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! Abstract—This paper presents an application of the Dynamic
Preisach Model, as proposed by Bertotti, to the analysis of
electromagnetic phenomena inside a ferromagnetic lamination
subject to imposed time-periodic magnetic flux. The field
problem, considered as one dimensional, is formulated in terms
of magnetic field and the Fixed Point technique is used for the
treatment of the hysteretic nonlinearity. The solution is carried
out in the harmonic domain by means of the Finite Element
method. The original implementation of the Dynamic Preisach
Model is detailed and comparisons with measurements are
presented in the case of sinusoidal excitations.

1. INTRODUCTICN

The analysis of the electrumagnetic field distribution
inside a ferromagnetic iron sheet has always been addressed
as an important problem in electrical engineering. The
evaluation of the phenomena going on inside a
ferromagnetic lamination can, in fact, give important
indications on the performances (supply currents, losses,
efficiency, etc.) of the most common. electromechanical
devices.

In the past, the problem was solved analytically.
Introducing some drastic simplifications on the spatial
distribution of magnetic field and induction, formulae were
elaborated for the evaluation of eddy current and hysteresis
losses. Despite their smplicity, these formulae give loss
predictions which are quite correct in the range of flux
density and frequency values usually present in classical
electrical machines and in the standardised experimental
conditions used in an Epstein yoke setup.

The evolution of technology, which tends to increase the
stress of the materials in innovative devices, and the impact
of electronic sapply, that is the use of non-sinnsoidal supply
waveforms, have, unfortunately, shown that the classical
formulae are not always reliable, calling thus for a much
deeper stady of the phenomenon.

From the previous considerations, there is an evident need
for computational procedures able to take into account the
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complex matetial bebaviour, together with the presence of
eddy currents under time-periodic, not mnecessarily
sinusoidal, supply conditions.

The problem is characterised by a simple geometry; in
fact, since the usual thickness values of the ferromagnetic
sheets, ranging from 0.35 to 1 mm, are much smaller than
the other dimensions, the problem can be considered as one-
dimensional.

Despite the simple geometric structure, the analysis of the
electromagnetic field is made difficuit by the material
modelling. Nonlinearity, hysteresis and dynamic effects
cannot be neglected when 2 thorough assessment of the
phenomenon is needed All the characteristics of the
problem (material modelling, eddy cumrents, time-
periodicity, flux imposed supply) set sericus constraints on
the possible setup of the field problem and on its numerical
solution, so that a special formulation has to be devised. In
addition, the possible presence of rate-dependent hysteresis
effects compels the use of some material model able to take
into account this kind of phenomena. The Classical Preisach
Model (CPM), which has been extensively and efficiently
used for the simulation of hysteretic phenomena, is,
unfortumately, not able to model dynamic effects. An
innovative material model, based on the CPM and proposed
by Bertotti [1], correctly simulates dynamic hysteresis effects
but, as will be explained in the following, it requires a
special formulation in order to be used in a computationalty
efficient way.

The research activity performed on this subject is reported
in the following sections: Section II discusses the field
formulation used for the finite clement sohution of the
problem; Section III presents the dynamic hysteresis model
and its particular implementation. Finally, Section IV deals
with the comparison with measurements.

I1. FIELD FORMULATION

As it has been mentioned above, the mathematical
formulation of the problem is significantly constrained by
the requirements imposed by the material modelling and
supply conditions.

The domain under consideration is Tepresented by a
lamination as sketched in Fig. 1. As it is well known, the
thickness of the iron sheet (x coordinate) usually ranges from
0.35 to 1 mm, while it extends in the y and z directon to



several centimetres. This geometry models well the
operating conditions of the iron lamination when used in the
core of electrical machines; in addition it is a good
tepresentation of the standardised measurement conditions
inside an Epstein yoke setup, so that comparisons with
experimental values can be performed easily.
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Fig. 1 - Geometic domain of the problem and Cartesian reference axes.

The field equations governing the problem are:

V><15=-.-a£ H
ot
VxH=J 2

together with the material relationships:
B=y(H) or H={(B) and J=0oE

Following the reference frame shown in Fig. 1, it can be

stated that:
B=B(x0j; H=H,G.0j; J=J(k ©

Starting from the previous equations, two formulations
can be devised: a potential one based on the magnetic vector
potential A and a field one based on the magnetic ficld H.
Both formulations allow one to take into account eddy
currents, but they are different from the point of view of the
imposition of external supply sources.

