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Abstract ─ An adaptive cross approximation 
(ACA) based method is proposed for the fast 
analysis of the monostatic radar cross-section 
(RCS). Using the low-rank property, several 
largest eigenvalues and corresponding 
eigenvectors of the multiple right hand sides can 
be computed and saved efficiently by the ACA 
algorithm. The iterative solution of linear 
equations is required at these principle 
eigenvectors. Compared with solving linear 
equations at each angle repeatedly, the proposed 
method is able to greatly reduce the computation 
time. In order to efficiently solve the linear 
equations, the flexible general minimal residual 
(FGMRES) iterative solver is applied to compute 
the coefficients of Rao-Wilton-Glisson (RWG) 
basis functions. Numerical results demonstrate that 
the proposed method is efficient for monostatic 
RCS calculation with high accuracy.  
 
Index Terms ─ Adaptive cross approximation 
(ACA), low-rank property, monostatic RCS, and 
surface integral equation (SIE). 
 

I. INTRODUCTION 
Electromagnetic wave scattering problems 

address the physical issue of detecting the 
diffraction pattern of the electromagnetic radiation 
scattered from a large and complex body when 
illuminated by an incident incoming wave. A good 
understanding of these phenomena is crucial to 
radar cross section (RCS) calculation, antenna 

design, electromagnetic compatibility, and so on. 
All these simulations are very demanding in terms 
of computer resources, and require efficient 
numerical methods to compute an approximate 
solution of Maxwell’s equations. Using the 
equivalence principle, Maxwell’s equations can be 
recast in the form of integral equations that relate 
the electric and magnetic fields to the equivalent 
electric and magnetic currents on the surface of the 
object. Amongst integral formulations, the surface 
field integral equation (SIE) is widely used for 
electromagnetic wave scattering problems as it can 
handle the most general geometries. The matrix 
associated with the resulting linear systems is 
large, dense, complex, and non-Hermitian [1, 21]. 
It is basically impractical to solve matrix equations 
using direct methods because they have a memory 
requirement of 0(N2), where N refers to the 
number of unknowns. This difficulty can be 
circumvented by use of iterative methods, and the 
required matrix-vector product operation can be 
efficiently evaluated by the multilevel fast 
multipole algorithm (MLFMA) [2, 3]. The use of 
MLFMA reduces the memory requirement to 
0(NlogN) and the computational complexity of 
per-iteration to 0(NlogN). However, it is still time- 
and memory- consuming for calculation of 
monostatic RCS since it requires repeated solution 
of SIE at each incident direction. 

Conventional interpolation methods, such as 
AWE and the cubic-spline (CS) interpolation 
method, can easily approximate the monostatic 
RCS. AWE [4, 5] is a kind of classical method 
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which is widely used in computational 
electromagnetics. It utilizes the high-order 
derivatives of the incident current vector at the 
interval center to extrapolate the value of nearby 
points, and is considered to be the AWE 
extrapolation method in this paper. AWE 
interpolation method [6] has been introduced by 
Wei. Piecewise interpolation technique is used and 
the first-order derivative of samples is required. 
The cubic spline interpolation method [7, 8] is 
another popular numerical approximate method. It 
utilizes the information of C1-continuous to 
evaluate the first derivative of the incident current 
vector instead of solving the large linear equations. 

How to select the sampling points is a difficult 
problem for interpolation and extrapolation 
methods. The active learning method is proposed 
by Zhao to obtain the optimal samples over wide 
frequency band [9, 10]. In [7, 8], Liu proposed an 
adaptive sampling method to obtain the optimal 
samples for monostatic RCS calculation with wide 
angular band. However, the performance of 
adaptive sampling is very sensitive with the initial 
samples. Furthermore, the sampling nodes are not 
the exact optimal samples but the approximately 
optimal samples. 

In monostatic RCS computation [18], the main 
computation cost is the solution of the linear 
system with multiple right hand sides. Inspired by 
[11, 20, 22], the multiple right hand sides can be 
approximately described by a low-rank form. SVD 
can evaluate several large eigenvalues and 
corresponding eigenvectors of the multiple right 
hand sides. Moreover, the SVD process can be 
efficiently performed by the adaptive cross 
approximation (ACA) algorithm [17]. The process 
of solving linear equations is only required at these 
principle eigenvectors. Compared with the 
repeated solution at each angle, the proposed 
method is able to greatly reduce the times of linear 
equations solution. Furthermore, this non-adaptive 
method leads to a more robust algorithm than the 
adaptive sampling method. Accordingly, the 
ACA-based method is used for fast computation of 
monostatic RCS in this paper. 

