Radar Cross Section of a Rectangular Cavity - A Massively
Parallel Calculation

L. D. Vann* L.T. Wille J.S. Bagby* H.F. Helmken*
March 27, 1995

Abstract

A sequential code that calculates the radar cross section of a rectangular waveguide
cavity was modified to execute on a MasPar MP-1 massively parallel computer with a
SIMD architecture. The code uses the mode matching method of analysis to produce
a set of matrix equations. Steps taken to accomplish the parallelization are discussed
and some specific examples of program modification are presented. Timing results for
wideband data are given that demonstrate the power of parallel computers for this type
of application. Suggestions are made for further improvements as increased memory space
becomes available.

1. Introduction

Radar Cross Section {RCS) analysis has important applications in many areas such as target
detection, identification, and imaging. Objects of interest range from the very simple (perfectly
conducting spheres or simple cylinders) to the very complex (aircraft, ships, buildings, ete.). In
general, the RCS of an object depends on its shape and composition as well as the frequency,
aspect angle, and polarization of the incident field. The object may consist of a combination
of dielectric and magnetic materials or plasmas and may contain multiple layers of these ma-
terials with differing thicknesses. The ability to calculate the RCS of complex objects within a
reasonable length of time is heavily dependent upon available computer power.

Many problems in computational electromagnetics are inherently parallel to some degree
(e.g., calculations are made for multiple frequencies and/or aspect angles), and it is of interest
to exploit this parallelism by developing algorithms for massively parallel computers. While
better results might be obtained by carefully rethinking the usual approach to a problem and
developing a parailel algorithm from the ground up, there is also some obvious practical benefit
in porting sequential codes already in use to a massively parallel format. As an illustration of
the latter point, in this paper we have modified an existing sequential RCS cavity code [1] to
execute on a massively parallel computer.

The rectangular cavity code is part of the McPTD program developed by Lee et al. [1]
and adopted by the U.S. Electromagnetic Code Consortium. The code uses the mode matching

*Department of Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431.
tDepartment of Physics, Florida Atlantic University, Boca Raton, FL 33431.

30

method of analysis in which the electric and magnetic fields are expanded in terms of modal
functions with unknown coefficients, and the tangential fields are matched over the interfaces
of the regions. Because this method of analysis involves the manipulation of large matrices for
each frequency and aspect angle of interest, computational run time becomes impractical when
using the sequential code over a wide range of frequencies and aspect angles as the number of
modes is increased to achieve sufficient accuracy.

The remainder of this paper is divided as follows. Section 2 provides a general description of
rectangular cavities considered by the McPTD code. A formulation for the cavity and free-space
fields is also included in this section along with a summary of how the field matching produces a
set of matrix equations. Section 3 contains a discussion of some parallel programming concepts
and how they relate to the MasPar MP-1 computer used for this implementation. Section 4
details the steps taken to parallelize the sequential code and gives some specific examples of
code modification. Section 5 presents timing results of the sequential versus parallel code for
wideband data, and Section 6 summarizes the paper.

2. Geometrical Description of Cavity and Field Formulations

Figure 1 shows the general geometry of rectangular cavities considered by the McPTD code [1].
The cavity aperture is located on an infinite ground plane that may have a number of isotropic
dielectric or plasma slabs on top. In addition, the interior of the cavity may contain a number
of isotropic dielectric layers of differing thicknesses and constitutive parameters. The allowable
number of interior and exterior layers is determined by array dimensions specified within the
code. These array dimensions may be increased to accommodate a particular cavity of interest.

The unknown fields of the regions are expanded as a sum of TE* and TM? modes using
suitable modal functions with unknown modal expansion coefficients. Once the electric and
magnetic fields have been expressed in terms of these TE* and TM? modes, the tangential
components of the total fields are matched over the interfaces resulting in an infinite number of
simultaneous linear equations due to the infinite number of possible modes. This infinite matrix

31

must then be truncated in order to determine the unknown modal expansion coefficients.

]
g ——

Fig. I: Geometry of Rectangular Waveguide

2.1. Cavity Fields

Field components within the cavity were derived in terms of the magnetic and electric vector
potentials A and F. These vector potentials can be chosen in such a way as to reduce the
vector Helmholtz equations V2A + k*A = 0 and V2F + k?F = 0 to the scalar Helmholtz
equation V2¥ + k2¥ = 0 [2][3]. In order to satisfy the boundary conditions for the rectangular
waveguide (E‘z =0aty= —%,y = %, and By =0atz=—%,z2= %), the appropriate solution
for the wave equation in terms of the modal function ®my, (2, y)for the TE* case (with e/ time
dependence assumed) is [1]

