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Abstract: Heterogeneous voxel models of the
human body are used in numerical computations
of induced electric fields in tissues. Various
numerical metheds are used for electric and
magnetic field sources under quasi-static
conditions. Validation of the computational
methods and detailed estimation of errors
associated with the modeling are given. Analytic
solutions for spheres (homogeneous and layered)
and other simple models are used to evaluate
modeling accuracy. Sources of inherent errors
associated with voxel models (staircase
approximation of smooth surfaces) are identified,
and methods are presented that decrease the
errors.

1. Introduction

Human exposure to electric and magnetic fields at
low frequencies including power line frequencies (50
or 60 Hz) results in induction of an electric field and
associated current density in tissue. Because of the
quasi-static nature of the electromagnetic field at
these frequencies, exposure to each field can be
considered separately. The total induced values can
be found by superposition [1] if required. The
relationship between environmental exposures and
electrical quantities induced in the body is often
termed dosimetry. The default assumption for the
dosimetry modeling conducted thus far is that the
induced membrane potential is the key transductive
event. Induced quantities are also useful for any
biological effect that depends on the tissue-induced
electric field (or current density). Effects
experimentally observed on the bone may serve as an
example [2-3]. Dosimetry has also been used as a
benchmark in derivation of limits for environmental
fields in various exposure guidelines (e.g., [4]).
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Additionally, induced quantities at specific sites within
the body (e.g., pineal gland, retina, etc.) better
characterize the local environment responsible for
biological interactions than the external field. This feature
helps to assess the plausibility of biological effect or to
estimate the quantities associated with any documented
effect.

Extensive computations of induced electric field and
current density in heterogeneous models of the human
body have been performed during the last decade (e.g.,
[5-12]). Various research groups used different methods,
but very similar body models, as reviewed in [13]. For
exposures to magnetic fields, two methods have been
used, namely the impedance method (IM) [14-15], and the
scalar potential finite difference (SPFD) technique [16-
17]. The main difference between the two methods (IM
and SPFD) is in their computational efficiency. The IM is
a vector method, and SPFD is scalar. The impedance
method leads to a matrix with 13 non-zero diagonals,
while the SPFD gives a matrix with 7 non-zero diagonals.
Dimbylow [9] has used both methods and compared their
efficiency. The comparison has indicated that 14% less
memory is required by the SPFD for the same size of
voxels and computation times for SPFD are between 1.5
to 11 times less than for the IM. The greatest time saving
is for problems requiring the longest computing times.

For exposures to uniform electric fields, several numerical
methods have been used, namely: finite difference (FD),
finite difference time domain (FDTD), quasi-static FDTD,
and hybrid of quasi-static FDTD with SPFD method. The
FDTD simulations have been run at 10 MHz and the
results scaled to 60 Hz [15], [11]. This method does not
take advantage of the quasi-static nature of the fields.
More computationally efficient is quasi-static FDTD [18],
or even more so, when this method is hybridized with
SPFD [19]. Also, the FD method with nested sub-grids
has been successfully used [10]. All computations with
the latter methods are performed at 50 or 60 Hz.
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The objective of the research presented here is
verification of numerical techniques used for high
resolution computations for an anatomically
representative heterogeneous voxel model of the
human body, and evaluation of the inherent errors
associated with the voxel model. This verification is
performed by comparison of different computed
dosimetric measures with those obtained by
analytical methods. Simple bodies of revolution are
used as tissue models. Evaluations are made for
methods used in our laboratory, namely the SPFD,
the quasi-static FDTD and the hybrid method.
However, since the most significant source of errors
is due to the voxel representation of the model, the
analyses presented are relevant to other methods.

