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Abstract ─ To circumvent the inaccuracy in the 
implementation of the perfect-electric-conductor 
(PEC) condition in the weakly conditionally stable 
finite-difference time-domain (WCS-FDTD) 
method, an improved weakly conditionally stable 
(IWCS) FDTD method is presented in this paper. 
In this method, the solving of the tridiagonal 
matrix for the magnetic field component is 
replaced by the solving of the tridiagonal matrix 
for the electric field components; thus, the perfect-
electric-conductor (PEC) condition for the electric 
field components is implemented accurately. The 
formulations of the IWCS-FDTD method are 
given, and the stability condition of the IWCS-
FDTD scheme is presented analytically. Compared 
with the WCS-FDTD method, this new method 
has higher accuracy in the implantation of the PEC 
condition, which is demonstrated through 
numerical examples. 
 
Index Terms ─ FDTD method, perfect-electric-
conductor (PEC) condition, weakly conditionally 
stable FDTD method. 
 

I. INTRODUCTION 
To overcome the Courant limit on the time 

step size of the FDTD method [1,2], 
unconditionally stable methods such as the 
alternating-direction implicit FDTD (ADI-FDTD) 
scheme [3-12] and  a weakly conditionally stable 
finite-difference time-domain (WCS-FDTD) 
method has been developed recently [13,14]. In 
the WCS-FDTD method, the CFL condition is not 
removed totally, but being weaker than that of the 
conventional FDTD method. The time step in this 
scheme is only determined by one space 
discretization, which is extremely useful for 
problems where a very fine mesh is needed in one 

or two directions. The WCS-FDTD method has 
better accuracy and higher computation efficiency 
than the ADI-FDTD method, especially for larger 
field variation.  

However, in the WCS-FDTD method, 
updating of H y  component needs the unknown Ex  
and Ez  components at the same time step, thus, 
the H y component has to be updated implicitly by 
solving tridiagonal matrix [10], which results in a 
large inaccuracy in the implementation of the 
perfect-electric-conductor (PEC) condition for the 
Ex  and Ez components. To circumvent this 
problem, an improved weakly conditionally stable 
finite-difference time-domain (IWCS-FDTD) is 
presented in this paper. In this method, the solving 
of the tridiagonal matrix for the H y component is 
replaced by the solving the tridiagonal matrix of 
the Ex  and Ez components; thus, the perfect-
electric-conductor (PEC) condition for the Ex  and 

Ez components is implemented easily. The 
formulations of the IWCS-FDTD method are 
presented, and the final updating equations are 
given. The stability condition of the IWCS-FDTD 
scheme is presented analytically. Compared with 
the WCS-FDTD method, this new method has 
higher accuracy in the implantation of the PEC 
condition, which is demonstrated through 
numerical examples. 
 

II. FORMULATION FOR THE IWCS-
FDTD METHOD 

In a linear, non-dispersive, and lossless 
medium, the 3D WCS-FDTD scheme in reference 
[10] can be written as: 

( )1 1 2 12n n n n n
x x y z z y yE E aD H aD H H+ + += + − +           (1)         

413 ACES JOURNAL, VOL. 27, NO. 5, MAY 2012

1054-4887 © 2012 ACES

Submitted On: May 29, 2011
Accepted  On: Oct. 15, 2011



( )1 1 2 12n n n n n
z z y x x y yE E aD H aD H H+ + += − + +  (2) 

 
( )

( )

1 1

1

n n n n
y y x z z

n n
z x x

H H bD E E

bD E E

+ +

+

= + +

           − +
                (3) 

( )

3 2 1 2 1

3 2 1 2

2n n n
x x y z

n n
z y y

H H bD E

bD E E

+ + +

+ +

= −

             + +
           (4) 

( )

3 2 1 2 1

3 2 1 2

2n n n
z z y x

n n
x y y

H H bD E

bD E E

+ + +

+ +

= +

             − +
              (5) 

( )
( )

3 2 1 2 3 2 1 2

3 2 1 2

n n n n
y y x z z

n n
z x x

E E aD H H

aD H H

+ + + +

+ +

= − +

            + +
        (6) 

here, 2a t ε= ∆ , 2b t µ= ∆ , wD w= ∂ ∂  
( ,w x y= ) represents the first derivative operator 
with respect to w . ε  is the permittivity and µ  is 
the permeability of the medium, n  and ∆t  are the 
index and size of time-step. 