=3 5 (A + B, -Bn(z, 1) (2.1
m=0n=0
where d
Dpn = cO8 [r—n; (a: -+ %)] cos [%E (y + 5)] . (2.2)

The TM* case has the additional boundary condition that E; = 0 at z = -fz=2,¥y= —%,

and y = §; the appropriate solution in terms of the modal function ®ma(z,y) is {1)

[=<] , . -
Fom 3 50 A + Bt Bn(a,0) 23)

B = sin [@ (z+ -;-)] sin [%’i (y + g)] . (2.4)

where

32

In the above equations, (i} denotes the i** layer of the waveguide and the wavenumber is

K2 = bt (%)~ () @)

c

for the outgeing wave. Once the scalar potentials have been determined for the TE? and TM*
cases, the associated fields can be found [2][3].

The modal coeflicients in the top layer can be expressed in terms of those in the bottom
layer by considering reflection and transmission at each interface and formulating a forward-
propagation matrix [4]. Thus for a total of I interior layers, the modal coefficients of the first
layer can be related to the modal coefficients of the I'® layer as follows:

al o = - A
[B,] =V Ve - Vu-ur- [B]

— _ (2.6)
A = = - Ar
[5,] =Voo Voo - Vu-ur- [B,]
where V is the reflection/transmission coefficient matrix for each layer.
Because the cavity is terminated by a Perfect Electric Conductor (PEC) at 2 = —L one has
4):
BI = (--].)Ejzk-‘iLAI
_ B (2.7)
By = (+1)ef2k=L 4,
so that, finally, the expressions for A;, By, A;, B; can be written as
A = = = A
[B } =Vaxa Ve -Va-yr- [(+1)ei2kerL]
(2.8)

A l_yw .V -7 . 4 —
[B,] =V Vs - Va-ur [(—1)eiZbal 4,] ’

The above formulation gives an expression for the fields in the cavity in terms of two unknown
coefficients {Ar, Ay} for each mode (m,n) under consideration.

2.2. Free-Space Fields

In the unbounded upper half space region (z > 0 in Figure 1), the eigenvalues become continuous
and thus the solution of the scalar wave equation is a continuous superposition of spectral
components which takes the form of a Fourier integral [5]:

TE* Mode:

L [F [P o) =ik | (e 45290:] = s(kazthyy)
q:,,(:,;,,;):m)—z/ / [E@emiks 4 plo)etikt]e-’ stk dk, (2.9)
—oo J—oo
TM? Mode:

— +m +w . - -
Wo(r,p.2)= f-g-:-r-)-g/ j [E(”)e-ﬂi”z _i_f(g)e-i-Jkﬁ’)S] e‘-’(“"""*vy)dk,,dky (2.10)
-0 J—0o

33

where (g) denotes the gth layer and (G) indicates the total number of layers above the ground
plane. In order to match fields over the aperture of the cavity, the coefficients at the aperture
(E, F,E,F) are related to the coefficients in the first layer above the ground plane by using
the forward-propagation reflection and transmission matrix of equation (2.6) with appropriate
substitutions as follows:

Bl _v . o - E
[F] =Vam Vo Ve-ne- [F]
(2.11)

E = = 7 E
[Fi] =V Vs - Vie-ne - [ﬁ] :

The coefficients ¥ and F are the known amplitudes of the incident field in the upper half space.
Therefore, (2.11) gives an expression for the fields in the first layer above the ground plane in
terms of two unknown coefficients (E, E}. The preceding discussion is for the general case where
the number of layers above the ground plane is greater than one. The cavity examined for this
paper contained no layers above the ground plane, hence (2.11) was not used.

Prior to finding the fields, the integrals of (2.9) and (2.10) are discretized for numerical
evaluation as follows:

A oo oo | Elke ky)+ F
["Z’-(-'c,y,z)] = pEe Lo s [B k)4 T] g

e=ilkzmtkyytha2) Ak Aky

(2.12)

where a and b represent the number of integration points in terms of wa\‘relength, The integration
interval and range are given by two dimensionless parameters {1: P (number of integration
points per wavelength) and R (integration range parameter). The integration limits of (2.9) and

{2.10) normalized with respect to the free space wavenumber, &,, become —-R < (%f,],‘—‘f) < R.

In addition, Ak, = Aky = %,ﬂ,-, a=b= 3’%’ =P'A,,and P = RP' where the total number of
integration points is equal to (2P + 1)2. Equations (2.9) and (2.10) can be approximated as

¢(Iﬂyiz) _ P P E.. + F,
[E('t: Y, 2’)] - 2P="P Eq:—P [_E-::-f-}—?‘:;] x

(2.13)
o= (ke tbygytksy 2)
where
ke, = 3?;1 —k,sinf cos ¢
ky, = X% — k,sinfsiné (2.14)
k., = k2— ug L

In the above relations, # and ¢ are the incident angles of the fields. The fields for the upper half
space can now be found in terms of the unknown modal expansion coefficients by substituting
the potentials of (2.13) into the fields expressions given in [2]{3].

