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Abstract-In this paper a formulation of the method of moments
for the analysis of low frequency problems is presented.

In the considered frequency range, the integral solution of
Maxwell equations in terms of magnetic vector potential and
clectric sealar potential respectively function of currents and
charges is obtained imposing the Coulomb gauge.

By combining Gauss law and current continuity at the
boundaries among regions with different conductivity a first set
of equations is obtained. Writing Ohm's law inside the
conductive regions another integral equation set that allows the
determination of the conduction current and surface charges
unknowns is obtained. The methed of moments is then applied
ta this system of equations.

The use of pulse functions as subsectional bases allows a
quick matrix set up especially when regular volume shapes are
selected. Calculated results are compared with results obtained
with other methads relating to benchmark problems,

I. INTRODUCTION

Time and frequency domain formulations of the method
of moments [1], have been widely used for the analysis of the
electromagnetic scattering by arbitrary shaped perfectly
conducting bodies excited by electromagnetic pulses and
incident waves [2], [3].

The proposed techniques. using different patches for the
body modeling, have been proved to be simple and useful
procedures to solve those problems handling open and closed
curved structures of finite extent [4], [5].

In this paper, we investigate the extension of the method
in the low frequency range. In this case, some basic features
of the theoretical basis of the high frequency formulations of
the method cannot be assumed:

o Considering finite conductivity, we canmot use the
equation set usually given by enforcing the tangential
component of the electric field equal to zero at the
surface of the conductive bodies,

» Considering Coulomb gauge together with the hypothesis
of div ] = 0 in the conductive volume we cannot use the
direct relation between vector and scalar potentials,
usually given by the Lorentz gauge.

Therefore, in order to obtain a system of volume integral
equations in the conduction current unknowns, we have 1o
take into account different equations in the considered
frequency range. A first set of equation in terms of scalar
and vector potential is obtained considering, in presence of
finite conductivity, Ohm's law and the electric field
definition inside the conductive volumes. The scalar
potential is given by the surface free charge distribution at

the boundaries among media with different conductivity.
Then. an equation set relating surface charges and volume
currents has to be obtained. The relation among charges and.
currents is determined considering Gauss law and current
density continuity at these boundaries. Time and frequency
formulations can be adopted depending on the transicnt or
steady state analysis to be performed. Of course. as in the
high frequency range, the numerical efficicncy of the
presented procedure in terms of computational costs and
accuracy of the results is influenced by the original domain
approximation and by the shape function that can be
adopted.

I1. FORMULATION

We consider a massive conductor 2 with boundary I’
taking into account the presence of an external lumped
parameter circunit as shown in fig. 1.
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Fig. 1 Considered system

Combining the definition of the electric field ~(-.) and
Ohm's law we have:
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we consider the magnetic vector potential 4 expression:
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where pr(’.f) is the surface free charge distribution at the
boundary T. Substituting (2) and (3) in (1) we have:
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Equation (4) has to be evaluated for the three components
x,,z in space. In order to determine an expression that re-
lates surface charges and conduction current we combine
Gauss law, current density continuity and Ohm's law at the

surface I

divgE = Ef —Ey =£L

dived = - == J; = ok,

a (5)
where the subscript » denotes the normal component, the
superscripts + and - denote the outside and inside limit

values with respect to the surface I and divy is the surface
divergence. Combining these equations we obtain:
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The current J(r.z) and the surface charges pp(r,#) can be
approximated as:

Jir.t)= 2],, )£, (r) %)
n=1
M

p(r,)= ) Py (D8 (1) @)

n=l
where f,(r) and g,(+) are the n-th component of the selected

vector basis function representing the spatial variation of the

two quantities, /() and p (£} are their time-varying
unknown coefficients. Then. we obtain:
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The presence of the external lumped parameter circuit is
taken into account considering that at points P) and Py we
have:

I,- _” J;dS = —” %r s,
S s o (11

where S is the area of the surface elements at Py and P;.
Writing the nodal or mesh equations of the linear lumped
parameters network we have:

L,(2) = Gty + YV, (1) (12a)
Vo(ty= ®(A.0)-P(B.1) =
1 “' prir,t) pr{.t)
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where G(1) is due to the independent generators and Y is an
integral-differential operator due to the impedances of the
network.

Imposing (9) at N points in the conductive body €. (12a)
(12b) and (10) at M-2 points on the surface I' we obtain a
system of equations in the N+M unknown coefficients L,(t}

and p,(#) to which the testing procedure (point matching,

Galerkin etc.) is applied.

Approximating the time differentiation with finite
difference equations (9) (10) (12a) and (12b) directly
represent the time domain formulation of the proposed
procedure. The frequency domain formulation can be easily
derived replacing the time differentiation with the jo

operator and assuming the elot dependence of the unknown
quantities, obtaining the algebraic complex system:
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IT1. BASIS FUNCTIONS
We define the following coefficients:
-U- fn(r)dQ oy (r); gn(r') =g
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Then, considering for example subsectional bases [1] for
N elementary volumes in the domain Q2 and M elementary
surfaces on the boundary I and writing (9) and (10} in the k-
th elementary volume and surface (referring for example 10
the frequency domain formulation) we obtain:
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Considering good conductors at low frequencies we can
consider llso much greater than jo/c, Lhen {14) becomes:
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Writing (16) in every elementary volume, (19} on the
surface and equations (18) we derive the matrix forms:

4l+8p=0 Di+Ep=L

These systems can be used in order to have an unknown
set only, currents or charges.

