Modelling of degaussing coils effects on ships

F. Le Dorze and J. P, Bongiraud
Laboratoire du Magnétisme du Navire, ENSIEG BP46, 38402 St Martin d'Héres, France
J. L. Coulomb and G. Meunier
Laboratoire d'Electrotechnique de Grenoble INPG/UJF CNRS UMR 5529
ENSIEG BP46, 38402 St Martin D'Héres, France
X. Brunotte
CEDRAT S.A., 10 Chemin du Pré Carré, 38240 Meylan, France

Abstract- This paper presents our work on
magnetic modelling of ships, especially their
degaussing coils. We first focus on these coils
effects in the FEM computations. The main
reasoh of bad results is a locally inadequate
mesh. We propose a method named "reduced
potential jump” to avoid the use of a very fine
mesh. Then, comparison of results is presented
for a simple geometry.

1. INTRODUCTION

In the earth's magnetic field, a ship creates a local
magnetic anomaly. To reduce these perturbation, the most
psual method is to install degaussing coils onboard the ship.
The computations of equilibrium magnetizations without
these coils using a Finite Elements Methed gave very good
results [1]. On the contrary, the computation of the
degaussing coils effects gives bad results.

The purpose of our work is o analyse the reasons of these
bad results and to propose solutions bringing the same
accuracy than in the case of equilibrium magnetizations.

II. STUDIED CONFIGURATIONS
A. 2D Problem

We study a simple geomeiry for which a reliable
numerical 2D solution is given by the FEM software
FLUX2D. It's a ferromagnetic cylindrical ship and a circular
coil (Fig. 1}.

With the mesh generator of FLUX2D which allows to
mesh automatically with iriangular elements and manually
with rectangular elements, we got a very accurate mesh which
gives a reliable solution (Fig. 2).

The mathematical model uses magnetic vector potential
-

A in magnetostatic in axisymetric configuration:
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where j is the current density in the coil and p the magnetic

permeability of the sheet.
B. 3D Problem

The same problem (Fig. 3) has been studied by using the
FEM 3D software FLUX3D with the numerical tools
developped for the computation of the equilibrium
magnelizations with a reasonable number of elements, that
is:

- the 3D surface elements with potential gap to describe
the volumic thin sheet [1]
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Fig. 2. Two dimensional mesh



infinite region

P
—~\¥
Y

cylindrical
sheet a

NG

Y,
3

;N

Fig. 3. Three dimensional geometry and mesh

- the reduced scalar potential to reduce the number of
unknowns per node,
- the modelling of the infinite domain by a mapping method
[2].

The mathematical variable was the reduced scalar potential
¥ in magnetostatic:

- -
div{p[Hj-Gad¥]}=0 @

_.)
where Hj is the field created by the coil analytically

computed by the Biot and Savart law.
TII. COMPARISON OF 2D AND 3D RESULTS
A. Hypothesis of 3D Surface Elements

Figure 4 shows the equiflux in the cylinder of the 2D
problem. It reveals that the field in the sheet is nearly
tangential to it, thus verifying the validity of the hypothesis
of the 3D surface elements without potential gap. It consists
in a null normal tangential component of the field in the
sheet. So we can integrate analytically through the thickness
of the sheet. For exemple, the source term in the finite
elements formulation can be written:

- o
wH;.Grd¥dv =
volumic sheet

- >
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3D surface elements

where Ep is the thickness of the sheet.
The integration is done not on the volumic sheet but on
the 3D surface elements.

Fig. 4. Equiflux in the sheet
B. Magnetic anomaly at standard depth

We compare the field of the ferromagnetic cylinder at a
standard distance (typically one time the radius of the
cylinder) from its axis in 2D and 3D (Fig. 5) for different
distance d between the sheet and the coil.

We notice a good agreement of the 2D and the 3D zesults
when d is large enough (4= 5 times the thickness of the
sheet Ep). But when d decreases { = Ep or 0.5*Ep), the 3D
results become incorrect. The 3D mesh is so large near the
coil compared to the distance coil that the local variations of
field are not correctly taken in acconnt- sheet
( elements dimension _ 100

distance sheet - coil ~ )

4.0
3.
3.
2.
2.
2.
1
1

Hmaximumet standard width (A/m)

o o o

25 25 15 5 5 15 25 35 45
coil - sheet distance (m

Fig. 5. Maximum ficld at the standard depth in 2D and 3D as a
function of the distance sheet - coil
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Fig. 6. Error on the field as a function of integration points number
C. Increasing the Number of Integration Points

We can improve the accuracy of numerical integration by
increasing the number of integration points. In fact, in the
Finite Elements Method appear integrals which are
numerically calculated with a certain rumnber of points in the
elements [3). Increasing the number of integration points
decreases the error of the 3D field compared o the 2D field
for d=4 *Ep but gives unsatisfying results for a coil very
close to the sheet (d =Ep), which is the most common case
in real ships.

D. Improvement of The Local Mesh

Another test was to describe manually a high density mesh
around the coil. It leads to a 4% error in field, compared to
2D results. The error was 120 % when using the standard
mesh. Thus, we took this 3D results as reference for the
following analysis.

IV. PROPOSED SCLUTIONS

The disadvantages of the preceeding improvement of the
local mesh are:

- the need for a manual description of a particular aera for
each coils with a local high density mesh.

