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Abstract

The Finite-Difference Time-Domain (FDTD) algorithm
provides a simple and efficient means of solving Maxwell’s
equations for a wide variety of problems. In Yee’s uni-
form grid FDTD algorithm the derivatives in Maxwell’s
curl equations are replaced by central difference approx-
imations. Unfortunately, numerical dispersion and grid
anisotropy are inherent to FDTD methods. For large
computational domains, e.g., ones that have at least one
dimension forty wavelengths or larger, phase errors from
dispersion and grid anisotropy in the Yee algorithm (YA)
can be significant unless a small spatial discretization
is used. For such problems, the amount of data that
must be stored and calculated at each iteration can lead
to prohibitive memory requirements and high computa-
tional cost. To decrease the expense of FD'TD simulations
for large scattering problems two higher-order methods
have been derived and are reported here. One method
is second-order in time and fourth-order in space (2-4);
the other is second-order in time and sixth-order in space
(2-6). Both methods decrease grid anisotropy and have
less dispersion than the YA at a set discretization. Also,
both permit a coarser discretization than the YA for a
given error bound.

To compare the accuracy of the YA and higher-order
methods both transient and CW simulations have been
performed at a set discretization. In general, it has been
found that the higher-order methods are more accurate
than the YA due to the reduced grid anisotropy and dis-
persion. However, the higher-order methods are not as
accurate as the YA for the simulation of surface waves.
This is attributed to the larger spatial stencil used in cal-
culating the fields for the higher-order methods. More re-
search is needed to examine the accuracy of higher-order
methods at material boundaries.

1. Introduction

Yee’s uniform grid Finite-Difference Time-Domain
(FDTD) algorithm provides a direct solution to Maxwell’s
time-dependent curl equations and permiis the analy-
sis of both transient and steady-state problems [1]. In
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this algorithm, both time and space are discretized, and
second-order central-difference approximations of deriva-
tives are used to obtain a set of simple equations which
yield future field values based on past and present field
quantities. The equations are numerically exact, i.e., no
physical assumptions are made regarding energy propaga-
tion and interaction with scattering materials. Numerical
error is controlled by the discretization size, and com-
putational and storage requirements are proportional to
the electrical size of the problem [2]. However, the al-
gorithm is inherently dispersive and anisotropic [2]. For
large problems, forty wavelengihs or larger, errors from
dispersion and anisotropy are significant (here a phase
difference greater than #/8 is considered significant) un-
less the spatial discretization is very small. This can lead
to prohibitive memory requirements and high computa-
tional cost.

To decrease the resources required to perform large
FDTD simulations higher-order FDTD methods can be
used. By improving the accuracy of the approximations
for the spatial derivatives in Maxwell’s curl equations, nu-
merical dispersion and grid anisotropy are reduced. The
two methods presented here are second-order in time and
fourth-order in space (2-4) and second-order in time and
sixth-order in space (2-6). Both methods are less dis-
persive than the Yee algorithm (YA) and permit larger
spatial and temporal discretizations which, in turn, allow
faster computation time and the storage of less data. For
a given discretization the higher-order methods provide a
more accurate simulation than the YA for the test cases
examined.

In this paper 2-4 and 2-6 algorithms are derived and
suitable boundary conditions are developed. In addition,
the results from simulations using the YA, 2-4, and 2-
6 methods are examined and compared. The simula-
tions are done using a moderate spatial discretization and
demonsirate the improvement in accuracy for the higher-
order methods. First, a two-dimensional transient pulse
in free-space is simulated to demonstrate the effect of grid
anisotropy and dispersion in the three algorithms. Next
a harmonic scattering problem is considered to examine
the accuracy of the methods. The magnitude and phase
of the field scattered from a large cylinder are measured
and compared to results found using a moment method
solution. In general, because of reduced dispersion, the
higher-order methods are more accurate than the YA.



However, the YA is more accurate in magnitude near the
shadow boundary. It is found that the higher-order meth-
ods are not as accurate as the YA for the simulation of
guided waves due to the wider spatial stencil used to cal-
culate the fields. Nevertheless, the higher-order methods
provide a more accurate simulation tool than the YA for
the study of large scattering problems at moderate dis-
cretizations (10-20 PPW).