Obviously, updating of H y  component, as 
shown in eq. (3), needs the unknown Ex  and Ez  
components at the same time step. In the WCS-
FDTD scheme, the H y component is updated by 
substituting eqs. (1) and (2) into eq. (3) [10] 
directly. This results in a broadly band matrix 
equation which is updated by solving two tri-
diagonal matrix equation. 

Here, we apply a new technique to solve eqs. 
(1)-(3). For simplicity, we write eqs. (1)-(3) in a 
new form as, 

1 * 1n n
x x z yE E aD H+ += −              (7) 

1 * 1n n
z z x yE E aD H+ += +                 (8) 

1 * 1 1n n n
y y x z z xH H bD E bD E+ + += + −     (9) 

where, 
* 1 22n n n
x x y z z yE E aD H aD H+= + −    (10) 

* 1 22n n n
z z y x x yE E aD H aD H+= − +     (11) 

* n n n
y y x z z xH H bD E bD E= + −          (12) 

Obviously, updating of Ex  and 

Ez components, as shown in eqs. (7) and (8), 
needs the unknown H y component at the same 

time step. By substituting eq. (9) into eqs. (7) and 
(8) we can obtain, 
( ) 1 * * 1

21 n n
z x x z y z x zabD E E aD H abD D E+ +− = − −  

   (13)  
( ) 1 * * 1

21 n n
x z z x y z x xabD E E aD H abD D E+ +− = + −

             (14)  
Multiplying eq.(13) by factor ( )21 xabD− , 

and subtracting ( )z xabD D × eq.(14), we have, 

( )
( )

1
2 2

* * *
2

1

1

n
x z x

x x z y z x z

abD abD E

abD E aD H abD D E

+− −

= − − −
 

  (15) 
The left side of eq. (15) is a broadly-banded 

matrix equation which is solved expensively. To 
improve the computation efficiency, new terms are 
added at the both side of eq.(15), 

( )
( )

2 2 1
2 2 2 2

* * *
2

2 2
2 2

1

1

n
x z x z x

x x z y z x z

n
x z x

abD abD a b D D E

abD E aD H abD D E

a b D D E

+− − +

= − − −

   +

 

   (16) 
It is equivalent to the following, 

( )( )
( )

1
2 2

* * *
2

2 2
2 2

1 1

1

n
x z x

x x z y z x z

n
x z x

abD abD E

abD E aD H abD D E

a b D D E

+− −

= − − −

    +

 

  (17) 
Dividing eq. (17) into two sub-steps, we 

have, 
 

( ) 2 2 * *
2 2 21 n

x x x z x z y z x zabD e a b D D E aD H abD D E− = − −
         (18.a) 

( ) 1 *
21 n

z x x xabD E e E+− = +            (18.b) 
With this manipulation, the updating of 

the xE  component requires the solution of two 
tridiagonal matrices (18.a) and (18.b). 

In a similar way, updating of Ez component 
can be written as,  

( )2

2 2 * *
2 2

1 z z

n
x z z x y z x x

abD e

a b D D E aD H abD D E

−

= + −
 

       (19.a) 
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( ) 1 *
21 n

x z z zabD E e E+− = +           (19.b) 

After the solving of the 1nE
x
+ and 1nEz

+  

components, the H y component can be updated 
using equation (3) explicitly, thus, the solving of 
the tridiagonal matrix for the H y component in the 
WCS-FDTD method is replaced by the solving of 
the tridiagonal matrix for the Ex  and Ez  
components here.  

Approximating each derivative in space by 
centered second-order finite differences, we can 
obtain the final updating equations for Ex  , Ez  and 
H y components. Such as, the updating equations 
for Ex  component are as follows, 

2

2 2

2 2

2 2

2 2

2 2

2 11 , ,
2

3 1, , , ,
2 2

3 1, , 1 , , 1
2 2

1 1, , 1 , , 1
2 2

3 , ,
22

x

x x

n n
x x

n n
x x

n
x

ab e i j k
x

ab abe i j k e i j k
x x

E i j k E i j k
a b
z x

E i j k E i j k

E i j k
a b
z x

   + +   ∆   
   − + − −   ∆ ∆   

    + + − + +        =
 ∆ ∆    − + + + − +    

    

 +
−

∆ ∆

2 2

2 2

1 , ,
2

1 1, , , ,
2 2

3 1, , 1 , , 1
2 2

1 1, , 1 , , 1
2 2

n
x

n n
x x

n n
x x

n n
x x

E i j k

E i j k E i j k

E i j k E i j k
a b
z x

E i j k E i j k

   − +        
    − + + −    

    
    + − − + −        +
 ∆ ∆    − + − + − −    

    
 