2. Methodology
2.1 Magnetic Field

The following models are considered in the
evaluation: (1) simple homogeneous bodies, namely
spheres (circular loop currents) and ellipsoids, (2)
double-layered spheres, (3) a sphere with equatorially
varying conductivity, and, (4) infinite square-base
and other infinite right cylinders. The spheres and
ellipsoids are used as a partial verification of
numerical codes, basically to evaluate the staircasing
error for a given resolution. The symmetry of
ellipsoids and spheres in uniform magnetic fields
causes the induced fields to depend only on the
magnetic vector potential. However, for
heterogeneous bodies and arbitrary shapes, the
solution consists of two parts, one associated with the
scalar potential and the other with the magnetic
vector potential. A complete solution is tested with
equatorially stratified sphere, for which an analytic
solution has become available [20-21]. The infinite
cylinders are used to clarify the source of errors
associated with voxel models.

In a sphere or, more generally, any circular current
loop, a uniform magnetic field induces a current
density that can be directly derived from Faraday’s
law. For a time-harmonic field of radian frequency
©, the magnitude of the current density is

J, =

r
¢ COO'B'Z— 1)

where © = 27f, f is the frequency, the subscript ¢

denotes that the current density J is in the equatorial
(circumferential) direction, © is the material (tissue)

conductivity, B is the magnetic flux density normal to the
current loop, and r is the loop radius.

For a homogeneous ellipsoid with semi-axes @ X b Xc,
the current paths are ellipses, provided that a uniform
magnetic field source is aligned with one of the principal
axes of the ellipsoid. The maximum current density is in
the cross-section containing the two larger semi-axes with
the magnetic field directed along the direction of the
shortest axis. If a is the longest semi-axis, and c¢ the
shortest, the maximum current density is [22]:

2
ab
J = 2nfoB———s @)
a’ +b’
The average current density has also been computed using
the expression given in [22], with a Maple® program to

evaluate the elliptic integral required.

In a sphere with an equatorially stratified conductivity
profile the conductivity profile is given as [20], [211:

~Acos(po)

o(p) = o4 3)

where pe {1,2} is a periodicity factor, O, is a

conductivity amplitude factor, and A>0 is a
dimensionless conductivity contrast parameter. This
distribution has p conductivity maxima and minima as a
function of equatorial angle @, and a maximum

conductivity contrast of ¢**. When A =0, the uniform
sphere and its associated circular current flow are
restored. When A >0, the induced current is forced
though a conductivity gradient, and a three-dimensional
current flow results.

The induced current densities for a uniform field along
the x-axis in a conductive square-base cylinder, whose
side dimension is much less than the wavelength, can be
expressed from the analytic solution given in [23] as:

.awoB,
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where a is the side of the square, ¢ is the

conductivity, and the coordinate system is placed in
the center of the cylinder with the x-axis coinciding
with the cylinder axis. The sign before the cosine
function alternates for consecutive terms.

The principal method used in our high-resolution
computations is the SPFD method. It is basically a
standard finite-difference method under the quasi-
static approximation [6], [8]. In the numerical
implementation of the SPFD method, the three-
dimensional computational domain is discretized into
a uniform set of elementary parallelepipeds or voxels.
Within each voxel the electrical properties are
assumed constant. The scalar potential method: is
naturally confined only to the conductor, with
potentials defined at the vertices of the voxels. The
electric fields are defined as a set of discrete vectors
on the staggered array defined by the voxel edges,
with field values defined at the edge centers. These
are computed a posteriori, using finite differences of
the potential field. To allow for physical
interpretation of the results, electric-field vectors are
defined at the voxel centers by averaging the three
sets of four parallel-edge components. The magnetic
vector potential contribution must also be included.
The current density is then computed by multiplying
by the voxel conductivity. For comparison purposes,
the quasi-static FDTD method is also used [S]. The
SPFD method has been selected as the principal
method for high-resolution computations for
magnetic induction, as it places lower demands on
computer resources than the FDTD method. In the
SPFD method only the conductor (human body)
volume needs to be discretized (this occupies only
about 28 % of the volume of the minimal boundary
box for an upright posture). In the FDTD method,
the human body has to be placed within an air box.
The box walls can be as close as one cell away from
the body surface. However, the total box size also is
increased by a few (about 10) perfectly matched
layers (PMLs) to simulate infinite free space.
Finally, the FDTD method is vector-based, in
contrast to the scalar potential scheme. Therefore,
significantly more storage space is required for the
FDTD method, even though computer processing
time may be comparable for the two methods.