II. The Yee Algorithm

We will consider only two-dimensional, TM probiems
although the higher-order algorithms can be exiended
easily to three-dimensional problems and other polariza-
tions. In the YA, second-order central-difference equa-
tions are used to approximate Maxwell’s curl equations.
Space and time are discretized to ensure stability [2, 3].
The resulting equations for lossless media are
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p(inz, [§+ %]Ay), Az and Ay are the spatial discretiza-
tions, and At is the temporal discretization. For our
work, Az = Ay = h = Amin /PPW, where Api, =
Cmin / f is the smallest wavelength in the scattering prob-
lem for a given frequency, f. Finally, At = h/2cmax
to satisfy stability requirements where cmax 80d cmin are
the fastest and slowest medium velocities for the problem
geometry, respectively. Appendix A provides a stability
analysis for the YA as well as the higher-order methods.

To examine the amount of dispersion in the YA, the
normalized numerical phase velocity is plotted in Fig. 1 as
a function of the PPW discretization (higher-order meth-
ods are also presented in Figs. 1-3 and are discussed in
the next section). Another way to examine dispersion is
to calculate the phase error per wavelength due to disper-
sion; this is plotted in Fig. 2 (see Appendix B for details
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concerning the calculation of dispersion curves). In both
figures the solid-circle line pertains to a plane wave trav-
eling at 0° with respect to the grid lines while the hollow-
circle line is for a plane wave traveling at 45°. These
cases represent minimum and maximum propagation an-
gles with respect to the grid lines. Note that in Fig. 1
both the YA dispersion curves are always less than unity,
the ideal case, and both curves decrease rapidly for PPW
less than 10. Thus, higher frequencies travel more slowly
than lower frequencies, causing breadening and distortion
of a propagating pulse. Furihermore, the amount of dis-
persion depends on the direction of propagation. Figure
2 also indicates the amount of grid anisotropy for the YA
in that the phase error per wavelength is approximately
two to four times larger for the plane wave traveling at
0° than the plane wave iraveling at 45°.

To gain a better measure of the effect of grid anisotropy,
the phase difference per wavelength between a plane wave
propagating at 0° and one propagating at 45° with respect
to the grid lines is plotied in Fig. 3. The distance required
to obtain a phase difference of #/8 was calculated using
10, 20, and 40 PPW. These resulis are presented in Ta-
ble 1. Dispersion and grid anisotropy can be decreased
by increasing the PPW; however, a high PPW value cou-
pled with a large computational domain is costly. The
memory required for a nA-by-mA problem is given by
nm-58-(PPW)? bytes assuming double precision (8 byte)
variables for the field components and material parame-
ters. The memory requirements for a nA-by-ma problem
discretized at 10, 20, and 40 PPW are given in Table 1.
Note that at 40 PPW, where grid anisotropy and disper-
sion are relatively small, the requirement is nm-87.5 KB.
As an example, for a 40\-by-40X problem the memory
required is 141.6 MB.

Since the memory requirement is O(PPW?), it can be
greatly reduced by decreasing the PPW. Additionally, the
overall computation cost can be decreased since the num-
ber of operations needed to simulate the propagation of
a pulse across the computational domain is O(PPW?).
Thus, a method that has acceptable grid anisotropy and
dispersion at moderate PPW values (10 to 20 PPW) is
needed to solve large problems more efficiently.

II1. Higher-Order Techniques

One way to minimize numerical dispersion is to improve
the accuracy of the difference equations used to approxi-
mate Maxwell’s curl equations. Previous authors have de-
rived fourth-order approximations using additional terms
of a Taylor series expansion [4]-[9]. Alternatively, the
fields can be approximated by four- or six-point Lagrange
interpolating polynomials. The derivatives of these La-
grange polynomials are then faken to obtain fourth- or
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Figure 1: Normalized dispersion curves for the YA, 2-4 method, and the 2-6 method for a

plane wave traveling at 0° and 45° with respect
(PPW) discretization.

sixth-order approximations, respectively. The final differ-
ence equations obtained from a Taylor series expansion or
using Lagrange polynomials are identical. The four-point
Lagrange interpolating polynomial, along the z axis, for
the electric fieid is [10]
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Taking the derivative of (4) with respect to p and evalu-
ating at z = (i + 1/2)h, (i.e., p= 1/2) gives
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Similarly, the sixth-order approximation is given by
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to the grid lines versus points per wavelength

The derivatives with respect to y are found using the same
approach.