* *

* *

* *

1 1 1 1, , , ,
2 2 2 2

1 11, , , ,
2 2

1 11, , , ,
2 2

y y

z z

z z

H i j k H i j k
a

z

E i j k E i j k
ab
z x

E i j k E i j k

   + + − + −   
   −

∆
    + + − +        −
 ∆ ∆    − + − + −    

    

  

(20.a) 

1
2

1
2

1
2

*

2 11 , ,
2

1 , , 1
2
1 , , 1
2

1 1, , , ,
2 2

n
x

n
x

n
x

x x

ab E i j k
z

ab E i j k
z

ab E i j k
z

e i j k E i j k

+

+

+

   + +   ∆   
 − + + ∆  
 − + − ∆  

   = + + +   
   

  

(20.b) 
where, 

* 1 1 1 1, , , ,
2 2 2 2

1 11, , , ,
2 2

1 1, , 1 , ,
2 2

n
y y

n n
z z

n n
x x

H i j k H i j k

E i j k E i j k

xb
E i j k E i j k

z

   + + = + +   
   
    + + − +        

∆ +     + + − +    
    −  ∆ 

 

(21) 
*

1 2

1 2

1 11, , 1, ,
2 2

3 1 1 1, , , ,
2 2 2 2

1 11, ,
2 22

1 11, ,
2 2

n
z z

n n
y y

n
x

n
x

E i j k E i j k

H i j k H i j k
a

x

H i j k
a
y

H i j k

+

+

   + + = + +   
   

   + + − + +   
   +

∆
  + + +    −
 ∆  − + − +  

  

 

(22) 
*

1 2

1 2

1 1, , , ,
2 2

1 1 1 1, , , ,
2 2 2 2

1 1, ,
2 22

1 1, ,
2 2

n
x x

n n
y y

n
z

n
z

E i j k E i j k

H i j k H i j k
a

z

H i j k
a
y

H i j k

+

+

   + = +   
   

   + + − + −   
   −

∆
  + +    +
 ∆  − + −  

  

 

(23) 
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The solving of the Ey component, same as 

that in the WCS-FDTD method, is updated 
implicitly by substituting eqs. (4) and (5) into eq. 
(6), 

( )
( )

3 2
2 2

1 2
2 2

1 2 1 2

1 1

1

1

2 2

2 2

n
x z y

n
x z y

n n
x z z x

n n
x y x y z z

abD abD E

abD abD E

aD H aD H
abD D E abD D E

+

+

+ +

+ +

− −

= + +

− +

− −

        (24) 

The left side of eq. (24) is also a broadly-
banded matrix equation. Adding new terms at the 
both side of eq.(24) and dividing it into two sub-
steps, we can obtain the updating of the 
Ey component as follows,  

( )
( )( )

2

1 2
2 2

1 2 1 2

1 1

1

1 1

2 2

2 2

x y

n
x z y

n n
x z z x

n n
x y x y z z

abD e

abD abD E

aD H aD H
abD D E abD D E

+

+ +

+ +

−

= + +

− +

− −

        (25.a) 

( ) 3 2
21 n

z y yabD E e+− =  .              (25.b) 
Thus, at each time step the IWCS-FDTD method 
requires the solution of six tridiagonal matrices 
and two explicit equations. 

 
III. WEAKLY CONDITIONAL 

STABILITY OF THE IWCS-FDTD 
METHOD 

The relations between the field components 
of the IWCS-FDTD method can be represented in 
matrix forms, 

[ ] [ ] [ ] [ ] [ ] [ ]1 *n nA B C+Λ = Λ + Λ  
(26)    

where, 
 

[ ]

0 0 0 0 0
2 2 0 0 0

0 0 0 0 0
0 2 1 0 0

0 0 1 0
2 0 0 0 1

x y z y

z y

z x

y x

S
abD D S abD D

S
A

bD bD
bD bD

bD bD

 
 
 
 

=  − 
 −
 

−  

 

[ ]

2

2

1 0 0 0
0 0 0 0 0 0

0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x z x z

z x z x

abD abD D aD

abD D abD aD
B

− − − 
 
 
 − −

=  
 
 
 
  

 

 

[ ]

2 2
2 2

2
2 2

2 2

0 0 0 0 0
0 0 2 0 2
0 0 0 0 0
0 0 1 0 0

0 0 1 0
0 0 0 0 1

x z

z x

x z

z

z x

x

a b D D
S aD aD

a b D D
C

bD
bD bD

bD

 
 − 
 

=  
 
 −
 

−  

 