2.2 Electric field

The models considered here are homogeneous or layered
spheres. The analytic solutions for homogeneous and
layered spheres can be found by solving Laplace’s
equation in spherical coordinates. The boundary
condition

V-[(c+jwe)E] = 0 (6)
follows from charge conservation at the interface between
the two media (free space and outer sphere) and the
boundary conditions for the electric fields at the inner
sphere interface. Hereo = 0 for free space, and we<<c for

spheres with conductivity values under the quasistatic
approximation. Tangential electric fields must also be
continuous across each material interface.

For a layered sphere, the following results are obtained
for an applied uniform electric field E = E ¢’“Z:

E=-A, cosOf+Asing
for r<r€ D

3

3 ~
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for r<r<n; ®)

3 3
E= (-—A3 +2B, —r%}cosef'+(A3 +B, %)sinee
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forr>n, ®

with

A, =9aE, /0o

A, =30E,/0,

B, =-30E.0,/ (0'20'5)

B, =-A,=E,

3
o= joe, /[l+2ﬁgi]
nOs

and 6,=0,—0,

o, =0,+20,.

Furthermore, 1, is the radius of the inner sphere, r; is the
radius of the outer sphere, €, is the dielectric constant of

free space, and Gy, O respectively denote the inner sphere
and outer layer conductivity.
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For a homogeneous sphere, a simple expression for
the interior electric field is obtained

3jwe,

E=E ——12 (10)
(o3
Current densities are obtained as:
J=0E. (1)

Two methods are used in the numerical computations
of induced fields, namely the quasi-static FDTD [18]
and the hybrid method [24].

2.3 Numerical Measures

Numerical global measures used in the evaluation of
induced electric fields and currents (and also used as
dosimetric measures) are the volumetric average, root
mean square (rms) and standard deviation values,

computed as:
AvgE= %ilEilAv (12)
RmsE=[—1—§n; E-FAVJ% a3
veit
n 12
StdE= [%Z(IE’F - Avg E)2 Av} 14)

where V is the volume of the material (tissue) of a
given conductivity, Av is the voxel volume, and n is

the number of voxels in the material. In addition to
the global measures, the spatial maximum (max)
electric field and current density values for a given
voxel are often reported, as are measures designated
199, 195, or L50, denoting the value that is not
exceeded in 99 %, 95 % or 50 % of the voxels.

3. Results of Accuracy Evaluation
3.1 Magnetic Field

Comparisons of various measures of induced electric
field in homogeneous and layered spheres obtained
with numerical (SPFD method) and analytic solutions
are shown in Tables 1 and 2. In all cases, a uniform
magnetic field of 1 uT at 60 Hz is the source. The

uniform sphere has a diameter of 1.22 m and
conductivity of 0.25 S/m. Both layered spheres have
an outer diameter of 1.22 m and inner diameter of
1.10 m. The inner sphere conductivity is 0.25 S/m,
while the outer sphere conductivity is varied to obtain
different values of the conductivity contrast.

[l (@na)  Am-2

Figure 1a. Magnitude of the current density in a
stratified sphere: p=2, A=1.61, 0=0.2 S/m.
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Figure 1b. Absolute difference between analytic
and numerical values of the induced current
density in the stratified sphere shown in Fig. 1a.

Two versions of the analytic solution are used. All
analytical values, except those in Table 1 designated
“Analytic integral”, are obtained by computing the
fields in the centers of the voxels from the analytic
solution, and then applying the same statistics (egs.

12-14) as for the numerical solutions. Excellent
agreement between all the measures except the maximum
values is apparent for homogeneous and layered spheres.
The error in the maximum values increases with improved
resolution (Table 1). These errors depend also on the
conductivity contrast at the interface, as illustrated by the
data for the inner sphere (in Table 2). The increase in
199 for the outer layers is a direct result of large errors in
the maximum and a relatively small number of voxels in
the layers. Figure 1 shows the current density
distributions and the absolute difference between the
analytical and numerical solution. The maximum errors
in all cases are associated with a few voxels on the
interfaces with free space (infinite contrast in
conductivity).

