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Abstract - In this paper the results obtained from the
paraltelisation of some 3D industrial electromagnetic Finite
Element codes within the ESPRIT Europort 2 project PARTEL
are presented. The basic guidelines for the parallelisation
procedure, based on the Bulk Synchronous Parallel approach,
are presented and the encouraging results obtained in terms of
speed-up on some selected test cases of practical design
significance are outlined and discussed.

I. INTRODUCTION

The present work was carried out, within the ESPRIT
programme of the European Union, as part of an Initiative
named Europort, a parallelisation exercise aiming at
producing efficient parallel versions of existing commercial
software codes on a wide range of parallel architectures, from
workstation networks to shared memory supercomputers.

The PARTEL project, included in the Europort 2 cluster,
was focused on parallelising the Finite Element
electromagnetic analysis codes TOSCA, SCALA and
ELEKTRA made available by Vector Fields, the code owner
and project partner. Other partners were Oxford Parallel, the
parallel application centre of Oxford University, acting as
parallel expert, and the Philips Research Laboratories in
Eindhoven as well as the Department of Electrical
Engineering of the University of Genova acting as end users.

The codes cover a rather wide set of electromagnetic
analysis subdomains, ranging from linear and nonlinear static
problems to eddy current and particle beam modelling; test
cases have been selected by the end users among real and
rather different design problems, trying to obtain information
on the widest possible range of situations of practical interest.

In this paper the approach selected for the parallelisation is
outlined, the structure of the codes and the range of parallel
machines used are briefly described and the results of some
test cases, prepared and run at the Department of Electrical
Engineering of the University of Genova, are summarised.
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II. THE PARALLELISATION STRATEGY

As usual for the parallelisation of Finite Element codes, the
parallelisation strategy is driven by a geometric
decomposition of the application domain, exploiting the
intrinsic parallelism in the element-based computations and
the assembly of the subdomain stiffness matrices. Since the
codes under parallelisation already use iterative solvers for
the large, sparse matrices they generate, a straightforward
extension was introduced to take advantage of the inherently
parallel nature of the solvers within the subdomain
partitioning framework.

Anocther challenging problem was related to the paraliel
evalnation of the R.H.S., because the quadrature routines
evaluating the fields are adaptive, and therefore the
computational load can be largely unpredictable, and is not
suitable for a stmple geometric partiioning. A cyclic data-
driven distribution has therefore been used

In order to achieve maximum portability, various
parallelisation models and their related libraries were
considered. Even though message passing is the dominant
model in use in parallel programming (mainly as implemented
in PVM and MPI), a radically different approach was adopted
for the PARTEL project based on the Bulk Synchronous
Parallel (BSP) paradigm, proposed by Valiant [1]. The BSP
model provides a general purpose communication protocol
covering both distributed and shared memory or virtual-
shared-memory multiprocessors. It can be naturally
implemented on message passing architectures, but it is not
finalised towards message passing semantics. By adopting the
general shared-memory semantics, the BSP model offers ease
of use, flexibility and simplicity. Furthermore, the model
requires only minimal modifications to existing sequential
code, assuming that the native structure of the application is
data parallel. Moreover, BSP provides means for the
performance prediction of an algorithm across a wide range
of parallel architectures. The development of the BSP and its
related tools is a project currently under development at
Oxford University, and is currently going through a
standardisation procedure [2].

The BSP approach makes use of two simplifying
assumption: the first one is that any parallel computer can be
described as a number of processors, each with some local
memory; a communication mechanism, for the exchange of
data between processors, and a synchronisation mechanism,
for synchronising a group of processors at a common barrier
point. The second one is that a parallel computation c¢an be
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organised into a sequence of supersteps; during each
superstep the processors can work independently on local
data, and initiate requests for the asynchronous reading and
writing of non local data to be used during a subsequent
superstep. At the end of a single superstep, the processors
synchronise and all data exchanges are completed, before
proceeding to the next superstep.

