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ABSTRACT A Moment Method (MM) technigue for the
analysis of wire antennas on board resonant-sized bodies
modelled with parametric surfaces is presented. The
approach may have useful applications for the study of the
behaviour of wire amtennas on board complex conducting
structures like aircrafts. The current is represented by
curved rooftop functions on the body, piecewise linear
functions on the wires and a new junction function in the
aftachment region between the body and the antenna. The
bodies are precisely defined by means of a small number of
NURBS surfaces (Non Uniform Rational B-Splines) and
Bézier patches (BP). In addition the new junction function
that can be defined over any BP allows the antenna to be
attached to any part of the body. Radiation patterns and
input impedance calculations for several geometries are
presented to show the accuracy of the method. The results
are successfully validated when comparisons with
measurements or results from other methods are carried out.

1 . INTRODUCTION

The MM [1] is one of the most popular techniques for the
analysis of electromagnetic scattering of arbitrary bodies of
small or resonant size. The method gives good results when
analyzing wire antennas and can be used to obtain the
scattering field by surfaces represented by wire grid models
[2]. However, the wire grid modelling does not work
properly when near-field parameters such as input
impedances or current distributions are calculated.
Subsequently, a surface representation of the conducting
bodies must be introduced.

A representation of the bodies by flat triangular or
rectangular patches provides excellent results of near and
far-field parameters for many problems, however it presents
the disadvantage that high amounts of memory and CPU-
times are needed when the geometry is electrically large.
These problems can be substantially reduced by defining the
MM basis functions directly over the models of the bodies
based on meshes of NURBS surfaces and BP [3] because
fewer number of patches are needed to represent the body
accurately.

NURBS surfaces are B-Spline elements formed by a set of
patches defined by polynomials, [3]. The coefficients of
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these polynomials depend on merely a few control points
(see Fig.1). A body that is quite complex, for instance a
complete aircraft, can be modelled with nearly all its details
by only a few hundred NURBS. Any NURBS can be
expressed in terms of BP. NURBS surfaces are more
efficient for representing and storing the information
necessary for describing a geometry however BP are more
suitable for the numerical computation of parameters
associated with the local behaviour of a surface like
curvatures, derivatives, etc. It is a fast and easy process to
obtain the BP from a NURBS representation by applying the
Cox-de Boor transformation algorithm [4].

control points

control mesh \

T

Figure 1. NURBS surface and its associated control points

In a previous paper [5} the authors presented a MM
technique using NURBS surfaces and BP to represent the
geometry of arbitrarily shaped scatterers. Modelling using
that method implies that fewer basis functions are needed to
obtain a precise representation of complex bodies. In that
approach a new basis function associated with each
boundary line between pairs of adjacent BP was introduced.
These basis functions can be considered a generalization of
the planar rooftop functions introduced by Glisson [6].
Curved "razor-blade" functions were considered as testing
functions. This method was successfully validated when
RCS values of several objects were obtained and compared
with available data from other methods.

The purpose of this paper is to present an extension of the
method mentioned above in order to analyze antennas



mounted over conducting surfaces. By establishing
continuity of current at the wire-surface junction, a new
special basis function (attachment or junction subdomain)
has been introduced. This junction subdomain extends over
a BP of the model and a segment of the attached wire
antenna. This new subdomain presents an added advantage
compared with previous works that can be attached to any
of the BP of the body model. As the BP can be of complex
shape it is possible to connect the antenna to any part of the
body. Moreover the wire attachment itself need not be taken

into account when the body is modelled. Therefore our

formulation derived from the use of NURBS and BP allows
us to consider more compiex bodies and attachment points
than in previously published works, [7-9].

This paper is organized as follows: Part 2 presents the
description of the proposed MM scheme, giving an overview
of the basis and testing functions used, the junction
subdomain, the electrical fed model and the computation of
the MM matrix terms; Part 3 presents the radiation patterns
"and input impedances for several canonical objects including
comparisons with results obtained by other methods or
measurements; the conclusions are outlined in Part V.

2 FORMULATION

The electric current is represented by three kinds of basis
functions depending on the part of the geometry considered:
generalized curved rooftops over the BP that describe the
" body surface, piecewise triangular functions on the wire
antennas and junction subdomains in the wire-surface
attachment area.