This technique can be applied to temporal as well as
to spatial differencing [9], but application to the tempo-
ral derivatives requires storage of more temporal values
than Yee’s method. Fang has developed a fourth-order in
time and space algorithm that does not require additional
temnporal values but reqguires additional spatial field val-
ues [8]. Since one of our goals is to minimize memory
requirements so that large problems can be simulated,
the higher-order differencing methods are applied only to
spatial derivatives. This yields a second-order in time
and fourth-order in space or a second-order in time and
sixth-order in space set of differencing equations. For ex-
ample, the equation for updating the electric field in the
2-4 (lossless) method is
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Stability requirements are more stringent for the
higher-order methods. The stability requirement (two-
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Figure 2: Phase error per wavelength curves for the YA, 2-4 and 2-6 methods for a plane

wave fraveling at 0° and 45° with respect to
(PPW) discretization.

dimensional) for the YA is At < h/\/icmn. For the 2-4
method the requirement is At < Sh/v/2¢max, while for
the 2-6 method it is At < 12%h/4/2cmay. By sefting
At = h/2¢max, stability is ensured for all the methods
examined in this paper. Appendix A presents a stability
analysis for the higher-order methods.

The 2-4 and 2-6 dispersion curves are plotted in Fig. 1
and the phase errors per wavelength are plotted in Fig. 2
(Appendix B presents the relevant equations). Note that
the dispersion curves in Fig. 1 are above unity for all PPW
values and that the variation between the 0° and 45°
curves is much less than in the YA. For the 2-4 method the
0° and 45° curves do not differ significantly until below
approximately 12 PPW while the 2-6 curves do not differ
appreciably until below approximately 8 PPW. Also, the
dispersion curves for the higher-order methods are flatter
than those of the YA, Thus, the 2-4 and 2-6 methods will
cause less pulse broadening and distortion than the YA.
In Fig. 2 the phase errors for the 0° and 45° curves do
not differ significantly and are approximately the same as
the 45° curve for the YA. Note in Fig. 2 that the phase
errors for the 2-4 and 2-6 methods are similar, but error
associated with the 2-6 is slightly larger.

The results plotted in Figs. 1 and 2 are too similar
to gauge how the higher-order methods affect anisotropy.
To demonstrate the reduction in anisotropy, the phase
error between a plane wave propagating at 0° and 45°
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the grid lines versus points per wavelength

with respect to the grid lines is plotted in Fig. 3. It can
be seen that the higher-order methods decrease this error
by orders of magnitude compared to the YA. The dis-
tance required to accumulate a phase difference of 7/8 is
presented in Table 1 for the higher-order methods. As re-
ported previously [5]-[11], the higher-order methods pro-
vide a reduction in anisotropy at all PPW values.

With improved grid anisotropy comes a higher compu-
tational cost at each field point. For a two-dimensional
problem, the number of floating point operations needed
for a set of field points (E;, H;, Hy) is 12 for the YA, 36
for the 2-4 method, and 52 for the 2-6 method. Although
the higher-order methods are more expensive per point,
a smaller PPW value can be used than for the YA. Us-
ing the higher-order techniques, the lower bound on the
PPW may be dictated by the physical complexity of the
scatterer rather than the need to control dispersion and
anisoiropy.

Shlager et al provide an excellent cost analysis of var-
ious higher-order FDTD methods [11]. Once the PPW is
known, the memory requirements and fioating point oper-
ating cost for each method can be calculated. Petropou-
los derives a formula for determining the PPW for a given
dispersion error for both the YA and the 2-4 method [12].
As Shlager et al and Petropoulos state, for a given dis-
persion error the higher-order methods require less com-
puter resources due to the smaller discretization required.
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Figure 3: Phase difference between plane wave traveling at 0° and 45° with respect to
the grid lines per wavelength curves for the YA, 2-4 and 2-6 methods versus points per

wavelength (PPW) discretization.

[PPW] YA T 24 | 26 [ Memory ||
[ 10 7.18% | 119.13A 1801.95 nm - 5.47 KB
[ 20 [ 20.98X | 1846.543 | 108666.0X | nm.21.86 KB
[ 40 ] 121.17X7] 29288.3X | 6.85107 x 10°A | nm - 87.50 KB

Table 1: Distance to produce x/8 phase error due to grid anisotropy and the required
memory for a nA-by-mA problem discretized at a given points per wavelength (PPW) value.

However, dispersion analysis only predicts errors in ho-
mogeneous regions. It cannot account for errors due to
stair-step approximations of material boundaries. It also
does not account for errors at material boundaries caused
by the use of increased spatial stencils used in approxi-
mating the spatial derivatives.

In Sections 6 and 7, the accuracy of the YA, 2-4 , and
2-6 methods are compared using a free-space transient
problem and scattering from a large, weakly-scattering
object. In these comparisons, the PPW for each method
is the same. Before examining these results the boundary
conditions for the higher-order methods are covered.