The parallel implementation of the Finite Element method
here considered can be easily expressed as a BSP algorithm,
that is as superstep of local computation and asynchronous
remote data access, separated by a global synchronisation.
However, as the necessary primitives for doing this are not
always portable, particularly in message passing libraries, a
compact and portable BSP providing the one-way
communication and global synchronisation routines was used.

Efficient implementations were available on a number of
different categories of parallel systems, including those used
within the project (Meiko CS2, IBM SP2, SGI Power
Challenge and DEC Alpha networks).

II1. THE PARTEL CODES
A. TOSCA

The TOSCA program is used to model static magnetic,
electric and current flow fields in three dimensional problem
domains.

In the magnetic case, it solves a generalised form of
Poisson’s equation based on a combination of total and
reduced scalar potentials {3]. The equation is in the form:

V-u(H) Vo=V -u(H)H, + p(H) H, 48]

where His the magnetic field intensity, the magnetic scalar
potential @ is defined by the relation H=-V® , H, is the
coercive field strength of magnetic materials and H; is the
coil field, obtained from Biot-Savart’s equation as:

H, = [[f %dv @

Tosca solves the problem defined by (1) using the Galerkin
weighted residual method. Space is subdivided into a set of
contiguous elements and within each element a low order
polynomial is used to interpolate the magnetic scalar
potential. The weak form of (1) 1s therefore the following:

[[jow p(EH)VIN @0y =

=~[f wu(H)%%s - [[fWVu(H)YH, - H,)dv ®

The system of algebraic equations obtained by the
discretisation of (3), by choosing as weighting functions W
the shape functions N used to approximate the potentials is
highly and irregularly sparse, symmetric, definite positive and
nonlinear. Most of the total solution time is usually spent in
the calculation of the R.H.S. and in the solution of the
algebraic system of equations.
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B. SCALA

The SCALA program is used to model the steady state
behaviour of charged particle beam devices in three
dimensions [4]. It calculates electrostatic fields in the
presence of space charge distributions arising from charged
particle beams: in the first phase the electric field, expressed
in terms of the electric scalar potential, is calculated through
Poisson’s equation:

V-eVV =p(x,y,2) 4)

where € is the permittivity and p the space charge density. If
desired, a magnetic field can be superimposed on the model,
so as to simulate devices like cathode ray tubes, et cetera...
SCALA solves the equation (4) using the finite element
method, following the same procedures already described for
TOSCA. The weak form of the equation becomes then:

JIj W e VEN Vv =[fwe ZTas - [[]Welx.y.2)v )

As in the case of TOSCA, the resulting matrix is highly and
irregularly sparse, symmetric, definite positive and nonlinear.
After the calculation of the fields, the program calculates the
trajectories of a representative set of particles in the beams. A
macroscopic current, determined by the physical law of the
emission at the emitting surface, the prevailing electric fields
and the area of the emitting surface related to the particle, is
then associated with each particle. The set of particles is then
intersected with the Finite Element mesh, and the space
charge density in the beams is incorporated into the Finite
Element model, using the element shape functions to
interpolate its spatial variation. The electrostatic potential is
then computed again by using an updated p field. The
iterative procedure continues until the convergence of the
potential is reached within a fixed tolerance.

The total solution time is dominated in most cases by the
calculation of particle beams.

C. ELEKTRA

The ELEKTRA program is used to model quasi-static
time-varying magnetic fields in three dimensicnal space. It
solves the problem written in terms of a formulation that in
non-conducting space is the same of TOSCA, and in
conducting regions is based on the magnetic vector potential
and on the electric scalar potential [S), in the form:

V-p(H) V@ =-V-p(H) H, + p(H) H, (6)
Vxle=—ca—A—cVV N
1! at

where H is the magnetic field intensity, H; is the field due to
the sources obtained through the integration of the Biot-
Savart equation, H, is the coercive field strength of magnetic
materials, B is the magnetic induction, A is the magnetic
vector potential defined by the equationB =V x A and @ is
the magnetic scalar potential defined by the relationship
H=-Vd.



