solved either numerically or analyti-
cally for both 2

,1xk  and 1a , provided that 1γ  and yk  are 
known. 

 
2) Mixed Boundary-Value Problem 

 

Transverse field continuity together with the conser-
vation of the tangential electric field on l  gives the 
standard boundary conditions (BCs), 0 1h h= , 

1 0 1h hε ′ ′= , where the pairs h , h ′  represent the mag-
netic field and its normal derivative just before and after 
the interface; 1ε  are the values of permittivity at the 
collocation points on l . 

After using the definitions of the fields 
( )1

0 ,0 ,0t rh v uc u c−= − , ( )1
1 1 1 ,1 1 ,1t rh va u c u c−= −  and 

taking the normal derivatives, a spectral form of the BC 
is 

0 1 1c s c= . (25)

Here,

( ) ( ) ( ) ( )1 1
0 ,0 ,0 1 1 1 ,1 ,1

, , , , ,
t r t r

c u u c c c u u c c− −= =d c d c , 

and ( )1 1
1 1 1 1 ,1, x xs a k a kγ− −= i d i-1 . 

At the second interface (as shown in Fig. 2b), the 
equation for the elementary layer is given by 

1
1 1 1 2b c s c−= , (26)

where ( )11 1 1,b β β−= d ; the matrix exponential 

1 ,1 1exp xkβ ι δ=  adjusts the phases for the scaled thick-

ness of the layer ( 1 12δ π λ= ∆ ). 

Combining (25) and (26) gives the following form 

1 1
0 1 1 1 2c s b s c− −= . (27)

Since xk  is given as a common matrix for all layers, a 
possible alternative is to employ a normalization 
( 0 0cc i=  and 2 2cc i= ), where the upper and lower 
partitions of 0c  and 2c  correspond to a magnetic com-
ponent and a normalized electric component, respec-
tively. These Fourier components are both continuous 
across any interlayer interface and form the basis for 

 
♦ i.e., a piecewise continuous function with a limited variation on l. 

wave matching. Then, (27) is simplified to 

1 1
0 1 1 1 2

− −=c d b d c , (28)

where the linear operators ( )1 1
1 1 1 1 ,1, x xa k a kγ− −d d=  and 

1
1 1bb i i-=  are unique for each layer with a given dis-

tribution of elementary materials ( 1γ ), defined matrices 
of the proper values ,1xk  and the proper vectors 1a . 

For the trivial case of a uniform slab with a permittiv-
ity 1ε , 1 ia = , 1 1iγ ε=  and a generalized analog of (6) 
is 

1
0 21 1

1
1 110 2

i ooi o

o oo

h h

h h

β
η ηβ

−

−
−

                =            ′ ′         
i i

� �

� � , (29)

where the tangential fields are the corresponding matri-
ces of the Fourier transforms, 1h v h−=� , 

( ) 1h kv hι −′ ′=� ; ( )1
1 1

m
xdiag kη ε−=  (from (24), 

2 2
,1 1ix yk kε= − , and ( )2,1 1

m m
x yk kε= − ). Then for ex-

ample, validation of (29) for a plane wave at normal 
incidence gives a familiar result, shown earlier in (11). 

From (28) we also note that in general, the following 
identity holds 

10

1 1
1 1 ,10

,1 1 ,1 1

,1 1 ,1 1

1
1 2

1 1
,1 1 1 2

o

o

cos sin

sin cos

o
,

o

x x

x x

x x

x x

ah

k a kh

k k

k k

a h

k a k h

γ

δ ι δ

ι δ δ

γ

− −

−

− −

      =     ′     
 −  ×  −   

     ×    ′   

�

�

�

�

 (30)

with ,1 1cos xk δ  and ,1 1sin xk δ  being arranged of adequate 
matrix exponentials. 