Analogously, in the time domain equations, po/g, can be
considered much greater than 8p/df. Therefore, we can use
(10) to express the charges as a function of currents,
obtaining an expression in the current unknowns oniy.

The accuracy of the presented procedure and the
computational cost of the matrix set up is determined by the
coefficients (15). As for the high frequency problems, several
kinds of basis function and patches can be proposed, and an
exhaustive analysis of their numerical characteristics in
several kinds of applications is not easy to be determined.

We begin implementing pulse functions as subsectional
bases in order to have a quick matrix set-up. In fact, when
Q, have particular shapes, such as parallelepipeds or
cylinder sectors, the evaluation of the surface and volume
integrals in (14) can be quickly and accurately obtained by
means of analytical expressions [6], [7]. This choice causes
the presence of fictitions surface charges at the boundary
among adjacent elementary volume efements, since adjacent
currents have different values as shown in fig. 2.

Nevertheless, the evaluation of integral quantities in the
examined low frequency benchmark problem, has shown a
good agreement between our results and results obtained
with other numencal methods. Furthermore, the
computational times were analogous to those obtained with

Finite Elements methods.

Fig. 2 Pulsc function decomposition of a plate
IV, RESULTS

In order to test the frequency domain formulation of the
method, we analyse the TEAM problem 3 [8] (Bath plate
with two holes) which geometry, shown in fig. 3, consists of
a conducting ladder having two holes with a current coil
above. The conductivity of the ladder is o= 0.3278c8 (S/m).
and the driving field originates in the coil. The coil carries a
current equivalent to 1260 Amp turns at 50 and 200 Hz. and
it is placed at two positions. Position 1 is directly above the
center of the laddet, position 2 is directly above the center of

one of the holes. R4
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Fig. 3 Geometry of the frequency domain probiem.
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We calculate the magnitude and phase of the [ield
normal to the ladder for the coil position 2, frequency of
50Hz, along a center line of the geometry 0.5 mm above the
conducting ladder between +55mm and -35mm. The
calculated data have been obtained considering the
decomposition shown in Fig. 4. We adopted parallelepiped
volumes and rectangular surfaces as subsectional bases.

Fig. 4 Decomposition of the geometry.

Fig. 5 shows a good agreement between calculated results
obtained with the proposed method and experimental data.
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Fig. 5 Comparison between calculated and experimentat data
of B along the center line

The table 1 and II report the current in the [ateral limbs
for positions 1 and 2 for £=50 Hz and f=200Hz respectively.

Table IT

Position 1 Position 2

Ia=T1b {A] Ia [A] Ib [A]
Kameari [10] 153.89 190.48 80.14
Takahashi [9] 155.89 191.52 83.12
M.OM. 154,91 192.55 82.95

Table I
Position 1 Position 2
In=1b [A] Ia[A] Ib [A]
Kameari [10] 68.05 81.68 38.45
Takahashi [9] 71.63 8541 41.23
M.OM, 69.6 32.61 40.42

The time domain formulation has been tested considering
a problem [10] where a uniform magnetic field in the Z
direction, having a constant rate B' = 1 T/sec, is applicd to a
square plate (20cm x 20cm) with thickness lcm shown in

fig. 6. The resistivity of the plate is 2pQcm.
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Fig. 6 Geometry of the time domain problem

The square plate has been decomposed by means of
elements having different size as shown in Fig, 7.

Fig. 7 Decomposition of the geometry.

The figures 8 and 9 show the current density Jy at
t=10msec and, varying the x-coordinate, at y=1cm and y=x.
The figures show a good agreement among the calculated
data by a Finite Element method [10] and the proposed
M.O.M., formulation.

The larger disagreement is obtained near the external
surface of the plate, where the method [10] forces J,,=0.
while the proposed formulation gives the average value in
the parallelepiped nearby the corner. In the considered low
frequency tests we considered point matching and Galerkin
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testing procedures, obtaining nearly equal numerical resuits.

25 , . r .
2t Ref [o] * ]
M.OM. —

& 1.5¢ 4
E
<
=z

z 1t .

0.5¢ 1

0 002 0.04 0.06 008 0.1
Distance [¢m)

Fig. 8 Eddy current distribution at /=10msec along the line
y=lcm.
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Fig. 9 Eddy current distribution at t=10msec along the line
=X
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V. CONCLUSIONS

Time and frequency domain formulations of the method
of moments for the analysis of low frequency problems have
been presented.

The two formuiations have been tested analysing linear
benchmark problems obtaining a good agreement with
experimental data and results obtained with other numerical

methods.

The use of pulse functions as subsectional basis has
allowed a quick matrix set-up with respect to numerical
integration.
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