For the solution, the Galerkin version of the F.E.M. is used
also in this case. Very schematically, the weak form of the
system of partial differential equations becomes of the kind:

[[fYW-u(H) VEN.®.dv=

30 (®)

= —” Wu(H —a—ds - m WVR(H)(H, - H, )dv

VXZN Adv=

j’ijxw

—jjw (VxZN A, xn}.!s— )
dZNiAi
——+ VINY, dv

-fifwe

As for the previous codes, the shape functions are such that
a highly sparse coefficient matrix is obtained. However, as a
function on the type of analysis, the implementation can be
very different, and the code is in fact a cluster of three
different solvers, SS, TR and VL, that can generate
coefficient mairices quite different from each other. In
particular, ELEKTRASS is used to model steady state a.c.
problems through the complex time harmonic substitution,
and its coefficient matrix is then complex and symmetric;
ELEKTRATR is used to model general, transient, non-
periodic problems by means of a time stepping integration
procedure, and its coefficient matrices is real, symmetric and
indefinite; ELEKTRAVL is used to model problems where
the currents are induced by the motion of a conducting body
within a magnetic field, and gives rise to real, non-symmetric
matrices. Even if the situation may vary significantly
according to the specific situation, most of the total solution
time is generally spent in the calculation of the R.H.S. and/or
in the solution of the algebraic system of equations, especially
in the case of ELEKTRATR, for which the solution of the
algebraic system is performed at every time step, necessarily
in a serial way.

IV. PARALLEL SOLUTION AND GEOMETRIC DECOMPOSITION

As previously mentioned, a typical parallel implementation
of the Finite Element method is based on a geometric
partitioning of the mesh and a subsequent one-to-one
mapping of the resulting subdomains to the available
processors. This approach allows operations related to groups
of elements (element stiffness matrix computations) to be
performed independently within each subdomain. Upon
entering the solution phase, each processor holds a
subdomain stiffness matrix and “local” vectors (i.e. vectors
related to a reduced set of nodal degrees of freedom). It is
then apparent that all processors execute the same program on
a different set of data (SPMD paradigm). In addition, one of
the processors is responsible for serial, conventional I/O.

Apart from an initial data distribution and occasional
gathering of results on the /O processor, this model requires
communication only during the solution phase. A geometric

partitioning of a Finite Element mesh can be either element or
node driven. A disjoint element partition assumes that an
element can be owned by one processor only and
consequently certain nodes in the mesh (interface nodes) will
be shared. A disjoint node partition, one the other hand,

- uniquely maps every node to a single processor, and hence

some ¢lements will be split among processors. Typically, by
adopting an element partitioning, information related to the
common nodes needs to be communicated, while in the nodal
approach information related to nodes on split elements needs
to be exchanged. Both models can be implemented within the
BSP framework; however, an element partitioning would
require exia buffering and/or more synchronisation points
during the solution phase. Consequently, the parallel versions
of TOSCA, SCALA and ELEKTRA were built choosing to
adopt a disjoint node partitioning of the Finite Element mesh.
All the various iterative solvers used in such codes are
variations of the basic conjugate gradient algorithm. The
basic blocks appearing in the algorithm are:

1. vector saxpy operations (i.e. y: =y + 0X);
2. preconditioning operations;

3. inner product / norm evaluations;

4. sparse matrix-vector multiplications;

The unique mapping of the d.o.f. to processors enables
vector saxpy to be performed entirely in paraliel. The same is
true for preconditioning, if a block diagonal form of the
preconditioner is adopted; in the current implementation of
TOSCA and ELEKTRA, the existing preconditioners (DSLU,
IC, ILU) were restricted to their block diagonal counterparts
by ignoring terms related to non-owned degrees of freedom.
Inner products / norm evaluation require a reduction
operation, i.e. only local contribution for the owned d.o.f.s are
computed in parallel, and the final result is computed at the
end, by adding up all the partial contributions; the final result
is then duplicated among all the local processors. A more
complex phase is the sparse matrix-vector multiplication: we
can explain what happens with a simple example (see Fig. 1):
we assume to have only one d.o.f. per node (scalar potential
case), the problem has 10 nodes and 4 elements. We adopt a
node partition, assigning to PROCI the nodes 1,2, 3, 4, 5, 6
(and elements (1,2,4,3), (3.4,6,5), (5,6,8,7), and to PROC2
the nodes 7,8,9,10 (and elements (5,6,8,7), (7,8,10,9). Note
that element (5,6,8,7) is shared between the processors. If we
have to evaluate a “shared” row of the product, for example
row 6, we must calculate something like the following
equation:

ug =kgpy+KeP,s +KePs +KPs +KeP; +kgpy (10}

Although node 5 resides on PROC1, we cannot compute

u,, unless p, and p, (residing on PROC2) are available to

PROCI1. Nodes 7 and 8 are said to be “halo nodes” for the
PROC1. Similarly, nodes 5 and 6 are said to be “halo nodes”
for the PROC2.

The “halo nodes™ must be copied into a local address space
before executing an operation like the product matrix-vector.
Clearly an efficient implementation must keep the number of
“halo nodes” as low as possible and balanced over the
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Fig. 1. Example of a nodal partiticning of the mesh; the “halo nodes™ belong
to the dark element

processors; this consideration is intimately linked with the
definition of an adequate paraliel mesh partition. For this
scope two techniques were tested: the Recursive Spatial
Bisection (RSB) [6], and the Recursive Moment of Inertia
{RMI) [7]; the latter was adopted, as the fust was
computationally too expensive. The RMI is based on the
minimisation of the halo sizes obtained partitioning the mesh
cutting it across the principal axes of inertia. The method
therefore attempts to define thin elongated subdomains within
the mesh. To reach a reasonable load balancing for the most
critical phases of the computation (that in this case were
identified to be the matix-vector product and the
preconditioning), the procedure has been modified so as to
generate partitions with the same number of nonzero entries
per subdomain. This is achieved assigning to each node as
“weight” the number of nonzero entries it contributes to the
stiffness matrix. Examining an ordered list of nodes together
with the weights list, it is possible to define balanced groups
of nodes. Note that in this way other phases, like the stiffness
matrix assembly, and other vector operations may not be
perfectly balanced, but this is not a major problem, as the
computationally most intensive operations are optimised.

V. CoL CALCULATION PHASE

If the source of the magnetic field to be modelled is a
system of coils, the formulations used by TOSCA and
ELEKTRA require the evaluation of the magnetic field due to
them, according to Biot-Savart law (2), and the evaluation of
additional right hand side terms. The cost of this calculation
may sometimes largely dominate the total computation time.
Even though most of this computation is perfectly data
parallel, it is essential for efficient calculation that an adaptive
quadrature method is used, because the accuracy, and
therefore the computation time, depend strongly on how close
the field point is to the coil. The cost per integral is thus
clearly highly irregular with respect to the position if a purely
geometric data decomposition is adopted, resulting in grossly
unbalanced computational loads on the different processors.
A different data decomposition technique had to be adopted,
based on a cyclic distnbution of these integrals across
processors. In this way the local cost continuity property can
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be easily exploited. This strategy can be implemented in a
straightforward way within the BSP/SPMD approach adopted
within the project. An advantage of this static approach to a
dynarnically varying workload is that the data can be
distributed in large units, maximising communication

. efficiency. The R.H.S. computational costs are dramatically

reduced following the technique just explained in problems
with a large number of conductors.

Moreover, on the interface between total and reduced
scalar potential regions, certain line integrals of the source
magnetic fields have to be evaluated. They take the following
form:

I=H, de 11

where e is the path along an element edge. This element edges
are found by searching the element database (on the local
hard disk unit} for nodes on the interface between the
different scalar potential, buffering them on the processor 0,
and distributing them across the processor network. The edge
search procedure is based on the construction of a tree
connecting the nodes belonging to the total/reduced
potentials, and the assignment of “potential jumps” to the
specific nodes using the information contained in the tree.
The tree formation may need the database to be re-read
several times; however this process can be optimised
reordering the disk data organisation. The final contribution
to the R.H.8. terms comes from the calculation of surface
integrals over the interface total/reduced potential faces. They
take the following form:

I=fN,(H. n)ds

[

(12)

where n is the normal to the element facet. As before, the
computation of this term requires a search on the hard disk
unit, the buffering of the faces on the processor (), and their
subsequent distribution across the processor network. Only
one complete read of the database is required here, so this
phase is much faster than the caiculation over the edges.