IV. Absorbing Boundary
Conditions

For points close to the edge of the computational grid,
higher-order methods require information exterior to the

computational domain. In an attempt to circumvent this
problem, different FDTD algorithms were layered near
the boundary. At the boundary the YA was used with a
second-order, one-way wave equation operator absorbing
boundary condition [13]-[15]; then the 2-4 method was
used for the next set of internal points. Finally, either
the 2-4 or the 2-6 algorithm was used for the remain-
ing internal points. This approach failed because of the
impedance mismatches due to the different dispersive be-
havior for each of the methods. A wave traveling between
the 2-6, 2-4, and the YA regions is partially reflected (as
if material discontinuities were present). To solve this
problem Levander added a telegraphy region [16], which
requires the use of an additional layer of grid points and,
consequently, additional memory and computations. An-
other approach is to use a combination of ABCs. This
approach is successful for very short transient pulses but
is unstable for CW inpui. Small reflections from the out-
ermost layer make the internal layers unstable.



An acceptable solution was obtained using an image
based boundary method [18]. An image of the fields in-
ternal to the grid was used to find the fields outside the
computational grid. At the boundary both the original
internal waves and the external image waves are absorbed
using the equation of images. At the right boundary [18]

(

where ¢ is the speed of propagation in the medium, X,
is the position of the right boundary, &(z — X;) is the
Dirac delta function, and B[E;(z = X})] is an absorbing
boundary operator.

Different absorbing boundary condition operators were
examined with the image boundary method [13]-[17]. The
Liao operator [17] was found to be unstable for both
transient and CW inputs. Mei and Fang’s superabsorb-
ing approach was briefly examined for use with the im-
age boundary method but was not implemented due to
difficulties in combining their technique with the image
method [19]. The operator found to work best was the
second-order, one-way wave equation operator [13]-[15]
which is given by
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where o is the absorbing boundary condition coefficient
that controls the amount of absorption at different inci-
dent angles. The second-order partial derivative terms
are difficult to implement in a leap-frog time differencing
scheme. To remove these terms, (9) is integrated with re-
spect to time and Maxwell’s equations for the TM-mode
are used [20]. Since 8E,(z = X;)/8z = 0 because of the
image condition (E,(z = X,) is even across the bound-
ary), the result is given by

Br{Ex(z = X3), He(2 = X3)] =

fa;E,(z =X3) + apco -(%H,(z =X3) (10)
where the notation By represents the result of the inte-
gration of (9) with respect to time.

Normally (10) is set equal to zero to provide the equa-
tion used to absorb waves at the boundary. However, in
the image boundary method, it is used in the equation of
images (8). To see how this is accomplished examine the
wave equation

(

To implement the image boundary method o is inter-
preted as an operator on E, such that d(cE,)/dt =

aﬁ

a
—— 2 — —
Zo7 v ) E, + p5 (0F;) = 0 (11)
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Br[E.(z = X3), Hz(z = X;)] at the boundaries. Since we
assumne that the fields are initially zero, we can take the
integral with respect to time once more. The final result
for the “loss” needed to implement the image boundary
method is given by

ocE.(z = X3) = &

nlAr
2ac, [t i) H = X)) dt
+ R [ gy Ha(z = %)

E,(:I: = X3)

(12)

For the left boundary the result is identical. Top and
bottom boundary conditions are found in a similar man-
ner. The corner conditions are found using the first-order,
one-way wave equation operator. The resulting “loss” ex-
pression for all corners is given by

4
pepAr (13)

The performance of the image-based boundary method
is similar to that of the second-order, one-way wave equa-
tion operator [15, 20]. For our work, a = 0.6 provided ac-
ceptable absorption over a wide range of incident angles.

(corner) Bz = E.

V. Two-Dimensional, Free-Space
Transient Results

To compare the Yee, 2-4, and 2-6 methods we use the
following simulation. An 80A-by-80A grid is discretized at
15 PPW for a frequency of 3 MHz in free space. A Gaus-
sian pulse point source is placed near the left edge of the
computational grid. This pulse has a half-power band-
width of 5.9 MHz. The initial time for these simulations
and the introduction of the pulse occurs at t = —+/100
where o2 is the variance of the Gaussian pulse.