In the potential formulation, the imposed magnetic flux
flowing through the lamination is given by the difference
between the values of A at the boundary of the sheet, which
is the total value of magnetic flux flowing through it. The
flux is thus imposed by means of Dinchlet boundary

On the conmtrary, it is easy to show that the boundary
values of magnetic field H are tied to the supplied current. In
this case, the imposed flux has to be imserted in the
formulation by means of additional constraints. The
imposition of the supply flax is not univocal [2], but one of
the possible solutions is to add a supplementary equation to
the previous set, that is:

®(r)j = [, x| H(x. )t S
where @ is the imposed flux, having y direction with versor
j, and L is the thickness of the lamination.

Both previons formulations need a special strategy for the

solation of the nonlinear problem. The Fixed Point (FF)
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technique is a well established nonlinear solution scheme
[3,4] not only for the usual monodrome nonlinear
characteristics, but also for polydrome hysteretic curves [5].

The basic assumption of FP is the splitting of the
nonkinear characteristic in two terms: a linear one and a
nonlinear residual, that is:

*(H)=p H+S(H)
&(BY=v;B+R(B)

where (7, Vy are constant parameters, while R and § are
the nonlinear residuals which can be iteratively evaluated.

Despite its natural implementation of flax conditions, the
potential formulation has a major drawback; in fact, it
provides the behaviour of the magnetic flux density, so that
the R(B)={{B)—v,B relationship has to be used in the
iterative scheme. This feature is in contrast with the most
used hysteresis models which handle the curve B = y(H).
Even if an inversion of these models can be devised, as in
the case of CPM [6], this procedure tends to slow down
nmmerical computations, In addition, not all the hysteresis
models allow this inversion, as for mstance the dynamic
Preisach model that has been used. This fact forces the use of
an H-based formulation, which, at the moment, seems to be
the only ane able to take into account both eddy currents and
dynamic hysteresis effects.

The linearised field equation inserted in the iterative loop
then becomes:

(3)

VXV x Hy = -6~ prHy + Spr( H))

ot
where m is the iteration index.

Since the phenomenon wmder analysis is time-periodic and
the equation has been linearised, its time behaviour can be
treated by means of harmonic decomposition. Equation (6) is
thus decomposed into N harmonic equations leading to the
final iterative relation:

6

o™ j=f,(ur HE +85h)ax ™)
where 7 is the harmonic index.

Equation (7) can then be discretised by means of the Finite
Element Method (FEM) using the Galerkin weighted
residual method.

At each iteration step, the Finite Element solution of the
problems (7) gives the harmonic content of H in each
element and then the time behaviour of H is deternsined.
nsing the inverse Fast Fourier Transform. In order to
campute the residual S, the waveform of the magnetic flux
density is evaluated through the Dynamic Preisach Model
(DPM), following the approach proposed by Bertotti [1]
which gives the evolation of the magnetization starting from
a known initial state. Since the periodic conditions do not
allow an a-priori knowledge of the system states, an initial
demagnetised state is considered and the transient B

{V xVxH™ = —jcrconp.rlif,,") - jcmns-(:-)l



evolution, under the computed periodic H excitation, is
studied wntl the periodic permanent behaviour is reached
(usually after 34 periods). Thus, the waveform of §,, m
each e¢lement is computed and, after a Fast Fourier
Transform, the right hand sides of Eqn. (7) in the harmonic
domain are updated. The process is iterated umal
convergence. A flow-chart of the iterative scheme is
presented in Fig. 2.
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Fig. 2. Schematic flowchart of the procedure used in the Finite Element
computations.

I1i, DYNAMIC HYSTERESIS MODEL

Simulation of ferromagnetic hysteresis can be performed
by means of several models. Among them, the Preisach
model [7] is by far the most used and the most reliable.

Even if it was ongmally devised for modelling
ferromagnetism, not all the features of ferromagnetic
hysteresis are efficiently modelled by CPM. In fact, since
CPM is based on the superposiion of the responses of
elementary rectangular operators, whose state is dependent
only on the actual value of the magnetic field, it camnot
model rate-<lependent hysteresis effects.