V1. BEAM CALCULATION PHASE

The particle beam modelling handled by SCALA can be of
interest for the design of cathode ray tubes and other devices
requiring the calculation of electron beam trajectories, as well
as the computation of the fields. Steady state solutions can be
calculated by tracking the electron beam through the device;
the modelling is performed distributing the total charge into a
number of individual rays, each of which is then tracked
integrating the equation of motion along the path followed by
the particle by making use of the field computed with the
Finite Element method.

This should be a perfectly data parallel operation, since
rays do not interact within each iteration; however, also in
this calculation, though element based, the cost is again
distributed in a highly non-uniform way, because the beams
are very localised, and the tracking makes use of an adaptive
integration procedure. The approach was therefore to adopt a
cyclic distribution method, applying it to the individual
particle beams themselves. In this way an effective load



balancing among processors can be obtained, and the
parallelisation becomes very efficient, particularly with a high
number of rays.

VII. RESULTS OF SOME TEST CASES

A number of test cases of different types have been
selected within the project to test the parallelised versions of
the codes. All tests have been chosen among real design
cases, also trying to define “difficult” situations in order to
provide a serious evaluation of paralielisation effectiveness in
an industrial environment for the different codes, in various
possible analysis situations.

Tests have been performed on a number of parallel
architectures located at different european sites and made
accessible to project partners, via network, by the Europort 2
supervisor, Smith. Furthermore, additional machines have
been made available by Oxford Parallel. The parallel
machines that have been used, to various extents, within the
project to run test cases were the Meiko CS2, the IBM SP2,
the Silicon Graphics Power Challenge and a DEC Alpha
network.

Because of space reasons, it is not possible to report here
on the whole set of resulis obtained on the different parallel
architectures tested. In this paper attention will be focused on
some of the results obtained by the test cases defined and run
at the Department of Electrical Engineering of the University
of Genova, code named PERMRI and SUPERMAG.

A. PERMRI

PERMRI is a nonlinear magnetostatic test case, modelling
a permanent magnet structure for Magnetic Resonance
Imaging (MRI), shown in Fig. 2.

The number of nodes must be high, since the most
important requirement here is field uniformity. In this case
there are no coils: the field sources are a number of
permanent magnets inserted into the magnetic structure. Four
test runs, I to IV, with different numbers of unknowns were
made (4,000, 12,000, 30,000 and 45,000 respectively). The
results for the largest case on the Meiko CS2 and on the IBM
SP2 are reported in Tab.3 and 4, showine * th solver and
total performance.

Fig. 2. Geometry of the PERMRI test case
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It should be remarked here that all time figures are
expressed as elapsed, and not CPU time. This is clearly due
to the fact that the speedup interesting from the user’s
viewpoint is the elapsed time speedup.

TABLE 3
SUMMARY OF RESULTS FOR PERMRI TEST CASE ON THE MEIKO CS2

Test run IV (about 45,000 unknowns)

Proc. Tter. Solver Solver Total Total
(min time speedup time speedup
max)

scalar 122 1196s - 1915s -
142

1 122 1210s 0.99 1841 s 0.96
142

2 133 655s 1.83 1179 s 1.62
152

4 141 338s 3.54 735s 2.6
162

8 150 179s 6.68 5405 355
174

TABLE 4
SUMMARY OF RESULTS FOR PERMRI TEST CASE ON THE IBM SP2
Test run IV (about 45,000 unknowns)

Proc Iter. Solver Solver Total Total
(min time speedup time speedup
max)

scalar 122 308s - 529s -
142

1 122 3445 0.90 634 s 0.83
142

2 133 187 s 1.65 386s 1.37
152

4 141 105s 2.93 245 s 2.16

162 .