The remainder of this paper is organized as 
follows. Section II demonstrates the basic theory 
and formulations of surface integral equations. 
Section III describes the low-rank decomposition 
of multiple right hand sides in monostatic RCS 
computation. The application of the ACA 

algorithm is also discussed in this section. 
Numerical experiments of several geometries are 
presented to demonstrate the efficiency of this 
proposed method in Section IV. The conclusion is 
provided in Section V. 
 

II. CFIE FORMULATINONS 
For electromagnetic scattering from the 

perfect electrical conductor (PEC), the combined 
field integral equation (CFIE) is widely used for 
closed structure [12]. The CFIE formulation of 
electromagnetic wave scattering problems using 
planar RWG basis functions for surface modeling 
is presented in [13]. The resulting linear systems 
from CFIE formulation after Galerkin’s testing are 
briefly outlined as follows: 
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Here, G(r, r′) refers to the Green’s function in free 
space and {an} is the column vector containing the 
unknown coefficients of the surface current 
expansion with RWG basis functions. Also, r and 
r′ denote the observation and source point 
locations. η and k denote the free space 
impendence and wave number, respectively. Once 
the matrix equation (1) is solved by numerical 
matrix equation solvers, the expansion coefficients 
{an} can be used to calculate the scattered field 
and RCS. In the following, we use A to denote the 
coefficient matrix in equation (1), x = {an}, and b 
= {Vm} for simplicity. Then, the CFIE matrix 
equation (1) can be symbolically rewritten as: 

Ax = b.                           (2) 
To solve the above matrix equation by an 

iterative method, the matrix-vector products are 
needed at each iteration step. Physically, a matrix-
vector product corresponds to one cycle of 
iterations between the basis functions. The basic 
idea of the fast multipole method (FMM) is to 
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convert the interaction of element-to-element to 
the interaction of group-to-group. Here, a group 
includes the elements residing in a spatial box. 
The mathematical foundation of the FMM is the 
addition theorem for the scalar Green’s function in 
free space. Using the FMM, the matrix-vector 
product Ax can be written as: 

Ax = ANx + AFx.               (3) 
Here, AN is the near part of A and AF is the far part 
of A. In the FMM, the calculation of matrix 
elements in AN remains the same as in the MoM 
procedure. However, those elements in AF are not 
explicitly computed and stored. Hence, they are 
not numerically available in the FMM. It has been 
shown that the operation complexity of FMM to 
perform Ax is 0(N1.5). If the FMM is implemented 
in multilevel, the total cost can be reduced further 
to 0(NlogN) [2, 3]. 
 
III. LOW-RANK DECOMPOSITION OF 

MULTIPLE RIGHT HAND SIDES 
The monostatic RCS requires repeated 

calculations at each angle over the band of 
interest. This process can be computationally 
prohibitive for computation of monostatic 
RCS of an electrically large object. In order to 
accelerate the computation of monostatic 
RCS, an ACA based method is proposed and 
the methodology on how the efficient 
calculation of monostatic scattering is 
discussed in this section. 

The computation of monostatic RCS can be 
considered as linear equations with multiple right 
hand sides 

A·X = B,  (4) 
where A is the impedance matrix, X is the multiple 
complex coefficient vector of RWG basis, and B is 
the multiple right hand side generated by the 
incident wave. And 

X = [x(θ1), …, x(θn)]，B = [b(θ1), …, b(θn)], (5) 
where θi is the ith incident angle. Using the 
traditional singular value decomposition (SVD), 
the matrix B can be described as the form of 
eigenvalue and eigenvector. 

B = U·Σ·VH .                                     (6) 
If the dimension of B is N × M, the dimension of 
matrices U, Σ, and V are N × M , M × M, M × M, 
respectively. N is the number of unknowns. Σ is a 
diagonal matrix including all the eigenvalues of B 

while U and V contain all the eigenvectors of B. 
When B is the multiple right hand sides in the 
linear system connecting with the SIE used for 
monostatic RCS, matrix B is low-rank and can be 
approximately described as a low-rank SVD form. 

B ≈ Uk·Σk·Vk
H,                                       (7) 

where the dimension of matrices Uk、Σk and Vk 
are N × k , k × k, M × k, respectively. Only k 
largest eigenvalues and corresponding 
eigenvectors are reserved in (7). Substitude (7) to 
(4), the linear equations can be rewritten as  

X ≈ (A-1·Uk)·Σk·Vk
H .                             (8) 

Here, A-1·Uk can be computed by any iterative 
solver. If using direct solver to compute the 
inversion of matrix A [19], the proposed method 
will become useless. Therefore, the times for 
solution of equation (2) is only k when using the 
SVD method while that of traditional direct 
solution is M for monostatic RCS, where M is the 
number of multiple right hand sides. Generally, k 
is much smaller than M which leads to an efficient 
method for computation of monostatic RCS over a 
wide angular band. 