For an ellipsoid with 2 = 0.1008 m, b= 0.2016 m and ¢ =
0.8496 m, and ¢ = 0.2 S/m, the error in the average

electric field has been computed as equal to 0.2 %, and in
the maximum about 23%. The voxel size is 3.6 mm.
Very similar errors have been noted for equatorially
stratified spheres

To evaluate whether the large error in the maximum
values is associated with the SPFD code, the same
calculations have been performed with the impedance
method code and with our quasi-static FDTD code.
Similar large errors have been observed in both codes.
Moreover, the positions of the voxels associated with the
aberrant values remain the same.

Ml(x,y,2=0.896 mm) pAim2
d T 26

y (mm)

-40  -20 20 40 60

0
X {mm}

Figure 2. Induced current density in a cylinder with an
inner corner.
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Table 1. Comparison of the induced electric field (1V/m) in 2 homogeneous sphere in 2 uniform magnetic
field 1 uT, (60 Hz) for different voxel sizes.

7.2 mm voxel 3.6 mm voxel 1.8 mm voxel
Measure | Analytic | Analytic SPFD Errors Analytic SPFD Errors Analytic SPFD Errors

integral voxel (%) voxel (%) voxel (%)
Avg 67.73 68.71 68.38 0.50 67.66 67.49 0.25 67.12 67.04 0.12
Rms 72.72 73.78 73.39 0.53 72.65 72.45 0.28 72.07 71.97 0.14
Std - 26.89 26.65 - 26.46 26.34 - 26.24 26.18 -
L50 69.69 70.05 69.40 0.79 69.51 69.50 0.01 69.11 69.44 0.48
L95 106.9 107.7 106.2 1.41 106.6 105.7 0.85 105.8 105.2 0.57
L99 112.3 1133 114.9 1.40 112.2 113.3 0.98 111.4 110.9 045
Max 115.0 116.4 138.6 19.1 114.7 141.5 23.4 1139 144.2 26.6

Table 2. Comparison of the induced electric field
in two-layer spheres of varying conductivity
contrasts. All cases use a 1-u T, 60-Hz uniform

magnetic source field and 3.6-mm voxels.

Contrast Layer Induced  Field
& & Avg Rms L99 Max
Solution  Erqr
Any Inner 60.84  65.32 100.8  103.1
Analytic Quter 85.80  89.27 113.9 1147
Inner 60.79 65.25 100.2 107.2
2:1 Error 0.08% 0.11% 060% 4.0%
SPFD  Outer 85.30 88.81 120.3 140.7
Error 0.58% 0.52%  5.6% 22.7%
Inner 60.74  65.19 1009 1153
5:1 Error 0.16% 020% 0.10% 11.8%
SPFD  Outer 8549  89.05 1228 1396
Error 036% 0.13% 78% 21.7%
Inner 60.71 65.16 100.9 119.4
10:1 Error 021% 024% 0.10% 15.8%
SPFD  Outer 85.62 89.22 125.1 139.1
Error 021%  0.06% 9.8% 21.3%
Inner 60.68  65.13 101.0 1237
50:1 Error 0.26% 0.29% 020% 20.0%
SPFD  Outer 85.79 89.47 128.7 150.5
Error 0.01% 022% 13.0% 31.2%

A comparison of the results obtained with the SPFD
code with the analytic solution for a square cylinder
has indicated nearly perfect agreement. For a
cylinder 1 m x 1 m, the error in the average electric
field is 0.01 % and in the maximum less than 1.43 %.

The reason for the behavior of the induced electric
field and current density in some voxels due to an
inner-corner singularity is shown in Fig. 2. In this
case, computations are made for an infinitely long
notched square cylinder with the base cross-section
as shown in Fig. 2. The magnetic field is parallel to
the cylinder axis. At the outer corers of the cylinder
in this structure, the electric field tends to zero.
However, at the inner corner there is an electric-field

singularity. The “congestion” of the induced current close
to that comner is intuitively reasonable. The current flow
pattern shown in Fig. 2 indicates why the highest current
densities in the staircased sphere are in the locations
nearest the inside corners close to the “flat” parts of the
staircases. In these locations, the highest current density
is diverted around the inner corners, just as in the case of
the cylinder.