8 150 66 s 4.67 178 s 297
174

16 157 445 7.00 159 5 332
180
B. SUPERMAG

SUPERMAG is a quasi-static, linear, transient eddy current
problem that models the development of eddy currents into an
aluminium cryostat, designed to contain superconducting
coils for M.H.D. generation, during a fast transient. The
scope of the modelling is to evaluate the dissipation due to
eddy currents generated by an exponential decay of the main
field.

The computation is extremely heavy, because the transient
is handled with time discretisation and a solution of a system
of algebraic equations must be performed at each time step,
describing with acceptable accuracy the thin aluminum layer,
much smaller than the coils.

Four test runs, I to IV, were performed also for this
problem with about 6,000, 12,000, 18,000 and 36,000
unknowns respectively. The geometry of the system is shown
in Fig. 4.

Table 5 and 6 show the results for the largest run on the
Meiko CS2 and on the IBM SP2 machines, for the different
numbers of processors used, with the same structure of the
previous test case.
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Fig. 3. Geometry of the SUPERMAG test case

TABLE 5
SUMMARY OF RESULTS FOR SUPERMAG TEST CASE ON THE MEIKO C52

Test run IV (about 36,000 unknowns)

Proc. Iter. Solver Solver Total Total
{min time speedup time speedup
max)

scalar 103 34918 s - 35812s -
133
1 103 36372s 0.96 37180s 0.96
133
2 i5s 29328 s 1.19 29968 s 1.20
204
4 170 18910 s 1.85 19488 s 1.84
) 205
8 174 13049 s 2.68 13615s 2.63
232
TABLE 6
SUMMARY QF RESULTS FOR SUPERMAG TESTCASE ON THE IBM SP2
Test run IV (about 36,000 unknowns)

Proc. Tter. Solver Solver Total Total
{min time speedup time speedup
nax)

scalar 102 9381 s - 10492 s -
133
1 102 113355 0.87 11967 s 0.88
133
2 153 9134 s 1.08 9512 s 1.10
201
4 161 5821s 1.6% 6070 s 1.73
209
8 162 4250s 2.31 4437 s 2.36
- 222
16 172 3573s 275 3737s 2.81
235

VII1. CONCLUSIONS

The parallelisation of industriai electromagnetic CAD
software performed in the PARTEL project of Europort 2
gave positive results in terms of ability to modify existing
anatysis codes to run on parallel machines.
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Making use of the BSP model, the overall modifications to
the codes were kept to a minimum, and the parallelisation was
implemented in a rather straightforward way. More than one
type of parallel decomposition had to be used, due to the very
different requirements in the solution procedures of the codes.
This was simple to implement with the approach selected,
since the BSP approach allows to clearly distinguish among
the parallel phases; results were good on every architecture
examined. The block preconditioner behaviour was
surprisingly good for all test cases, giving rise to a modest
increase in the number of iterations in all cases tested. The
use of the BSP model also allowed to analyse the
computational cost on different platforms.

In terms of overall speedup for design test cases, always
evaluated in terms of elapsed time and with some tests
deliberately chosen among “difficult” ones to maximise the
reliability of results from a practical standpoint, it was shown
that results can be notably different as a function of the
computational weight of the solver or other parallelisable
phases in the specific problems being solved.

For the test cases reported here, all of the class of the
“difficult” ones, speedups have proven to be fair but not too
impressive, but with increasing significance as problem size
increases. Better results have been obtained in other tests,
particularly in the SCALA runs, since the highly parallel
beam computation phase provides a nearly linear speedup
with the number of processors in large problems.

In general, it can be concluded that paralielisation of
existing electromagnetic Finite Element codes has proven
viable with acceptable efforts using the BSP approach, and
that it can provide computational advantages, that, though
function of a number of different conditions, are certainly of
increasing interest for the largest problem sizes and for the
extremely demanding computational loads increasingly
required by the current fast development of automatic design
optimisation.
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