- the significant increase of the number of elements and the
compuiation time.
We lose partially the advantages of the special numerical
tools developed for the ship magnetizations computation.
Such a solution is not realistic for the whole complex
structure of a real ship.

We see two possibilities to solve the coils effects
problem:

- the adaptative meshing realised by a mesh generator able
to determine automatically where an improved mesh is

- the modification of the mathematical model.
We will explore this solution here. The purpose is (o take
into account the reaction of the material with a coarse FE
mesh on the iron sheets near the coils. The idea is to add the
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local reaction of the ferromagnetic material that the FEM
could not calculate. This local reaction can be described as:

- the effect of a density of magnetic poles or dipoles
equivalent to the magnetized sheet,

- the effect of a magnetic potential jump along the sheet.

A. Magnetic Dipoles

In the reduced scalar potential model, the field created by the

coil is described analytically by the Biot and Savard law. The
ﬁ

idea is to add a correction field H4 taking the reaction of the

ferromagnetic material into account.

Locally, the coil and the cylindrical sheet can be considered
as an infinite wire close to an infinite sheet. The magnetized
portion of this sheet is assimilated to a linear distribution of

_)

dipoles which create the field Hg [4] whose polar components

are :

A
H p= anz cosd

Ao
Hg =‘5;p—251n9

(4)

where A is the magnetic moment density per length unit.
—_
Adding that correction field to the source field Hj improves

the total field but not the reduced scalar potential. There is
no reaction of the FEM model to that correction and we are
totally dependant on the quality of the analytical correction,
which is unrealistic for real ships.

B. Reduced Scalar Potential Jump

1) Application of the jump: The reference 3D results (that is
with a locally densified mesh) reveals a reduced scalar
potential jump in the sheet near the coil (Fig. 7)

If we impose this jump as a Dirichlet constraint in the 3D
problem with a coarse mesh, the field at the standard distance
become very close to the one given by the 3D reference

(Fig.8).

Fig. 7: Reduced scalar potential jump along the sheet
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Fig. 8 . Magnetic field at standard width

This method seems to be efficient to solve the problem
with a coarse mesh. The jump compensates correctly the
incapacity of the FEM model to compute the local effect of
the coil on the sheet.

2) Computation of the potential jump: To apply this
method, we must predetermine the local reduced scalar
potential. The distance between the coil and the sheet is so
small compared to the dimensions of the cylinder that we can
consider locally this 3D axisymetric configuration as an
infinite wire close to an infinite sheet. This 2D problem can
be solved by the magnetic images method.

The influence of an infinite wire in the air can be
described by a complex scalar potential [5}, complex
combination of the scalar potential ‘¥( and the flux function
Fo

Wo=Wg+i.Fo )
where
Ip +d
Yo = 2 Arctg(—y—x—‘)
oo, [ - ®
Fo =ﬁ.Log x“+ (y+d) J
where I is the intensity in the infinite wire.
With Z=x+i.y, we have
Wp= ";-%.Log(z+i.d) @)

With a sheet of relative permeability pp, of thickness Ep,
at a distance d from the wire, the complex scalar potential
inside the sheet is the sum of the potentials created by an
infinite series of magnetic images [6] at the points (Fig. 9)

B2p

B2p+1

which affixes are

Zyp=-1id - 2ip.Ep

Zopsy =id + 2i(p+1).Ep @)

real carrent IC

Fig. 9: The magnetic images for the infinite wire- infinite sheet problem

p varies from 0 to infinite.
These images carry the currents

Inp=(I1+a) . A% .19
{]2p+1= (1+a) . AZP*1. 1 @
where
l-u
A=y u’r (10)

This result is obtained like in optics by expressing the
transmission through the interfaces with a factor ( + A) and
the reflection with a factor A

The complex potential inside the sheet is then

+o0
{ Y AP, Log(Z-Z3p) +
p=0

+oo
Y AP+ Log(Z - Zap+1) } (11)
=0

Using back the real notation and substracting the source
potential, we get the reduced scalar potential inside the sheet

oo
W= Wy - 12;“‘ I { ZA?-P. Arcigtte *xzp'E"

+oo
+2A2P+1.Arctgy— d —2(p+1).Ep }

. (12)
=0
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The figure 10 shows the reduced scalar potential inside the
the sheet for p, = 200 calculated both with the formula (12)
and by FLUX3D using a locally densified mesh.
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Fig. 10. reduced scalar potential in the sheet

‘We notice an excellent comrelation between the two curves.
The analytical series converges less gquickly when the
permeability of the sheet is higher.

V. CONCLUSION

Thanks to the comparisons between 2D and 3D results on
a simple geometry, we have shown that the significant errors
in computation of degaussing coils effects on ships occur
when the local mesh density is largely unsuificient and can
not take the local reaction of the material into account.

To avoid the refinement of the mesh, we propose 1o
introduce a reduced scalar potential jump in the sheet plane
which simulate the local reaction of the material. This jump
can be calculated a priori by the magnetic images method for
the simple 2D case infinite wire - infinite sheet. To
generalize the method 1o more complex geometries, we have
to calculate the potential jump for other 2D cases like an
infinite wire in an edge sheet or a T - shaped sheet, for which
analytical or simple numerical solutions can be found.

So this method seems to be a good alternative for the
computation of degaussing coils effects in ships with
reasonable number of elements and computation time.
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