2.1 Generalized curved rooftops

The body is modelled by means of meshes of NURBS
surfaces that are subdivided into BP. A basis function is
assigned to each one of the boundary lines between pairs of
adjacent BP; each basis function extends only over the pair
of paiches that share a common boundary line. A constant
charge density is imposed on the BP, [5]. Curved razor-
blade functions, defined over the isoparametric lines which
Jjoin the centres of the pair of BP associated with each basis
function have been considered as testing functions.

2.2 Wire antennas

A thin wire approximation has been used, assuming that the
radius of the antennas is much smaller than the length.
Although the wires can be arbitrarily curved, a piecewise
lingar approximation is made by connecting straight
cylindrical sections as can be seen in Fig.2. Triangle and
pulse functions have been chosen as basis and testing
functions, respectively. A procedure which bears a
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considerable resemblance to that proposed in [6] has been
considered for the numerical treatment of the MM terms.

— =

piecewise linear

curved antenna agproximation

Figure 2. Curved antennas subdivided into a set of
cylindricai straight segments

2.3 Attachment subdomain

This new subdomain extends over a wire segment and over
a BP, as can be seen in Fig.3. The wire segment is assumed
electrically short (e.g. V36 long) and normal to the surface
(the other wire segments can be arbitrarily oriented). The
current associated with the junction subdomain is a
piecewise linear function (semi-triangle) on the wire and it
is assumed that the current flows approximately radially
from the attachment point on the BP. A total charge of
-1/jw on the wire (where  is the radian frequency) and
a charge of 1/jw on the patch are imposed. The charge
continuity equation (I = —f w q) tells us that the total current
of the junction subdomain is | Ampere. The charge density
is assumed to be constant in both wire segment and surface
patch. The exact shape of the current density on the BP of
the junction subdomain is neither defined nor computed.
The only imposition is that the charge density should be a
constant function with a total charge of 1/jw. As we will
see below it is not necessary to know the exact shape of the
current on the BP of the junction subdomain,

piecewise linear antenna

junction subdomain (wire)

» attachment point
\/ junction subdomain {patch)

The junction subdomain formed by a wire
segment and a Bézier patch

Figure 3.



Fig.4 shows the shape of the testing function for the
junction subdomain. A pulse function is defined as a testing
function solely on the wire part of the junction subdomain.
No testing is made in the patch surface of the junction
subdomain because this patch is a part of the body
geometry. It has been tested by the weighting functions
associated with the generalized rooftop functions employed
for the body, [5].

junction subdomain {wire)

linear function on the wire

testing function

Q
\junctlon subdomain (patch)

Figure 4. Testing functions for the junction subdomain

It is important to note that since one part of the junction
subdomain is one patch of the NURBS meshing (not an
additional disc or a flat patch), the connection of an antenna
to the body does not imply any restriction or modification
in the NURBS meshing. The sole restriction for the
attachment points is that they should be positioned in or
near the centre of a BP. This is not an important limitation
because the junction patches are or can be made electrically
small (typically a body is modelled using four to six patches
per wavelength in its curved areas or eight to ten in its flat
parts). In fact, this restriction is inherent to the discretization
process of the problem that appears when using a numerical
method like MM. In other words we must accept a
quantization effect for the possible position where the wire
can be placed. When attaching a wire antenna to a patch
model of a body, two points on its surface are considered
different only if they do not belong to the same BP.

24 MM coupling matrix

The objective is to solve the electric field integral equation

(EFIE). To do that, the current density J is expressed as a
sumn of the current density on each subdomain as:

8 w . U .
FF) =Y TR+ X T (7 )+ YT ) 4y
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where B is the number of subdomains over the patches of

the geometry modelled with NURBS surfaces, W is the
number of subdomains defined on all the wire antennas of

the problem and U is the number of junction subdomains.
Then, the EFIE for this problem takes the form:

where E™ (F') represents the impressed electric field, # is
the normal vector and the integro-differential operator

] [Jj.(?)] is defined by:

JOB [ 7o qir R0 a8
o {Ji(r)G(r,r }dS

L[J(7)]=
(3)
L_v[v,J,(7) G F)ds’
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Equation (2) is converted into an equivalent set of linear
equations. The coefficients of this system form the MM
impedance matrix that can be grouped in nine boxes:

A A
vz iz
Zh |z oz

where u denotes a junction subdomain, w a subdomain on
a wire and b a subdomain on the body.

Since the objective of this paper is to introduce the
connection between wires and surfaces, only the terms
related with junction subdomains will be addressed in detail.
The matrix terms related to the wire antennas have been
treated by other authors, for instance [7-9] and those related
to the subdomains over BP were introduced in [5].