II. SHA IN BI-PERIODIC NIM LAYERS 

As yet there has been no mention of how to handle 
bi-periodic structures with generally different periods in 
z  and y  directions (denoted here as yl  and zl  respec-
tively, as shown in Fig. 3). In contrast to the previous 
example, essentially there are two difficulties to over-
come. First, there are a dramatically larger number of 
spatial harmonics ( 2m�  in bi-periodic structures, versus 
m�  in the single-periodic NIMs of Fig. 2a). This volume 
could be quite demanding for pure numerical solvers. 
On top of that, the already large number of basis spatial 
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harmonics in which the fields is expressed should be 
increased even further to ensure convergence of the 
eigenvalues. A simple example of a bi-periodic layer of 
a binary material is shown in Fig. 3, where the layer is 
arranged of a metallic rectangular block which is im-
mersed in a dielectric host. Certainly in real life applica-
tions each elementary layer (cross-section) could be 
much more involved. The electromagnetic field compo-
nents inside a bi-periodic structure also should be bi-
periodic with periods being the same as the length ( yl ) 
and width ( zl ) of the unit cell.  

Then, each field component (e.g., ( ), ,x y zH h h h=
G

) 

can be expressed as 

i i ih v uc= � � , , ,i x y z= , (31)

where each field component is written as the product of 
a cell periodic part ( ),v v y z=� �  and a wavelike part 

exp( )xu k xι= �� , as a consequence of Bloch's theorem. 
As usual, we start with Maxwell’s equations 
E Bιω∇× =
G G

, H Dιω∇× = −
G G

, and since 0H∇ ⋅ =
G

, 
i.e. 2H H∇×∇× = −∇

G G
, we arrive at 

( )2 1 2
r r rH H k Hε ε ε−−∇ = ∇ × ∇× +

G G G
. (32)

Introducing a tangent field ˆ ˆy zh h hτ = +y z
G

, we note 
that 

( )
( )

2 2 1
ˆ

ˆ

z y z z y

y y z z y

h h
h h

h h
τ τ

ε
ω εµ ε

ε
−
 ∂ ∂ −∂   −∇ = +    − ∂ ∂ −∂  

y

z

G G
. (33)

After splitting the components of hτ
G

, (33) yields 

( )2 2 1
y y z y z z yh h h hω εµ ε ε−−∇ = + ∂ ∂ −∂ , 

( )2 2 1
z z y z y y zh h h hω εµ ε ε−−∇ = + ∂ ∂ −∂ . 

(34)

Then, using separation of variables (31) in matrix 

form, h vucτ =
G G�� , where ( ),v v x y=� � , ( )u u z=� � , the 

above is rewritten as 

( )
( )1 2 2

2 1

1 1

1 1 ,

y z

y x y y y y y

z z

y y z z

v v k k
a k a a uc a uc

v vk

v vk a uc

ε

ι ε ε

ι ε ε

−

−

− −

− −

 − +   =   − ∂  

+ ∂

� �

�

 

( )
( )1 2 2

2 1

1 1

1 1 ,

y z

z x z z z z z

r y r y

y z z y

v v k k
a k a a uc a uc

v vk

v vk a uc

ε

ι ε ε

ι ε ε

−

−

− −

− −

 − +   =   − ∂  

+ ∂

� �

�

 

(35)

where
i , iz z z z y y y yk diag m l k diag m lα λ α λ   = + = +       , 

( )0 0ˆ ˆ ˆ ˆy z k kα α+ = − ⋅y z x x
G G

, and 0k k k=
G G G

 is a unit 

vector defined by the wavevector (k
G

) of the incident 
field. 

The latter is further simplified with the aid of the fol-
lowing identities for the partial logarithmic derivatives 

1 1 1
z z zv v k kι ε ε γ γ− − −∂ = − , 

1 1 1
y y yv v k kι ε ε γ γ− − −∂ = − , 

(36)

where 1v vγ ε−= . Then we arrive at 

( ) ( )
( )

2 1 2 1

1 ,

y x y y y y z z y y

z y z y z z

a k a a uc k k k a uc

k k k k a uc

γ γ γ

γ γ

− −

−

= − −

+ −

� �

�

( ) ( )
( )

2 1 1

2 1 .

z x z z z y z y z y y

z y y z z

a k a a uc k k k k a uc

k k k a uc

γ γ

γ γ γ

− −

−

= −

+ − −

� �

�
 

(37)

The second term in the right side of both equations in 
(37) corresponds to the cross polarization. For a sym-
metric grating we can show that both ( )1

z y z yk k k kγ γ− −  

and ( )2 1
z y yk k kγ γ γ−− −  are equal to zero and conse-

quently we have no cross polarization for symmetric 
gratings. This simplification yields two decoupled ei-
genvalue equations as shown below 

( )
( )

2 1 1 2

2 1 1 2

i

i .

y x y z z y

z x z y y z

a k a k k k

a k a k k k

γ γ

γ γ

− −

− −

= − −

= − −
 (38)

For an asymmetric grating the two eigenvalue equa-
tions would be coupled via the cross polarizations term. 