 

[ ] '1 1 3 2 1 3 2 1 3 2n n n n n n n
x y z x y zE E E+ + + + + + + Λ =        Η   Η   Η 

[ ] '* * * * * * *
x y z x y zE E E Λ =        Η   Η   Η   

2 2
2 2 2 21 x z x zS abD abD a b D D= − − +  

2 2
2 2 2 2 21 x z x zS abD abD a b D D= + + +  

 

According eqs. (10)-(12), we have, 
 

[ ] [ ] [ ]* nDΛ = Λ             (27) 
with, 

[ ]

1 0 0 0 2
0 0 0 0 0 0
0 0 1 2 0
0 0 0 0 0 0

0 0 1 0
0 0 0 0 0 0

z y

y x

z x

aD aD

aD aD
D

bD bD

− 
 
 
 −

=  
 
 −
 
  

 

 Substituting eq. (27) into eq. (26), we obtain, 
 

[ ] [ ] 0nΓ Λ =                                               (28) 
here, 
[ ] [ ] [ ] [ ] [ ]A B D CζΓ = − −  

( )
( )

( )

2
1

2
2

3

0 2 2 2
2 2 2 0 2
2 0 2 2

0 2 1 0 0
0 0 1 0

2 0 0 0 1

z x z x

x y z y z x

z x z x

z y

z x

y x

S S a b D D a b f a D f
a b D D S S a b D D a D a D
a b D D S S f a D a b f

L b D
L L
b D L

ζ
ζ ζ ζ

ζ
ζ ζ

ζ
ζ ζ

 − −
   −   − 
 − −

=  
− − 

 − −
 

− −  
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and  
2 2

1 2 2 2 21 x z x zS abD abD a b D D= − + +
2 2

3 2 2 2 21 x z x zS abD abD a b D D= + − + ; 

x y zf D D D= ; 

( )22 1z y zf a D a b D= − ; 

( )22 1x y xf a D a b D= − − ; 

( )1w wL b D ξ= + , ,w x z= . 
For a nontrivial solution of eq. (28), the 

determinant of the coefficient matrix in eq. (28) 
should be zero, 

0Γ =                                                         (29) 
By solving eq. (29), we have, 

( ) ( )( )2 2 2 2 21 2 2 0M N M M P Mζ ζ ζ ζ ζ− − + − + =
                                                                           (30)  

here, 
( )( )2 21 1x zM abD abD= − −  

( )( )( )( )
( )( )

2 2 2 2

2 2
2 2 2 2 2

1 1 1 1

2 1 1
x z x z

y x z x z

N abD abD abD abD

abD abD abD a b D D

= + + − −

+ − − +
 

( )( )2 2 21 1 2x z yP abD abD abD= + + +  
The growth factor ζ is obtained,  

1,2 1ζ =                                                              (31) 

 ( )2 4 2
3,4 N N M Mζ = ± −                        (32) 

( )2 2
5,6 P P M Mζ = ± −                            (33) 

To satisfy the stability condition during the 
field advancement, the module of growth factor 
ζ can’t be larger than 1. It is evident that the 
module of 1,2ζ  is unity. 

For the values of 3,4ζ  and 5,6ζ , when the 

conditions 4 2M N≥ and 2 2M P≥  are satisfied,  
13,4 5,6ζ ζ= =  can be obtained. Approximating 

each derivative in space by centered second-order 
finite differences, we can obtain the limitation for 
time-step size in the IWCS-FDTD method as 
follows, 

t y c∆ ≤ ∆                                 (34) 
where 1 εµ=c is the speed of light in the 
medium. 

The stable condition of the IWCS-FDTD 
method is same as that of WCS-FDTD method. 
The maximum time-step size for IWCS-FDTD 
method is only determined by one spatial 
increment ∆y . This is due to that the explicit 
difference is only used in the y direction.  

 
IV. NUMERICAL VALIDATION 
To demonstrate the accuracy and efficiency 

of the proposed theory, a numerical example is 
presented here. A metal plate with dimension 
60mm × 60mm is shown in Fig.1. Twenty five 
apertures of 2 mm length and 2 mm width are cut 
on the plate. All the distances between the 
apertures are 10 mm. A uniform plane wave 
polarized along the z-direction, is normally 
incident on the aperture, and the time dependence 
of the excitation function is as follows, 

2
0( ) exp[ 4 ( ) ]zE t t t Tπ= − −                  (35) 

where T  and 0t  are constants, and both equal to 
92 10−× . In such a case, the highest frequency of 

interest is 1 GHz. The observation point is set at 
the back of the plate and is 50mm far from the 
plate.  