An analytic solution and further explanation of the
staircasing errors are given in the Appendix.

3.2 Electric Field

Tables 3 and 4 show comparisons of the induced electric
fields in homogeneous and layered spheres for exposure
to a uniform 60 Hz electric field of 1 kV/m. Data are
computed from analytic solutions (egs. 7, 8 and 10), and
using the quasi-static FDTD and the hybrid method. The
homogeneous sphere diameter is 1 m and conductivity is
0.1 S/m. For the layered sphere, the outer layer diameter
is 1 m and conductivity 0.1 S/m, the inner diameter is 0.9
m and conductivity is 0.2 or 0.5 S/m for contrast 2:1 and
5:1, respectively. Numerical computations shown in
Tables 3 and 4 have been performed with the quasi-static
FDTD for 7.2 mm resolution and with the hybrid method
for 3.6 mm resolution.

Examination of the comparisons in Tables 3 and 4
indicate that errors on the order of 2-3% are associated
with global measures (average, rms). An increase in these
errors for the outer sphere is a direct result of large errors
in maximum values. Very large errors are associated with
maximum values, and similarly to the case for the
magnetic field, they do not decrease with increased
resolution. Interfaces of lower contrast (Table 4) are
associated with lower, but still significant errors in the
maximum values of the computed electric field in
conductive objects.

The large errors in the maximum values are the result of
at least two factors. The first factor is the existence of
singularities in charge density at voxel vertices (outside
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corners) bordering on free space. The second factor is
leakage of the large external electric fields into
internal voxels across the air-conductor (high
conductivity contrast) boundary.

are inherent in the voxel model of the human body that
approximates smooth surfaces with rectangular grids.
Such large errors accompany all finite difference based
numerical methods,

Table 3. Comparison of the induced electric field (mV/m) in a homogeneous sphere in a uniform electric field
for two voxel sizes.

7.2 mm voxel 3.6 mm voxel
Induced | Analytic Numeric Errors Analytic  Numeric Errors

field (%) (%)
Avg 0.1001 0.1025 24 0.1001 0.1025 24
Rms 0.1001 0.1027 2.6 0.1001 0.1027 2.6
Std 0.0000 0.0072 - 0.0000 0.0064 -

L99 0.1001 0.1279 27.8 0.1001 0.1184 11.8
Max 0.1001 0.2878 188 0.1001 0.3593 259

Table 4. Comparison of the induced electric field (1V/m) in two-layer spheres with two values of the conductivity
contrast. Uniform electric field is 1 kV/m 60 Hz and voxe! dimension is 3.6 mm.

Contrast 2:1 Contrast 5:1
Induced Inner sphere Outer sphere Inner sphere Outer sphere
field
Ana Num Error Ana Num Error Ana Num Error Ana Num Error
(%) (%) (%) (%)
Avg 55.0 56.0 1.8 75.3 77.8 33 234 24.0 2.6 61.1 63.8 4.4
Rms 55.0 56.0 1.8 76.6 80.1 4.6 23.4 24.0 2.6 66.4 69.7 5.0
Std 0.00 1.40 - 14.5 19.0 - 0.00 0.90 - 24.8 28.2 -
L99 55.0 60.3 9.6 105.7 | 134.1 26.9 234 26.4 12.8 110.1 | 132.6 204
Max 55.0 77.2 40.4 110.0 | 354.6 222 23.4 44.2 88.8 116.9 | 354.9 204

This leakage into internal regions of the low field
magnitude arises from the staircased approximation
of smooth surfaces and is due to non-collocated field
components (they are defined at voxel edges rather
than vertices) combined with the requirement of
continuity of tangential electric fields across material
boundaries. These two factors combine to produce
the much larger errors associated with modeling
electric field induction than with modeling magnetic
field induction. The charge interpolation from the
coarse grid (7.2 mm) to the finer grid (3.6 mm) does
not directly contribute to increase in the error in the
maximum value. The larger error in the maximum for
higher resolution reflects the proximity to the
singularity. Additional comments on the source of are
given in the Appendix.