For the 2-4 and 2-6 methods, since grid anizotropy is
small, the speed of the medium is adjusted to make the
ratio of the phase velocity to the speed of the medium
unity (cp/eo = 1.0) at a frequency of 3 MHz (this fre-
quency was chosen for the CW scattering case discussed
below) with the discretization set at 15 PPW. This is
accomplished by multiplying the differencing coeflicients
by the average c,/c, computed over propagation angles
from 0° to 45° in steps of 1°. For the 2-6 method the
correction is co/c, = 0.998175337; for the 2-4 method
the correction is m = 0.998241986. The uncorrected
2-4 method has a maximum ¢, /co = 1.001794346 and
a minimum ¢p/co = 1.001687929 and the uncorrected
2-6 method has a maximum ¢, /co = 1.001829583 and
a minimum ¢;/co = 1.00182639. No correction was at-
tempted for the YA because a correction would amplify
the YA anisotropy. The correction for the YA would
be co/c, = 1.003710175. The maximum and minimum
uncorrected normalized phase velocities for the YA are
cp/co = 0.9981548 and ¢, /co = 0.9944013, respectively.
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Figure 4: Two-dimensional, free-space transient pulse simulation after 1800 time iterations.

Diagram 4a is the desired result, 4b is the YA

result, 4c¢ is the 2-4 result, and 4d is the 2-8

resuit. The magnitude of the wave is represented in greyscale with dark corresponding to
the highest magnitude. Source location is indicated with an “X.”

The results are shown in Fig. 4. Each snapshot is taken
240 time steps after the introduction of the pulse into
the FDTD grid. In these figures the magnitude of the
electric field is displayed, with the dark areas representing
the highest amplitudes. The location of the source is
indicated by an “X.”

To quantify the error between the desired result and
the simulation resuli a Transient Energy Difference Ratio
(TEDR) is defined as

TEDR(t) = f (E,(r,t) — Eu(r t))?ds/ f (B(r,1))? ds

(14)
where E,(r,t) is the simulation result, F,(r,t) is the exact
result, and the surface integral is taken over the simula-
tion area. Note that as defined, the TEDR is a function
of time and can be used to compare the accuracy of the
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simulation algorithms at a given time.

The exact result is shown in Fig. 4a. In Fig. 4b, calcu-
lated using the YA, the pulse has traveled approximately
8 wavelengths, at 3 MHsz, and obviously differs from the
exact result. Dispersion causes the higher frequency con-
tent of the pulse to travel more slowly. The maximum
pulse broadening occurs along the grid lines while the
minimum broadening occurs at +45° and +135° with re-
spect to the £ axis. The TEDR for the YA is 1.43.

The 2-4 result is shown in Fig. 4c. The simulation
parameters are the same as for the Yee method. Although
there is a slight amount of pulse broadening at +£45° and
+135°, there is clear improvement over the YA. In this
case the TEDR is 0.586. Broadening iz evident prior to
the pulse peak because the propagation speed increases
as the frequency increases.
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Figure 5: Geometry for scattering from a 0.5 ¢m
radius cylinder. The line denoted by “T™ represents
where the results are recorded (tangent line).

In Fig. 4d the result from the 2-6 method is shown. The
amount of pulse broadening is similar to the maximum
broadening for the 2-4 result. Because of the decrease
in grid anisotropy, however, it is nearly constant over all
propagation angles. As with the 2-4 method the broad-
ening occurs prior to the peak. In this case the TEDR is
0.869; this is larger than for the 2-4 method and is caused
by a slightly larger spread of energy over time due to the
larger phase error per wavelength.

VI. Scattering Results

To further evaluate the performance of the YA, 2-4,
and 2-6 methods we examine a two-dimensional steady
state problem in the presence of a scatterer. The problem
is discretized at 15 PPW for 2 frequency of 3 MHz in
free space. The background material is composed of a
lossless material with € = 4.444 x 1072° F/m and p =
1000.0 H/m. A cylinder is centered at the origin of the
coordinate system as shown in Fig. 5. The radius of the
cylinder is 0.5 cm. This corresponds to a radius of 10A
in the background material at 3 MHz. The cylinder is
composed of a material with € = 5.13746 x 107'° F/m,
5= 940.0 H/m, and o = 3.72796x10~® S/m. A harmonic
source with a frequency of 3 MHz is placed on the y axis
at y= —2.2cm.

It can be shown that the electric field for a TM-mode
wave is equivalent to the acoustic pressure [21]. Thus,
our problem is analogous to an acoustics problem for a
fat-like cylinder in water which is of interest in ultrasound
applications for biological materials. To convert between
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acoustic material parameters and eleciromagnetic param-
eters set € = 1/pv? and p = p where p is the density of
the material and v is the speed of sound in the medium.
In water v = 1490 m/sand p =1 g/cms. The cylinder
has v = 1434 m/s, p = 0.94 g/cm’, and an attenuation of
o = 25.213 1/m [23].