The key problem for this proposed method is 
how to obtain the decomposition form of multiple 
right hand sides. As well known, the traditional 
SVD method is a good analytical solution for this 
problem. However, SVD requires the computation 
of the matrix including all right hand sides and the 
complexity of the computation time of SVD is 
O(nm2 + mn2), where m and n respect to the 
number of rows and columns. When the number of 
unknowns or right hand vectors is large, this 
analytical solution is not practical. In order to 
alleviate this difficulty, an adaptive cross 
approximation (ACA) algorithm is applied and 
performs a more efficient property than the 
traditional SVD method.  

Using the adaptive cross approximation 
approach, a low-rank matrix can be decomposed 
into two matrices UACA and VACA. The RHS matrix 
B, which is low-rank, can also be decomposed into 
UACA and VACA matrices. The formula of the 
decomposition is listed below 

B ≈ UACA·VACA
H,                       (9) 

where the dimension of matrices UACA and VACA 
are N × k , M × k, respectively. Substitute (9) to 
(4), the linear equations can be rewritten as  

X ≈ (A-1·UACA)·VACA
H .                         (10) 

k is much smaller than M which leads to an 
efficient method for computation of monostatic 
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RCS over a wide angular band. Here, A-1·UACA is 
computed by an iterative solver. 

The algorithm of ACA is presented as follows, 
which allows it to generate only a few rows and 
columns of the matrix and approximates the rest of 
the matrix using only this information. 

Adaptive Cross Approximation Algorithm 
Let UACA = NULL which is used to save the 

selected columns and VACA = NULL which is used 
to save the selected rows. 

Step1: Choose the first column u1 randomly and 
let UACA = UACA ∪ {u1}. Find the max value u1k in 
u1. Then choose the first row v1 which located at 
kth row in the matrix. Let VACA = VACA ∪ {v1}. 

Step 2: Find the max value vik in vi. Then 
choose the (i + 1)th column ui+1 which located at 
kth column in the matrix. 

Step 3: 1 1 ,
1

i

i i j i j
j

v 


 u u u , and let UACA = 

UACA ∪ {ui+1}. 
Step 4: Find the max value ui+1,k in ui+1. Then 

choose the (i + 1)th row vi+1 which located at kth 
row in the matrix. 

Step 5: 1 1 ,
1

i

i i j i j
j

u 


 v v v , and let VACA = 

VACA ∪ {vi+1}. 

Step 6: If 1 1 1 1

1 1 1 1

, ,
, ,

i i i i     
u u v v

u u v v
, the 

algorithm will stop, otherwise, go to Step 2. The 
low-rank decomposition form of RHS matrix is B 
≈ UACA·VACA

H . 
This algorithm produces a sequence of 

decompositions of a matrix into a sum of low-rank 
matrix and error matrix. Neither the original 
matrix nor the error matrix will be computed 
completely. How to decide the tolerance error ε is 
the most important thing in ACA. In order to avoid 
the numerical error, the ε is required to be small 
enough. In this paper, the ε satisfies ε = 10-3. 
 

IV. NUMERICAL RESULTS 
In this section, a number of numerical results 

are presented to demonstrate the accuracy and 
efficiency of the ACA based method for fast 
calculation of monostatic RCS over wide angular 
band. The flexible general minimal residual 
(FGMRES) [14, 15] algorithm is applied to solve 
linear systems. The dimension size of the Krylov 

subspace is set to be 30 for the outer iteration and 
the dimension is set to be 10 for the inner iteration. 
The tolerance of the inner iteration is 0.1 in this 
paper. All experiments are conducted on an Intel 
Core(TM) II Duo with 3.45 GB local memory and 
run at 2.40 GHz in single precision. The iteration 
process is terminated when the 2-norm residual 
error is reduced by 10-3, and the limit of the 
maximum number of iterations is set as 1000. 

Three geometries are applied to illustrate the 
performance of our proposed method. They 
consist of a NASA almond with 1815 unknowns 
[16], a PEC double-ogive with 4635 unknowns, 
and the VFY-218 model with 40725 unknowns. 
Since the number of right hand vectors is small for 
1-D angular sweep in this paper, it is feasible to 
apply the traditional SVD for computing the 
eigenspace of multiple right hand sides. As shown 
in Figs.1-3, the monostatic RCS curve of NASA 
almond, double-ogive, and VFY-218 which 
computed by ACA method is compared with the 
curve computed by direct solution repeatedly. It is 
obvious that the ACA method is accurate since 
there is no significant difference between the RCS 
result obtained by the direct solution and the ACA 
method. As shown in Tab.1, when compared with 
the traditional SVD method, the ACA based 
method provides little advantage on total 
computation time since the number of right hand 
side is small. 