If we consider the coupling between the / and the j-junction

subdomains, we are referring to one of the terms of theZ**
box of the MM matrix. This term is obtained by evaluating
the expression:

z=(i,j) = { T, 2[J]) @)



where T is the testing function associated with the i-
junction subdomain (see Fig.4). This last expression can be
computed as a sum of one inductive and one capacitive term
depending on the potential vector and potential scalar of the

j-subdomain, respectively.

The inductive term of (4) is given by the expression:

7]
Z:(i,j)=—f:;" [ | [ )GEF)as
0

K &)

where the current densities on the junction subdomain j
have been separated into two parts depending on which part

of this subdomain we are considering: J, () on the surface

of the wire segment (S:j) and J,(r") on the surface of the

BP (SS':). The inductive term defined in (5) can be largely
simplified: a) if we neglect the contribution of the BP
current because as J, is approximately radial its equivalent

momentum vanishes; b) if we approximate the currentJ
by a pulse function that extends over the first half of the
“segment of the junction subdomain j and ¢) if we consider
the inductive field to be constant along the wire segment
over which the testing function of the i subdomain extends.
The simplified expression as follows:

# k'n
. ¢ . (6
28 - L8 2 [ 67,7 d ©
0

where 7, is the centre point of the wire segment
corresponding to the i-junction subdomain. On the other
hand, the capacitive term of (4) can be obtained as:

" )

where p(F’) and o (7'} are the charge densities on the
wire segment and on the BP surface of the junction
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subdomain j, respectively. Taking into account the fact that
these densities are constant and that the total charge in the

surfaces is equal to 1/jw we have:

Rl kj"
226,y [ v| L [ ey
dngjw 7, hj 0 ®
8
- L [ erryas|d
Sll
S, s;;
Taking into account that
b

[ Vf(rydr = £(b) -f(a) ©)

expression (8) can be re-written as:

U ;0 - "'1 @
220 = e [£(nfr2) - £(0)] (10)
where the function f is defined as:
Ly
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Similar expressions for the rest of terms of the MM matrix
can be obtained considering the domain and the limits of
integration in each case. Thus, the capacitive and inductive

term of the coefficient Z**(i,f) are expressed as:

hf2
ZM(I,])= f[f G(F,7) dl]d'i (12a)
0|1
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L
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where [; is the wire segment of the j-antenna subdomain
and J_ represents the current on that subdomain.



If it is assumed that the j subdomain of the body is shared

by the Bézier’s patches 4 and B, being J: and J: the
current of the basis function on both patches respectively,

the coefficient Z*?(i,/) is defined as:

kf2
Zotinf) = 222 | fJb( )G, 7) dS
¢ (13a)
fJ,, FYG(F, ) ds']di
Z2(is)) - f f G(FF")
dngjw 4
(13b)
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where §, and S, are the areas of the patches 4 and B.

Finally, all the integral involved in the expressions for the
coupling impedances are carried out numerically by means
of the Gauss’ Quadrature Method. This algorithm avoids the
singularity of the Green’s function which occurs when the

points 7 and 7 coincides. Because of this, the expressions

developed above hold for the self-terms.

In the study presented in this paper the magnetic current
frill modet is used to feed the antennas. For this purpose, a
voltage of 7 volt is distributed among the subdomains which
share the BP where the wire is attached, as shown in Fig.5.
This figure shows the digitized impressed voltage which is
associated to each one of these subdomains to approximately
mode] the magnetic current frill.

3 RESULTS

Several geometries have been analyzed in order to validate
the method presented. The results include examples of
monopole antennas attached to perfectly conducting bodies
such as spheres, cylinders and other ground planes.
Radiation patterns and input impedance values have been
obtained and compared with measurements or results from
other methods.

3.1 Monopole on conducting sphere
Figs.6-7 shows a quarterwave monopole antenna on a

conducting sphere. Computed results for a=N4 and a=N8§,
are presented (solid fine) and compared with those taken
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from [10]. The sphere has been modelled by a mesh of BP
that form 4 meridians and 9 parallel lines (76 basis
functions on the sphere). Good agreement is observed in
both cases. It is important to notice that, since the sphere is
a body of revolution, the patches on the poles are triangular

_and considerably smaller than the remaining patches but no

special treatment of the current has been applied.

wire antenna P

junction subdomain
(wire+patch)

Feeding model for the attached antenna. An
impressed voltage of 0.5 Volts is imposed on the
junction subdomain and on the regular surface
subdomain a, b, ¢ and d that surrounds the
antenna