4. Modification to Improve the
Accuracy

The large errors in maximum values of induced
electric field, particularly at the air-tissue interface

Table 5. Errors in the induced electric field in a
homogeneous sphere exposed to 2 uniform magnetic field.
The numerical method: quasi-static FDTD with various sub-
cell divisions, resolution 3.6 mm.

Induced field | Maximum Average Rms

Cell division 2 8 2 8 2 8

Error (%) 187 | 55 {007} 0.1 | 0.08 | 0.10

and are much larger for exposures to electric fields than
magnetic fields. Modifications to the numerical methods
or data post-processing are capable of significantly
reducing these errors [25].

For magnetic field exposure sub-cell averaging of
material conductivity can be implemented in
preprocessing. Such a technique is available in our quasi-
static FDTD code [25-26]. Table 5 illustrates the
improvements in the accuracy with subdivision into 2 or 8
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segments of each voxel. The same homogeneous
sphere is modeled as in Table 1. There is no
improvement in the already very small errors
associated with average measures. The same method
can be used in the SPFD code. However, as long as a
voxel model of the human body is used this technique
is not relevant. Only a human body model, in which
organs are represented by surfaces, would be suitable
for this error correction.

For electric field exposure, the sub-cell averaging
does not improve the accuracy due to the different
nature of singularities. The singularity in the charge
density occurs in the nodes, electric field components
are computed on the voxel edges. Thus, sub-cell
averaging cannot account for the error resulting from
the lack of collation and the errors due to the
enforcement of continuity of tangential components
of the electric field (see Appendix). On the other
hand, since it is well known that tangential electric
fields at the interface of free space with very good
conductor tend to Zero, this property can be utilized
in post-processing to assign zero to electric fields at
this interface. The procedure reduces the errors in the
maximum electric field at the air interface from about
200 % to 25 % for a resolution of 7.2 mm and
estimated about 10 % for a resolution of 3.6 mm.

5. Conclusions

Verification of numerical computer codes and human
body models has been performed. Errors have been
evaluated by comparing induced electric fields
computed by numerical methods with values
obtained from analytical solutions. Excellent
agreement between the global measures such as the
average and ms field values has been obtained for
various simple conductive models (e.g. spheres,
ellipsoids, and cylinders). Errors of 1-2 % are typical
for electric as well as magnetic field exposure.

However, large errors occur in maximum values of
induced fields. This is a result of singularities
introduced by staircasing smooth surfaces. These
errors are the greatest at the free space- conductive
body interface, and they are smaller for interfaces
between conductors having different conductivity
value. The smaller the conductivity contrast, the
smaller the error. For voxel human body models
these errors are inherent in the model. Methods of
reducing the errors in maximum induced fields have
been also proposed.

Appendix — Staircasing: Getting the Wrong
Answer Right.

Singularities in Low-Frequency Magnetic Induction

It is well-known [27-29], that electromagnetic fields may
possess singularities near the vertices of metallic
(perfectly conducting) wedges and cones embedded in a
dielectric medium. For example, near the vertex of a
wedge with interior angle X <7 (exterior angle
ﬁ =2T —a> 1), the field components transverse to

the edge may have singular behavior of the form pv—l.
Here p is the distance from the edge in a local cylindrical
coordinate system and the exponent V=7 / 3.

Ay

Figure Al. Geometry for a conducting wedge.