A 2D TM case ( oy zc k= = , i.e. the structure is pe-
riodic in the y direction only, there is no magnetic field 

lz
∆

ly

Fig. 3. Sketch of an example 3D periodic cell. 
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along the direction of periodicity) gives 
( ( )1
y rv y vγ ε−=� ) 

( )2 1 1iz x z y y y ya k a k kγ γ− −= − , (39)

while a 2D TE case ( oy yc k= = , i.e. the structure is 
periodic in z-direction only, there is no electric field 
along the direction of periodicity and ( )1

z v z vγ ε−= ) 
is 

2 1 2
z x z z za k a kγ− = − . (40)

Note that equations (39)-(40) also provide a solution 
for structures with interleaving single-period layers with 
90-degree rotation of their periodicity directions. 

III. CASCADING THE ELEMENTARY LAYERS 

Cascading a set of q  elementary layers (depicted in 
Fig. 2c) gives 

0 1 1c w c= . (41)

Here, 1
1

q

w wν
ν=

=∏ �  and 1 1w s b sν ν ν ν
− −=�  is an elementary 

transform due to ν -th layer. 
Provided that each subset of q  elementary layers is 

again stacked m  times, then the matrix power 
[ ]0 0

mmw w=  is used with the following transformation 

0 0 1
mc w c= . (42)

Transformations equivalent to (27) - (42) can be writ-
ten as 

0,0 0,1

1,0 1,1 0
ti

r

cc w w

c w w
         =             

, (43)

where ic  are the spatial harmonic coefficients of the 
source, rc  is a set of the spatial harmonic coefficients of 
reflected light, and tc  are the harmonic coefficients of 
transmitted light. 

A. Reflection and Transmission Coefficients 
 

The major work-load in the above method falls on the 
calculation of the proper values and vectors ( ,xk ν  and 
aν ) for each elementary layer. Once the values are ob-
tained, the characteristic matrices of each layer are ar-
ranged as 1 1s b sν ν ν

− − . 

Introducing the transformations , ,t rc cν ν νρ = , 

, ,t t qc cν ντ =  (with initial values given by iqτ = , and 
oqρ = ), the matrices of spatial spectral reflectance and 

transmittance are defined as 

( )( ) 11,0 1,1 0,0 0,1
1 w w w wν ν ν ν ν ν νρ ρ ρ

−

− = + + , 

( ) 10,0 0,1
1 w wν ν ν ν ντ τ ρ

−

− = + , 
(44)

where the characteristic matrix is partitioned as 
0,0 0,1

1,0 1,1

w w
w

w w

ν ν

ν
ν ν

   =     
� . The partitions are calculated us-

ingsν , which is a matrix with symmetrical partitions, 

( )0 1,s s sν ν ν= s  with ( )0 1 11
2 ,x xs k a k aν ν ν ν νγ− −= +  and 

( )1 1 11
2 ,x xs k a k aν ν ν ν νγ− −= −  and a similar matrix 

( )1 0 1,s s sν ν ν
− = s � �  with ( )0 1 1 11

2 ,x xs k a k aν ν ν ν νγ− − −= +�  and 

( )1 1 1 11
2 ,x xs k a k aν ν ν ν νγ− − −= −� , then 

0,0 0 1 0 1 1w s s s sν ν ν ν ν ν νβ β−= +� � , 0,1 0 1 1 1 0w s s s sν ν ν ν ν ν νβ β−= +� � ,
1,0 1 1 0 0 1w s s s sν ν ν ν ν ν νβ β−= +� � , 1,1 1 1 1 0 0w s s s sν ν ν ν ν ν νβ β−= +� � . (45)

Thus, for example, a single-layer structure is calcu-
lated as follows: ( ) 10,0

0 1wτ
−

= , ( ) 11,0 0,0
0 1 1w wρ

−
= . 