All fields are assumned to be zero prior to the excitation
of the line source. When the fields reach steady state, the
magnitude and phase are measured along a line tangent
to the cylinder but on the opposite side of the cylinder
from the source (see Fig. 5). The results for the various
methods are compared to those using a FFT-Conjugate-
Gradient moment method (FFT-CG) [24, 25]. The mag-
nitude is shown in Fig. 6 while the phase is shown in Fig.
7. Because the results are symmetric about 2z = 0, only
the results for z > 0 are presented.

To check the accuracy of each of the simulation meth-
ods a Steady State Energy Difference Ratio is used. Simi-
lar to the TEDR but taking into account the steady state
excitation, the SEDR is defined as

SEDR:_/Ilf,',(r)—E‘t(r)ﬁdl//llﬁ't(r)lzdl (15)

where in this case E, is the complex electric phasor from
the simulation, E; is the complex result from the FFT-
CG, and the line integral is taken along the tangent line.
For the YA the SEDR is 1.2468, while for the 2-4 method
the SEDR is 0.1279, and for the 2-6 method the SEDR is
0.1455. Overall the 2-4 method provides the best accu-
racy with the 2-6 method nearly as accurate. The YA is
not as accurate and from Figures 6 and 7 it can be seen
that the phase errors are the most substantial. The 2-6
method is slightly less accurate than the 2-4 due to the
slightly larger phase errors inherent in the 2-6 method.
However, for the magnitude response there are areas in
which the YA is more accurate |z} > 0.4 cm). To under-
stand this consider the magnitude and phase errors for
each of the simulations.

For the magnitude, the higher-order methods provide
better agreement with the FFT-CG result than the YA.
The mean-square error for the magnitude is 0.103% for
the YA, 0.078% for the 2-4 method, and 0.090% for the
2-6 method. For the phase, the higher-order methods
are much more accurate than the YA. The mean-square
error for the phase is 54.70% for the YA, 0.49% for the
2-4 method, and 0.65% for the 2-6 method. The higher-
order methods are more accurate near z = 0 and less
accurate elsewhere. For |z| > 0.4 cm radiation from the
creeping waves propagating along the interface between
the background and the scattering cylinder contributes a
significant portion of the scattered field.

That the magnitude response for the higher-order
methods is less accurate where the creeping wave radi-
ation is significant is attributed to the domain over which
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Figure 6: Magnitude versus distance along the tangent line for the YA, the 2-4 method, the
2-6 method, and the FFT-Conjugate-Gradient moment method.

the derivative is calculated. In all the simulations the
discretization of the problem is identical; only the size
of the spatial stencil used in calculating the derivatives
changes. This spatial stencil is two points for the YA
compared to either four or six points for the higher-order
methods. Thus, at a material boundary the interaction
between the boundary and the spatial derivative sten-
¢il are larger for the higher-order methods than for the
YA. Errors caused by this interaction are largest for a
guided wave, such as a creeping wave. Also from our ex-
perience with transient simulations, reflections from the
boundary conditions cannot account for the error in the
higher-order methods for |z| > 0.4 cm. Thus, we assume
that the inaccuracy in this region is due to the increased
spatial stencil required in simulating the creeping wave
on the surface of the cylinder. Two recent papers dis-
cuss the impact of stair-step approximations for perfect
conductors using the YA; however, they do not address
dielectric boundaries {26, 27]. Further study is needed
to examine and understand the role of increased spatial
stencils used in higher-order methods and for dielectric
material boundaries.

VII. Conclusions

Finite-Difference Time-Domain algorithms are inher-
ently dispersive and anisotropic. For the Yee Algorithm
(YA) errors due to numerical dispersion and anisotropy
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can be significant. In a large problem, 40 wavelengths
and larger, phase errors can quickly exceed #/8. Phase
errors can be reduced at the expense of finer discretiza-
tion. However, fine discretization leads to prohibitive
memory requiremnents and high computational cost due
to the large number of points that must be computed
and stored.

To reduce the resource requirements, higher-order ap-
proximations were used for the spatial derivatives in
Maxweli’s curl equations. Two higher-order algorithms
were developed, one fourth-order in space and second-
order in time and the other sixth-order in space and
second-order in time. These algorithms reduced both
pumerical dispersion and grid anisotropy, permitting a
smaller number of points per wavelength to be used and
thus saving computer memory and reducing the total
number of operations needed. The edges of the computa-
tional domain were treated using an image-based absorb-
ing boundary condition.