Low-Frequency Magnetic Induction

Investigations of edge-singularities typically ignore the
possibility of finite metallic conductivity (“the presence
of a finite conductivity inevitably increases the analytical
complexity of the problem” [29]). Nevertheless, the
problem of axial low-frequency magnetic induction in a
conducting infinite cylinder with circular sector generator
can be solved analytically, and the solution exhibits
singular behavior at internal corners. The opening angle
of the sector is 20, as shown in Figure Al. The

magnetic source field is B=Boe’"'i, and a common

harmonic time factor will be omitted from here on. The
source can be described in polar coordinates by a vector

potential, B=V X A, where A = B,p@. The electric
field is given by VXE =—j@wV XA, and so has the
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representation E=—jwA —~Vy in terms of a
scalar potential Y. The cylinder is homogeneous
with conductivity O, and consequently the
governing current conservation V-J =0 yields the
requirement that ¥ be harmonic, Vzl[/=0.

Boundary conditions are that the current density, and
hence electric field, be tangential to the boundaries. It
may be verified post-priori that the solution for the
potential can be expressed in the form

v(p.0)=CY. "~ (-1)""R(x,,p)sin(x,p)
(A1)

where the constant C=—j@Bya’/2¢, the
eigenvalues are K, =(m—1/2)T/ &, and the
radial functions are

R(x,p)= K24_ 2 B(ﬁ)z - }{(5”

(A2)
Note that this function has a well-defined limit as
K — 2. Moreover, since K, =0, the potential is

regular. The electric field components E and E(p
involve the terms p~ R(Kk, p) and 9R(k,p)/ dp,

respectively. These both involve a term p'(‘_1 , and
consequently are singular at p =0 if k, <1, ie,, if
o> 7/ 2. Thus, the transverse quasi-static electric
field is singular at the apex of a conducting reentrant
wedge. This is due to the sudden change in direction
of the current density along the boundary and
associated congestion of current paths near the
vertex. The case @ =3m/4 is of particular
relevance to the voxel-based conductivity models. In

this case the electric field exhibits a p ™"/ singularity

near a node on a locally two-dimensional inside
corner.

It may be noted that in a numerical implementation,
the calculated current depends on the conductivity
values assigned to the grid edges. The sub-cell
modeling algorithm effectively modifies the local
edge conductivity values and so influences the
computed field values. This mechanism permits the
algorithm to partially mitigate unwanted singularity
artifacts in the solution

Exact solution of the finite-difference equations.

As an additional check on our solutions of the SPFD
equations for magnetic induction, a two-dimensional
version was coded using the Maple© symbolic
algebra package. A comparison was made for a
cylinder with an L-shaped generator of the form

shown in Figure 2. The object was discetized into 20x20
squares and a solution obtained using exact rational
arithmetic in Maple. A numerical solution was obtained
using our three-dimensional SPFD code, using a truncated
cylinder containing 20x20x10 voxels. It was found that
the resulting solution was almost independent of the
vertical coordinate, and the global maximum relative error
in electric field modulus between the numerical 3D
solution in any horizontal plane and the two-dimensional
Maple solution was 0.037%.
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Figure A2. Convergence of the SPFD results near a
singularity.

Convergence of the finite-difference solution near a
singularity.

Rather than being an artifact, singularities are often a
correct and desired part of the solution. Examples include
high-frequency full-wave scattering from metallic objects.
In such cases, efforts have been made to accommodate the
singular nature in numerical methods [30,31].

It has also been noted [29, 30] that unmodified finite
difference schemes can converge to the correct singular
nature in a brute-force sense. This is also observed in our
SPFD code. With the model again consisting of a
truncated cylinder with L-shaped generator, as shown in
Figure 2, the problem was solved on a NxNx10 grid, for
various values of N. The results are shown in Figure A2.
The maximum electric field modulus shown correctly

tracks the expected p—msingular nature predicted by the
analytic solution.

Singularities in Low-Frequency Electric Induction

As mentioned earlier, for the voxel models under
consideration, the case @ =7 /2is relevant. This
corresponds to a surface node located on a locally two-
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dimensional external edge. Here the transverse
external electric field may have singularities of the

form p_m. The associated charge density will be
infinite at the node, although the total charge in the
neighborhood of the node remains finite [29].
Additional singular behavior will be associated with
nodes at an outside three-dimensional corner.

Finally, these singularities are purely geometric in
nature and are the same as would be observed for the
static case. For these reasons, the subcell-modeling
algorithm is not capable of mitigating the singular
nature.
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