For monostatic RCS simultaneous theta and phi 
sweep, the number of right hand sides is 32761 
(181×181) for almond and double-ogive in this 
paper. Due to the time complexity of traditional 
SVD is O(nm2 + mn2), it is not suitable to obtain 
the eigenvalue of the multiple right hand sides 
directly. Thus, the ACA is applied in the last two 
examples. From these results, the same conclusion 
as that in 1-D monostatic RCS examples can be 
obtained, which shows the ACA based method is 
accurate. 

The relative error of the last two examples is 
demonstrated by Figs. 4(c), 5(c), 6(c), and 7(c). In 
order to demonstrate the relative error of the 
proposed method, the formulation of relative error 
is defined as 

svd direct

direct

error



E E

E
 . (9) 
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Fig. 1. monostatic RCS of NASA almond for 
simultaneous theta sweep: (a) HH-pol; (b) HV-pol. 
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Fig. 2. monostatic RCS of double-ogive for 
simultaneous theta sweep: (a) HH-pol; (b) HV-pol. 
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Fig. 3. monostatic RCS of VFY-218 for 
simultaneous theta sweep: (a) HH-pol; (b) HV-pol. 
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(a) 

 
(b) 

Fig. 4. Monostatic RCS of NASA almond for 
simultaneous theta and phi sweep, HH-pol: (a) 
RCS; (b) relative error. 
 

 
(a) 

 
(b) 

Fig. 5. Monostatic RCS of NASA almond for 
simultaneous theta and phi sweep, HV-pol: (a) 
RCS; (b) relative error. 
 

 
(a) 

 
(b) 

Fig. 6. Monostatic RCS of double-ogive for 
simultaneous theta and phi sweep, HH-pol: (a) 
RCS; (b) relative error. 
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Table 1: Computation time of monostatic RCS with 1-D angular sweep 

Object f (Hz) N Pol 
Angular Sweep Time (Second) / Number of Solutions 
Theta 
(deg) 

Phi 
(deg) 

Direct 
Solution 

Traditional 
SVD ACA 

Almond 5G 1815 HH 0~360 0 222 / 361 38 / 22 26 / 25 
HV 0~360 0 234 / 361 39 / 26 26 / 26 

D-Ogive 12G 2571 HH 0~360 0 652 / 361 92 / 45 89 / 45 
HV 0~360 0 647 / 361 92 / 41 88 / 45 

VFY-218 0.5G 40725 HH 90 0~180 106618 / 361 29855 / 73 28732 / 73 
HV 90 0~180 106545 / 361 29734 / 73 28744 / 73 

 
Table 2: Computation time of monostatic RCS for simultaneous theta and phi sweep 

Object f (Hz) N Pol 
Angular Sweep Time (Second) / Number of Solutions 
Theta 
(deg) 

Phi 
(deg) 

Direct 
Solution 

Traditional 
SVD ACA 

Almond 5G 1815 HH 0~180 0~180 20315 / 32761 2340 / 158 570 / 159 
HV 0~180 0~180 20322 / 32761 2287 / 161 566 / 161 

D-Ogive 12G 2571 HH 0~180 0~180 60832 / 32761 8714 / 293 2208 / 295 
HV 0~180 0~180 60813 / 32761 8862 / 295 2187 / 295 

 
 

 
(a) 

 
(b) 

Fig. 7. Monostatic RCS of double-ogive for 
simultaneous theta and phi sweep, HV-pol: (a) 
RCS; (b) relative error. 
 

From the error shown in Figs. 4(c), 5(c), 6(c), and 
7(c), it is obvious that the error of cross-
polarization is larger than co-polarization. 
However, the error of both polarizations is small 
enough to obtain the accurate result. Thus, the 
ACA based method can be considered as an 
accurate method. 

Tables 1 and 2 show the CPU time of direct 
solution, traditional SVD based method, and ACA 
based method. It is shown that plenty of time can 
be saved in traditional SVD and ACA based 
method since the times of equation solutions is 
much fewer than solving the linear equations (4) 
repeatedly. Comparing the CPU time between the 
traditional SVD method and the ACA method, it is 
concluded that the ACA method is more efficient 
when the number of right hand side vectors is 
large enough. 
 

V. CONCLUSION 
In this paper, an ACA based method is 

proposed for efficient analysis of the monostatic 
scattering from electrically large objects over a 
wide angular band. After obtaining the 
eigenvalues and eigenvectors of the multiple right 
hand sides by the adaptive cross approximation 
algorithm, the total solution time can be saved 
since the iterative solution of linear system is only 
needed at several largest eigenvalues. In order to 
fast solution of the linear system, the MLFMA, 
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and Krylov subspace iterative solver are used to 
efficiently solve the linear equations. Numerical 
experiments demonstrate that our proposed 
method is more efficient when compared with the 
repeated solution at each angle for electromagnetic 
scattering from the electrically large objects. 
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