Both transient and CW simulations were performed to
compare the accuracy of the YA and higher-order meth-
ods at a fixed discretization. This was done to demon-
strate the improved accuracy that can be obtained when
using a higher-order method. A two-dimensional pulse
in free space demonstrated the effect of dispersion and
grid anisotropy for the various algorithms. The effects
of grid anisotropy and dispersion were clearly evident for
the YA, while they were greatly reduced using the higher-
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order methods. Based on iransient and steady state en-
ergy difference ratios (TEDR and SEDR) the 2-4 method
is more than twice as accurate while the 2-6 method is
approximately 1.65 times as accurate as the YA for the
test cases examined in this paper. Simulationsinvolvinga
large, weak scattering cylinder illuminated by a harmonic
line source were performed. The higher-order methods
were approximately an order of magnitude more accurate
than the YA. However, the higher-order methods were
less accurate in magnitude response when radiation from
creeping, or guided, waves was a significant part of the
scattered field. More work is required to fully understand
the interaction of material interfaces with the increased
spatial stencil used in the higher-order methods.
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Appendix A: Stability Analysis

The stability analysis presented here is an extension
of the analysis reported by Taflove and is based on the
Courant, Friedrich, and Levy (CFL) and von Neumann
methods [28]. Waves are decomposed into Fourier eigen-
modes and their eigenvalues are examined to find the re-
lation between Af, Az and Ay that guarantees stability.
The FDTD difference equations are examined using a sep-
arate analysis for the stability for the temporal derivative
approximation and the spatial derivative approximations.
The analysis for the temporal derivative approximation
provides the upper bound for the eigenvalue for stable
eigenmodes. The spatial analysis provides the bounds for
the spectrum of plane wave eigenmodes. Then by requir-
ing the complete spectrum of eigenmodes to be contained
within the stable range, all possible wave modes will be
stable.

Without loss of generality, TM mode waves are as-
sumed to propagate in a homogeneous medium. The
equations of motion are

OF,

1 (8H, &H,
at‘E'(az_ay) (16)
8H, 1 8E,
8 p 0y (1n
8H, 1 @E,
8t —;' oz (18)

From the work by Tafiove the time eigenvalue prob-
lem gives the requirement for stability due to time-
differentiation alone. Taflove shows that the eigenvalue
is purely imaginary and must be bound for stability by
[28]

| Tmag(A) |< (19)

where A is an eigenvalue. Since all the algorithms consid-
ered in this paper use second-order time differences this
bound is required for the YA, 2-4, and 2-6 methods.

However, spatial stability requirements are different for
each of the three algorithms. To start, isolate the right-
hand side of {16) through (18) as an eigenvalue prob-
lemn and replace the spatial derivatives with the difference
equations.

A€E,(i,§) = [daHy(i + 5/2,7) + da Hy (i + 3/2,7)
+diHy(i +1/2,7) ~ di Hy(i — 1/2,7)
— daHy (i ~ 3/2,5) - ds B, (i — 5/2, )]/ A=
— [daHz(3,7 +5/2) + da Ho (3,5 + 3/2)
+di Ho (7 + 1/2) — d1 Ho (3,5 — 1/2)
—daHo(i,5 — 3/2) — daH. (3,5 — 5/2)]/ By (20)
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ApH(3,5) =
—[daE, (i, + 5/2) + d2 E. (3,7 + 3/2)
+diEy(i, + 1/2) — d1 B (4,5 — 1/2)

- dzEz(i: i-3/2)— dSEz(isj - 5/2)}/Ay (21)
APH?(ix .7) =
I'£3-Ez(‘ir + 5/2:j) + dQEz(i + 3/25 J)
-+ dlEz('i"}' 1/2:j) - d!.Ez(i - 1/2: J)
— &E,(i - 3/2,7) — dsEs (i — 5/2,§)]/ Az (22)

where E,, H;, and Hy are the eigenmodes with eigenvalue
A, E.(i,j) = E,(i- Az,j - Ay) with the magnetic field
components having a similar interpretation, and for the
various metheds

Yee’s Method (2-2): dy =1
dz =0
dz=0
2-4 Method: d; = 27/24
dy = —~1/24
da =0
2-6 Method: d; = 2250/1920

d; = —125/1920
ds = 9/1920

Now, assume that the eigenmodes are TM plane waves
propagating in two dimensions

Ez(i: J) = Esoeqisi&.‘-i’jA") (23)
Ho(i, ) = HopeFeiBAothuiln) (24)
Hy(i,5) = Hyoezti'iAf'-‘-E’jAﬂ (25)

where E,,, Hzo, Hy, are the amplitudes of the compo-
nents of the propagating waves, k. and i;y are the = and
y components of the Fourier wave vector, and 3 = V-1
Using this expansion, stability for any wave can be exam-
ined since any wave can be decomposed into its temporal
and spatial representation.