Thus, several Preisach based models, which introdunce
some modifications to the CPM to follow the material
behaviour better, have been proposed. The modification
proposed by Bertotti [1] changes the behaviour of the
elementary operator. Its state no more follows a rectangular
characteristic but is governed by an ordinary differential
equation. The clementary operator with up and down
switching field values at (c,p), has a nommalised
magnetisation value mled by:

aM

?zkd(H—a) Hza
Y t:))
—-=k(H-B) Hs<p

where |[M| < 1 and k is a material dependent parameter.
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The new operator is congruent with the Classical Preisach
one for slow varying field, tut it changes its output when the
rate of the applied field is increased, as sketched in Fig. 3,
where clementary loops for different frequencies of the
applied field are shown.
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Fig. 3. Magnetisation response of the elementary Bextotti's operator for different
nomalised frequency values of applied ficld

The implementation of DPM within a computational
procedure for the magnetic ficld solution is not a simple
task. In fact, this model establishes a time evolution of
magnetisation in the Preisach elementary operators and
allows them to assume intermediate values between the
positive and negative saturation. This means that the state of
the material cannot be defined by a staircase boundary
separating positive and negative operators, as in CPM, but
the magnetisation of any single operator has to be stored. In
addition, in order to obtain smooth responses from the
hysteresis model, several operators have to be considered,
often leading to unacceptable processing times,

For such a purpose, a new approach. is proposed reducing
the number of operators and associating each of them with a
portion of Preisach plane. Thus, for an elementary operator
centred in ¢y, f5,) we define, for an increasing excitation H,
an interval (a1 ,az) (ar<ap<ay): the magnetisation begins
to increase when H>a; (even if H<ap); for aj<H<a; the
operator is partially activated, while for Hza; the behaviour
is the one of the operator concentrated in (. Similar
considerations can be repeated for the negative switching
operation. According to this approach, the differential
equation governing the evolution of magnetisation for the
positive switching is modified to the form:

dM

== for H<a;

t

aM H ¢ ) .r ft < H

— = o, Kl H = H)WR)dh oraysH<ay (9)
% = ky(H-at) for #> a3

where H is the excitation and w is a weighting function,
which is assumed to be piecewise linear in the interval
a;~a, and zero clsewhere, as shown i Fig. 4. The
amptlitnde of this finction is computed, imposmg, for Hza,
the same behaviour as the operator concentrated m ap. A
similar relation is adopted for decreasing excitations.



Fig. 4, Weighting fanction used for the switching of the elementary operator.

The saturation of the distributed operator is a function of
the point, since it simulates the behaviowr of several
elementary dipoles. This characteristic can be modelled by a
saturation function which roles the maximum value of
magnetisation that the operator centred in @y can reach at a
given field value. The piecewise linear function sketched in
Fig. 5 is the most obvious choice.
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Fig. 5. Saturation fimction of the distributed operator.

The proposed gemeralisation, which is associated with
each elementary operator a portion of Preisach plane, is very
efficient for modelling the dynamic behaviour, but it is not
completely compatible with the static limit. In fact, the
ordinary differential equation govemning the operator
behaviour imposes an increase of the magnetisation
everytime # is greater than o, even if & is decreasing,
Obviously, this behaviour disagrees with the static Preisach
maodel, where the magnetisation is decreasing, or constant,
when the applied field is going down. In order to allow the
use of the proposed model both for static and dynamic cases,
a modification has to be introduced. This purpose 1s achieved
by means of a fimction which constrains the magnetisation
to follow a static behaviour, that 18
Buow By ¥ H, . <H,, when the frequency of the
phenomenon is under a given limit specified by the user.

The distribution. of the operators in the Preisach plane can
be obtained from the Preisach distribution fimetion (<, 5),
by a double integration of @ over the Pretsach triangle. Due
to the symmetry of the distribution fimction, the integration
¢an be performed over one half of the Preisach plane. The
double integration is performed in two steps. First, an
integration of @(a, 5) is performed over domains like the
ones shown m Fig. 6, in order to compute a function F(o)
defined as:

Flo)= % ¢la’ B)do dp’ (10)
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Fig, 6. Domain of integration of function Fya).

Given a total number N7 of operators, they are distributed in
N, lumps over the « axis according to the function Fray).
The Nﬂ operators for each lump (Nﬂ =N7/N,) are then
placed at a constant value of @ = o; according to the
function G defined as:

G(B) =% o(,B )dp (11
In such way, it is easy to define the boundary of the interval
@y — a, as the preceding and following level of o;.