Then, the transmitted and reflected Bloch-Floquet 
waves are 

,1 0t ic cτ= , ,0 0r ic cρ= . (46)

B. A Simple Validation Test 
A simplified 2D single-layer model for validating the 

simulation method is shown in Fig. 4a. The sample 
structure is intentionally made of a very thin metallic 
grating (with 10-nm thickness). The grating is arranged 
of 400-nm gold strips separated by narrow strips of sil-
ica, the period of the structure is 480 nm. The large as-
pect ratio of the metallic strips and a large electric reso-
nance at a wavelength of about 1.2 micron are among 
the main challenges of the test model. To obtain a good 
set of reference data, the structure was simulated using a 
commercial software package with 5th-order finite ele-
ments. The validity of the FEM solution was verified by 
using the same model with different levels of additional 
meshing refinement and an adaptive solver. The results 
were stable upon the use of 41,000 degrees of freedom 
(field variables), where the bulk of the resources had 
been spent for the free-space buffer, non-reflecting lay-
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ers and adequate meshing at the corners. 
In contrast to FEM, the spatial harmonic analysis 

method appeared much more efficient. The problem 
was stabilized after the use of 11 eigenvalues with a 
calculation time of about 100 times less versus the FEM 
solver with the same number of wavelength points and 

the same computational hardware. It should be noted 
that the amount of simulation time using SHA is ap-
proximately proportional to the total number of elemen-
tary layers and scales approximately as the square (or 
cube) of the total number of eigenvalues in 2D (or 3D) 
problems, while the performance of FEM solvers de-
creases very moderately with increasing layers. Both 
models appeared to be quite sensitive to the material 
properties of the metal. In both cases, the interpolated 
complex refractive index was based on the experimental 
table of Johnson and Christy  [19]. In addition to simple 
validation of the modeling approach, the test model of 
Fig. 4a reveals all typical features of the periodic struc-
tures with localized plasmonic resonances, e.g. at the 
same wavelength the electric resonance is always ac-
companied by a satellite magnetic antiresonance and 
vise versa. 

As has been discussed in  [5] and shown in equations 
(10) and (11), the effective refractive index 1n  and its 
effective impedance 1η  of a given elementary layer can 
be uniquely determined either experimentally or from 
simulations. Rewriting (10) as 

[ ]

2 2
2

21
1

1

1
arccos1 1 (1 )

2
s

r n t
n n r tn

δ πδ ν

 − +    + − −=    +  

, 

 0,1,2ν = …  

(47)

we can determine 1n , where 2n  is the refractive index 
of the thick substrate beyond the elementary layer, and 
r  and t  are the complex reflection and transmission 
coefficients of the propagating plane wave mode. In 
simulations r  and t  can be obtained from 

( )0 0,0t τ= , ( )0 0,0r ρ= , (48)

i.e., in essence by taking only the central terms of the 
transmission and reflection matrices. Then, the effective 
permittivity and the effective permeability are given by 

1 1 1nµ η= , 1 1 1nε η= . (49)

C. Implementation Details for the 2D Case 
 

Although the process of solving (24) is relatively 
simple for dielectric sub-wavelength gratings, a direct 
treatment of metallic sub-wavelength gratings is more 
difficult because of the much higher contrast in permit-
tivity within the optical wavelength range.  
The following steps are taken to alleviate the problem: 
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Fig. 4. (a) Geometry sketch of a resonant elementary 
layer; (b) effective permeability and permittivity ob-
tained for the elementary layer using FEM and SHA 
(using 11 eigenvalues); (c) comparison of the reflection, 
transmission, and absorption spectra obtained in simula-
tions using FEM and SHA (11 eigenvalues). 
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1) The Fourier transform of inverted permittivity 
 

First, we take the following modification of (23) 

( )2 1 2 1
1 1 1 1 1 0x y yk h h hε ε− −+ ∂ + ∂ ∂ = . (50)

Using ( )1
1 1 1 ,1 1 ,1t rh va u c u c−= −  and 1 1

1 1v vε γ− −= �  

we have 

( )2 1
1 1 ,1 1 1 0x y xv v a k a v kγ ιγ−− + ∂ =� � , (51)

or  

2 1
1 1 1 1i y y xk k a k aγ γ −− =� � . (52)

Finally, we can use the following version of (24) 

( )2 1 1
1 ,1 1 1 1ix y ya k a k kγ γ− −= −� � , (53)

which provides stable convergence in the presence of 
metallic elements. 