Applying the FDTD method to compute the 
time domain electric field component Ez  at the 
observation point, to simulate the apertures 
precisely, the cell size around the aperture must be 
small. We choose x z∆ = ∆ = 0.5 mm around the 
apertures. The cell size y∆ is set to be 25mm. To 
satisfy the stability condition of the FDTD 
algorithm, the time-step size for the conventional 
FDTD is t∆ ≤ 1.17ps. For the WCS-DTD and 
IWCS-FDTD scheme, the maximum time 
increment is only related to the space 
increments y∆ ，that is, t∆ ≤ 83.33 ps. Five-cell-
thick CPML layers are used to terminate the grid, 
and are placed five cells from the metal plate on 
all sides. The implementation of the plane wave is 
same as that of conventional FDTD method. The 
metal plate is viewed as a perfect electronic 
conductor and the tangential electric field values at 
the metal plate should to be zeros. 

In the WCS-FDTD method, the Ex and 

Ez components at the metal plate are set zeros 
directly after they are updated by using eqs. (2) 
and (3); while in the IWCS-FDTD method, the 
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PEC boundary condition for the Ex  and 

Ez components are implemented following the 
strategy descried in reference [8], by incorporating 
the PEC condition into the solving of the tri-
diagonal matrices. 

 

 
 

Fig. 1. Geometric configuration of the metal plate. 
 
We perform the numerical simulation for an 83 

ns time history by using the IWCS-FDTD method 
under time step size 83.33ps. The result is shown 
in Fig. 2. The total time steps are almost 1,000. It 
can be seen from Fig.1 that no instability problem 
is observed, which numerically validates the 
stability condition of eq. (34). 

To demonstrate the high computational 
efficiency and accuracy of the IWCS-FDTD 
method, we perform the numerical simulations for 
a 5 ns time history by using the conventional 
FDTD, WCS-FDTD, and IWCS-FDTD methods, 
and compare the computation times and accuracy 
of these methods. In the conventional FDTD 
method, the time-step size keeps a constant of 1.17 
ps, while in the WCS-FDTD and IWCS-FDTD 
methods, we use time-step size 83.33 ps. 
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Fig. 2. Numerical result using IWCS-FDTD 
method with time step size 83.33ps. 

Figure 3 shows the electric field component 
Ez  at observation point calculated by using the 
conventional FDTD, WCS-FDTD, and IWCS-
FDTD methods. It can be seen from this figure 
that only the result calculated by the IWCS-FDTD 
method agrees well with the result calculated by 
the conventional FDTD method. The result 
calculated by the WCS-FDTD method deviates 
from that of the conventional FDTD method 
significantly. 

    It is apparent that the IWCS-FDTD method 
has higher accuracy than the WCS-FDTD method 
in the implementation of the PEC condition. The 
reason for the inaccuracy of WCS-FDTD method 
is that, in the WCS-FDTD method, updating of 
H y  component needs the unknown Ex  and Ez  
components at the same time step, thus, 
implementation of the PEC condition for the Ex  
and Ez  components must be incorporated into the 
solving of the H y  component. The WCS-FDTD 
method neglects this and results in serious error in 
the implementation of the PEC condition. 

To complete this simulation, the computation 
times for the conventional FDTD method, WCS-
FDTD method and IWCS-FDTD method are 
41.18, 5.05, and 5.37 minutes, respectively. Due to 
large time step size applied, the CPU time for the 
WCS-FDTD and IWCS-FDTD methods are 
almost 1/8 of that for the conventional FDTD 
method.  

 

 
Fig. 3. The comparison of the results calculated by 
using the conventional FDTD, WCS-FDTD, and 
IWCS-FDTD methods 

 
 

418CHEN: IMPROVED WEAKLY CONDITIONALLY STABLE FINITE-DIFFERENCE TIME-DOMAIN METHOD   



V.  CONCLUSION 
An improved weakly conditionally stable 

FDTD method is presented in this paper to 
circumvent the inaccuracy in the implementation 
of the perfect-electric-conductor condition in the 
WCS-FDTD method. The stability condition of 
the IWCS-FDTD scheme is presented analytically 
and the numerical performance of the proposed 
method over the WCS-FDTD method is 
demonstrated through numerical example. 
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