In this way the operators are concentrated in the regions
where the gradient of the function ¢ is greater so that
accurate and smooth predictions can be obtained also using a
reduced number of operators. Nevertheless, experience has
shown that their number cannot be reduced below a certain
himit if an accurate prediction of losses has to be obtained. In
fact, due to the concentration of the operators in the vicinity
of the coercive field values, they are quite coarse near the
saturation level. Due 1o the linear saturation fimction used,
this fact can lead to small discrepancics in magnetisation
values in the proximity of saturation. Unfortumately, even if
these discrepancies have a small absolute value, their
contribution to the area cycle evaluation is not negligible due
to the large excursion of magnetic field in saturation, In the
practical cases a minimuwmn number of 800 operators has been
used with satisfactory results.

Figures 7 and 8 report the placement of 200 operators in
the case of a FeSi 2% material; the vertices of the
quadrangles reported in the figures represent the limits of
the area assoctated to each operator (o, +0ty; Bi+5a).

Fig. 7. Placement of 200 operators in the Preisach plane for a Fe81 2% matenal.
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Fig, 8. Placement of 200 operators in the Preisach plane for a FeSi 2% material,
zoom in the coercive field zome.

IV. COMPARISON WITH MEASUREMENTS

The proposed Finite Element scheme and the
implementation of the DPM have been coupled in a
computational procedure for the evaluation of dynamic
hysteresis effects in ferromagnetic laminations. This
procedure has been iested first versus other similar
procedures based on the Classical Preisach Model, showing
good performances both in terms of field and loss prediction
accuracy and in computational burden. It has then been
validated by means of comparisons with measurements
performed on an Epstein yoke setup.

A FeSi 3.5% material 0.35 mm thick was selected for
these tests. This material was selected because, due to its
microscopic structure, its excess loss contribution was not
negligible,

A series of measurements was performed by supplying a
controlled sinusoidal flux waveform and changing both the
maximum vahue of flux and its frequency.

Comparisons are performed on the basis of the dynamic
cycle. From the experimental side this cycle is the locus of
the flux-current measured thronghout the period. It is easy to
show that the computed boundary value of the magnetic field
H is related to the absorbed currents so that it can be easily
simulated.

Figure 9 shows the locus of the maximuwm values of
magnetic flux density inside the lamination, comparing the
distribution with another one obtained by means of CPM.
This behaviour is shown at supply frequencies of 50 and
1600 Hz. Both these figures highlight that, even in such
relatively thin sheets like the cnes taken into consideration,
it is not possible to neglect the skin effect cansed by eddy
currents,

Figures 10 and 11 show two dynamic cycles, both
computed and measured on an Epstein yoke, at 50 and 400
Hz for an average maximum value of flux density of 1 T.
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Fig. 11. Experimental and computed dynamic cycles at 400 Hz with an
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| Measured

i ———Dynamic Preisach Modsl L__,_.—,_

15+ 9

10} E
05+ E

00

05+ E

1.0+ 1

Magnetic flux density (T)

A5} 1
<1500 -1000 500 O 500 1000 1500
Magnefic field (A/m)

Fig. 12, Experimental and computed dynatric cycles at 400 Hz with an
imposed flux corresponding t & maximnm average value of 1.5 T.

Similar computations have been performed for higher
magnetic flux density values; Fig. 12 presents the computed
and experimental dynamic cycles for an average maximum
value of flux density of 1.5 T at 400 Hz.
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As can be seen, the agreernent between computations and
measurements is satisfactory both at low and high saturation
levels, even if at high frequencies some discrepancies can be
found. These discrepancies can be attributed to an imprecise
estimation of the dynamic parameter k; which is here tuned

. on the basis of the area of the cycle disregarding its shape

and has not been computed according to the microstructure
of the material.

V. CONCLUSIONS

The work performed has shown the possibility of using a
Dynamic Preisach Model mside a Finite Element
computational scheme. In order to use Bertotti dynamic
hysteresis model, a particular implementation has been
developed allowing one to reduce the number of magnetic
entities describing the magnetisation process.

The proposed approach has shown a good performance
both in terms of accuracy of results and computational times,
even if some discrepancies are still experienced.

In the future, the work will continye to increase the
accuracy of the estimation of the field by means of a more
precise identification of the dynamic coefficient £ ;.
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