Figure 5.
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Figure 6. Radiation pattemn of an M4 monopole on a M4
sphere
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Figure 7. Radiation pattern of an A/4 monopole on a M8
sphere

3.2 Monopole on a conducting cylinder

Fig.8 shows the configuration of a monopole antenna (A)
diametrically opposite a passive boom (B) on the surface of
a cylinder of height and diameter 0.22m and 0.20m
respectively. The wavelength is 0. 36m. Computed values
(solid line) for the ¢=0" cut are compared in Fig.8 with
measured data (points) taken from [8] for a monopole length
= (),08m and a boom length = 0.44m. Assuming that the z-
axis coincides with the cylinder axis, the mesh of BP of the
cylinder is defined by /2 equidistant meridian lines (¢-
constant curves) and 5 parallel lines (z-constant curves).

dB
Q
_5- .
- 2 M
10k
L ~ B
4sf fe=0 *=180
C K ¢-90H
- Y
20 Loaaealaviailaearal L il L L 1 1 1.7

¢ 30 60 90 120 150 180 210 240 270 300 330 360
Phi {degreas) '
— Calculated = Measured [8]

Figure 8, Radiation pattern of a monopole antenna (A)
diametrically opposite a passive boom (B)
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33 Monopole on an polihedrical conducting body

A very special conducting box is shown in Fig.9. A
quarterwave monopole antenna is mounted on the top plate
of the box (the most narrow). The same figure also includes
a skeich of the mesh considered for the box (eight patches
per wavelength, the frequency is 3/7 MHz). The total
number of rooftops on the body is /504. Figs.10-11
illustrate computed {solid line) and measured (dashed line)
valuesrespectively for the =0° and ¢=9(" cuts, respectively
of the radiation patterns. It is important to notice that,
although the antenna is very close to the edges of the model
the agreement between computed and measured values is
relatively good.

1.10m
0.36m 7 0.05m
Y
ZL Ny
Y X . 257 g
53 e
= 0.20m
S ¥
2.09m <

Figure 9. (a) Conducting box with flat sides; (b) Mesh of
BP used to model the box
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L L 1

Theta (degrees)
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Figure 10. Radiation pattern of a monopole antenna on the
top side of the box of Fig. 9 (cut ¢=0")
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Figure 11. Radiation pattern of a monopole antenna on the
top side of the box of Fig. 9 (cut ¢=90")

3.4 Input impedance of a menopole on a box
Fig.t2 shows a monopole antenna centred on the top plate
of a conducting box. The computed results for the input
impedance of this antenna are compared with measurements
taken from {[11]. Several densities for the mesh of the
conducting box have been considered depending on the
range of frequencies considered (a number of ten patches
per wavelength is always guaranteed). A sketch of the mesh
for the frequency band /.75 to 4.0 GHz is included in the
figure. The monopole has been modelled considering 20
subdomains for all the frequency band. A good agreement
between calculated and measured data is also observed.
3.5 Input admittance of a monopole on a plane with
attached reflected plate

Finally, Fig.13 shows a monopole antenna centred on a
conducting flat plate with a reflected plate attached to one
side of the ground plane. The mesh considered for all the
frequency band is included in the same figure. As in the
previous case the monopoie has been modelled also by 20
subdomains. The radius of the monopole is 0.0008m. The
computed results for the input admittance of this antenna are
compared with measurements taken from [7]. The density
for the mesh of the conducting plates that has been
considered for all the range of frequencies analyzed is
shown in the same figure (a number of ten patches per
wavelength is always guaranteed). Good agreement between
computed and measured data is observed.
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Frequency (GHz)
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Figure 12. Monopole antenna on a conducting
parallelepiped; (a) meshing of BP for the
frequency band 7.75 to 4.0 GHz; (b) results for
the input impedance

4 CONCLUSIONS

A new technique based on the MM to analyze antennas on
board conducting surfaces has been presented. The scheme
makes use of modern computational geometry tools to
maodel the scatterers and the simplicity of wires to model the
on-board antennas. This theory has been implemented in a
computer code in order to obtain radiation patterns or input
impedances of several canonical structures. The wire can be
attached to any patch of the body meshing without requiring
any special attention. Comparisons between numerical data
and measurements show that the method is accurate and
efficient for radiation patterns analyses. For input impedance
the approach gives reasonably accurate results.
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Figure 13. Monopole antenna on a flat ground plane with
attached reflected plate; (&) meshing of BP for
all the frequency range; (b) results for the input
admittance
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