Moreover, in accord with (53) the Fourier transform 
of the inverted permittivity 1γ�  and its inverse 1

1γ
−�  is 

used respectively in (28) and (30) instead of 1
1γ
−  and 

1γ . 

2) Analytical calculation of the Fourier transform 
 

In addition, along with the use of the inverted permit-
tivity, the Fourier transformation 1γ�  in (25) is calcu-
lated analytically provided that ( )1 yε  over the period l  
is a combination of homogeneous segments. Indeed, for 
any 0m >  ( )1

m m
y ykk y kk y m

yl e dy e lkkι ι− −− =∫ , thus for 

example, a term ,
1
p mγ�  (at row p  and column m ) of the 

square matrix 1γ�  for the elementary layer in Fig. 4a, is 
given by 

( ) ( )[ ]
( )

( )

1 1

1 1

sin

1

g s

g s

p m
if p m

p m

otherwise

κπ
ε ε

π

κε κ ε

− −

− −

−
+ ≠

−

+ −
, (54)

where w lκ =  is the metal filling factor and gε  and sε  

is the permittivity of gold and silica, respectively. 
 

IV. DISCUSSIONS 

Both remedies built on (53) and (54) work well with 
metallic structures. For example, Fig. 5 shows the real 
and imaginary parts of the effective refractive index that 
is restored using the complex transmission and reflec-

tion coefficients at normal incidence  [5]. (The geometry 
of the layer has been already shown in Fig. 4a.) Both 
real and imaginary parts of the refractive index are con-
verging rapidly. Small features around 650 nm are sup-
pressed only for max 1m = , and both curves are quickly 
converging to their limits; starting from max 9m =  the 
corresponding curves with larger maxm  are overlapping.  

In contrast, a direct application of the initial formula-
tion (24) is of limited utility to the problem. We note 
that the transmission and reflection spectra demonstrate 
much slower convergence and substantial artifacts. For 
example, Fig. 6 depicts the results obtained from the 
problem of Fig. 4a using the initial eigenvalue formula-
tion (24). 

It is important to note that a convergence control 
should be implemented for the entire multilayer struc-
ture; otherwise insignificant modes of an elementary 
layer could be considerably enhanced due to additional 
resonances of coupled elementary layers. 

Consider for example the real part of the refractive 
index, n ′ , shown in Fig. 7a. The values of n ′  are re-
stored from r  and t , which are calculated for a single 

layer depicted in the inset of Fig. 7a. There is no reso-
nance within the selected 300-nm wavelength segment, 
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Fig. 5. Real and imaginary part of the refractive index 
(n′ and n″) vs. wavelength calculated with a different 
number of spatial harmonics (mmax = 1, 3, 19). Starting 
from mmax = 9 the difference in the results is almost 
indiscernible. 
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and the values of n ′  converge quickly starting from 
max 6m = . 
Now we take a triple-layer structure arranged of two 

identical elementary layers of Fig. 7a separated by a 
uniform 100-nm layer of silica. The structure exhibits 
an additional magnetic resonance within the selected 
wavelength range. As expected, this resonance, which 
appears due to additional near-field coupling between 
the metallic strips, requires taking into account an in-
creased number of modes. The same level of relative 
error is now achieved starting from max 10m > . 

As a result, additional care is required for the accurate 
calculation of stacked substructures arranged of elemen-
tary layers and cascaded materials integrating different 
or identical multilayer substructures. It also follows 
from the analysis of equations (27)-(45) that: 

(i) None of asymmetric multilayer composites can be 
effectively described either by the simplified homogeni-
zation approach (9)-(11), or through its generalized ana-
log (30). (A multilayer composite is asymmetric if it 
contains an odd number of elementary layers and the 
layers are not mirror-symmetric relative to the central 
layer; all structures with an even number of distinct 
layers are always asymmetric). 