Taking the above eigenmodes and substituting them
into (20) through (22), using Euler’s formula, and remov-
ing common terms, yields

Heo = ~Bror g [dasin(5 4y F+dasin(34, )+ sin(4y)]
(26)

Hy, = E,,Aﬁ—;{da sin(54.)+da sin(34,) +d1 sin(?, )i
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B, =
2, {%f[ds sin(54.) + d; sin(34;) + d, sin(4,)]

— Bee [dy sin(5.4,) + dzsin(34,) + dy sin(4, )] } (28)

where A, = E,Amjz and A, = Izg Ay/2. Then substitut-
ing (26) and (27) into (28) and solving for A gives

-dq

A= —=- (Z:/A2% + 2,/ A7) (29)

where
Z; = [d3sin(54.) + d3 sin(34.) + dy sin(4.)]*  (30)
Zy = [d3sin(54,) + dzsin(34,) + d1 sin(4,)]*  (31)

To examine the bounds on A, expand Z, and use trigono-
metric identities for sin(3A;) and sin(5A4;) to obtain
an expression containing only even powers of sin(A4,),
sin(34,), and sin(5A;) (a similar approach is used for
Z,). The result is

Z. = d3sin*(54,) + d2sin’®(34.)
+ disin®(A,) + 2d1d;[3sin® (4, ) — 4sin*(4, )]
+ 2dyd3[55in%(4,) — 20sin*(A. ) + 16 5in®(4.)]
+ 2dyd3[155in%(A4,) — 80sin*(A4;)

+ 1285in®( A, ) — 64sin?(4.)] (32)

Clearly, all the even powers of sin(A;), sin(34,), and
sin(5A.) are between 0 and 1. Thus the upper bound for
both Z: and Z, are found using the appropriate values

for dy, d3, and d3 for each method (YA, 2-4, and 2-6).
The results are

Yee's Method (2-2): Max(Z)=1
2-4 Method: Max(Z) = 49/36
2-6 Method: Max(Z) = 22201/14400

where Max(Z) = Max(Z,) = Max(Z,).

From (29) A is purely imaginary and the bounds on A
are given by
Yee’s Method (2-2):

1 1 1/2
| Imag(A) | < 2¢- (m + 3?) (33)
2-4 Method:
7 /1 1 \*?
! Imag(A) |£ 2c- E . (K; + 'A?) (34)
2-6 Method:
149 1 1 \?
<2 —— o | —— —— 35
tmegld) 5201 (mtoe) 09
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To guaraniee stability for an arbitrary eigenmode, the
eigenvalues must be contained completely within the
bounds for the spatial modes and the time stepping
bounds. Thus combining the spatial bounds with the
bound from the time-differencing, the stability limit for
each of the algorithms (setting Az = Ay =h) is

Yee’s Method (2-2):

h
At < 36
<= @)
2-4 Method:
arc i b (37)
=T V2
2-6 Method: 120 &
< 2
At < 125 C‘\/§ (38)

The requirement for Yee’s algorithm is well known. The
result for the 2-4 method agrees with the calculation by
Fang [8].

Appendix B: Calculating
Dispersion Curves

In this appendix the dispersion eguations for the vari-
ous methods are presented. This analysis is an extension
of the method first reported by Taflove [28]. TM propa-
gation is assumed. A plane wave propagating at an angle
¢ with respect to the z axis is given by

E™(i, 5) = E,, e¥klcos(8)YiAatain(9)i Ayl-wnly) (39)
H:(i: J) =H;, e’v(k[msw}"Az-l»sin(ﬂjAy]-—wnAt) (40)
HM:, §) = Hyo eHklcos(#YiAz+sin(#)j Ay]-wnliit) (41)

where k is the wavenumber, w is the frequency, : = /=1,
and E;,, H:,, H,, are the field amplitudes.

The expressions above are placed into the discretized
Maxwell’s equations, and amplitude terms are eliminated
to obtain the following expression

3
(s (x8) -
[dy sin(£E cos ¢) + dy sin{ £ cos ¢)
+ dasin(3£2 cos ¢)] g [d1sin(£E sin ¢)

+dpsin( 32 gin §) + dysin(Ltsing)]”  (42)

where we have set A = Az = Ay. Then setting the val-
ues for d, dz, and ds (from Appendix A) for the various
methods, the effective wavenumber % can be obtained nu-
merically for a given set of h, At, and propagation angle
¢. Once k is known, the effective phase velocity can be
calculated.