(ii) Effective optical parameters (including an effec-
tive negative refractive index) obtained in a single sym-
metric sub-set of elementary layers may not guarantee 
the same effective parameters in a bulk material ar-
ranged of identical subsets, not merely because of ab-
sorptive losses but also due to new interactions of near-
field waves introduced by the use of cascading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Real and imaginary part of the refractive index 
(n′ and n″) vs. wavelength calculated using (24) for 
mmax = 61, 71, 81. Starting only from mmax = 71 the dif-
ference in the results are converging well to the asymp-
totic curves obtained using (53). 
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Fig. 7. The real part of the refractive index (n′) vs. 

wavelength. (a) n′ calculated for a single layer struc-
ture shown in the inset for mmax = 1, 2 ...10. Starting 
from mmax = 6 there is almost no difference in the 
curves, (b) n′ calculated for a triple layer structure ar-
ranged from two identical layers of diagram (a) sepa-
rated by a 100-nm uniform layer of silica. The inset 
depicts the triple-layer structure. Convergence to the 
same lever of error begins starting from mmax

 = 10. 
Slower convergence is caused by an additional reso-
nance due to strong near-field coupling between the 
layers. 
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To illustrate (i) consider a classical example of a sub-
set structure with two homogeneous lossless layers 
[ [20], p. 72]. The characteristic matrix of two layers 
with thicknesses 1∆  and 2∆ , and indices 1n  and 1η , is 

computed as 2 1 2=w w w� � , with 1 1
1 1 1 1

− −=w d b d�  and 
1 1

2 2 2 2
− −=w d b d� . The effective characteristic matrix 

( effw ) of an equivalent single layer, which is defined as 

0,0 0,1

1,0 1,1

1

cos sin
,

sin cos

eff eff

eff
eff eff

eff x eff eff x

eff eff x eff x

n k n n k

n n k n k

δ ι δ

ι δ δ−

   =      
 −  =  −  

w w
w

w w
 (55)

(using a scaled thickness, ( )1 2kδ = ∆ +∆  and the 
effective index, effn ), should be equal to the characteris-
tic matrix of the double-layer 2w . To be equivalent to 

effw , the product 2 1 2=w w w� �  must have identical di-

agonal partitions since 0,0 1,1
eff eff=w w  in (55). This is true 

only if the product commutes, i.e. 1 2 2 1=w w w w� � � � , leav-
ing the only trivial case of 1 2n n=  possible. Therefore, 
even a simple stack of two distinct lossless films cannot 
be adequately modeled by a single effective layer. 
Physically, the condition 1 2 2 1=w w w w� � � �  means that the 
effective parameters of a multilayer NIM should not 
depend on which side is chosen for illumination, i.e. its 
structure should be symmetric. 

Note that although 1 2 3 3 2 1=w w w w w w� � � � � �  is always true 
for any triple-layered structure, since the first and the 
last layers are equal ( 1 3=w w� � ), the homogenization of 

( )1 1 1 1 1
3 1 1 12 2 12 1 1

− − − − −=w d b d b d b d  is not very simple even 

for the structure with homogeneous elementary layers. 
Now to exemplify (ii) consider a cascaded structure 

arranged of identical symmetric substructures, then 
1 1 1 1 1

3 1 1 12 2 12 1 1w s b s b s b s− − − − −= , where 1
12 1 2s s s−=  

1 1
1 2

− −= i d d i . The diagonally partitioned matrix 1
1 2
−d d  

is responsible for interactions between the layers. Cas-
cading p  triple-layer substructures suggests taking the 
p -th power of the characteristic matrix 3w . Although 
the result is straightforward since 
( ) ( )1 1 1 1 1
3 1 1 12 2 12 1 1

pp
w s b s b s b s− − − − −= , it is clear that new 

interactions of near-field waves introduced by cascad-
ing will change the effective properties of the cascaded 
structure in comparison to those of the initial three-layer 
sub-structure, unless it is possible to write 3w  as 

1
3 eff eff effw s b s−= , where effb  is a diagonal matrix of effec-

tive eigenvalues and effs  is a matrix of effective eigen-
vectors. 
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