34

In order to find solutions for the modal expansion coefficients contained in the field expres-
sions, the tangential components of the electric and magnetic fields must be matched at the
interface z = 0. Considering first the total electric fields, boundary conditions require that

Efz=0-)=Ez = 0+), |z| < % and jyj < g (2.15)

Based on the previous discussion, the total tangential electric fields at z = 0~ and z = 0+ can
be written as

E; |:=0- = 3 =0 Ez‘;n [Amn + Bma) % cos [21;1 (I + %)] sin [% (y + %)] az
+=sin [2% (2 + §)] cos [2F (v + §)] &y
_ . (2.16)
+552 [Amn — Brn] 2 cos [2% (2 + £)] sin [2F (v + §)] &
+2sin [2E (2 + §)] cos [3F (v + §)] Gy } }
E; |:z04= 25:-? z;;-,v {[Bpq + Fpel { i3 e + i 246, }
_ ' . (2.17)
+ 555 (Bpe + Fog] {222, + ta,) =/ (524 545)
Similarly, the total tangential magnetic fields must be matched at the interface. That is,
H:(z =0-)=H:(z = 0+), |z] < '26" and |y| < g (2.18)
Now the total tangential magnetic fields at z = 0— and z = (4 can be written as
H; ;=0-= Z;.::o Z:;D {[Amn — Bmnl] 'EEE':"I T sin [(I + 2)]
cos[(y+ ¢)] —cos["’" (z+)]sin [%(y+%)]&,}

+ (o + B} {300 [(24)] co0 [(v +)] s

(2.19)

+=22 cos [(2 + £)] sin [2F (v + £)] 4y }
H |e=o4= Z.‘P——P Zq"-P{ (Epq + Fpq) "E‘ﬂj (=224, 4 =2)
(2.20)
+ [Epg + Fpg) {i73% 0, + 226, } } e~3 (R72+ %)
The orthogonality of the modal functions is used to sift out a particular modal expansion coef-

ficient in the cavity by performing the following operations:

S5 J5; (Ama + Brn) - (EFBmn 4 EBmn) (Ey(z = 0-)) dzdy = (2.21)

ff% f§§ (Amn + Bmn) - (EfEm= + EJBmn) (Ee(z = 0+)) dzdy

cavity

35

i _ —_
2‘% f‘g‘% (Am“ - Bm") : (E;I"an + EEan)cauity

f_’}% f..-.%.% (zmn _an) . (E?;an + ES"M,,,“)

(B(z=0-)dedy= (209)
ABi(z = 0+)) dzdy

cavity

[0 [oeo (Bpg + Fpg) - (EEE“ + EEE”“) -(Hi(z = 0-)) dzdy = {2.23)

ree—32pace

f-fooc f_oom (qu + qu) ’ (EIE" + EyTEnj - (Ht(z = 0+)) dzdy

Jree—space

f:,ooo [oo (Epg + Fpy) - (EIM" + E;{M") res—space (Hi(z = 0~)) dzdy = (2.24)
ol ffom (Epg + Fpq) - (EZM" + EEM"j - (Hi(z = 0+)) dzdy

Jree—space

Equation (2.21) produces an expression for coefficients (Amn + Bmn) in terms of coefficients
E F,E,F. Coefficients (Ann — Bmn) can be related to coefficients E, F, E,F from equation
(2.22). Equation (2.23) provides an expression for (Ep, + Fp,) in terms of A,B,4,B, and
equation (2.24) gives (Epq + Fpq) in terms of A, B, 4, B. B and B can be eliminated using the
relation of equation (2.7} and F and F are the known incident TE and TM fields; therefore,
there are four equations and four unknowns which can be solved using standard matrix methods.

Once the solution for the scattered field at the cavity aperture is found, the scattered far
field can be written as [1]:

—jkr

e . -
E(r)= - [Agds + Apdy) {2.25)
where
Ap _ Ikp jkecosdT
A¢ - 2r e X
(2.26)
£ H Ezcos¢+ Eysing i &, sin #(cos pz+sin dy)
f—2§ dz f-g- dy [cos 0 (—Esin ¢ + E, cos ¢) ¢ mn TR AL
The radar cross section is calculated from
2
RCS = lim 4#r? |==| (2.27)
r—+oo ‘

where E, is the scattered field and E; is the incident field. The amplitude of the incident field
is taken to be unity. Using equations (2.25) and (2.27) the radar cross section due to the cavity
is [1]:

RCS = 4n|A%. (2.28)

36

In general, the RCS is determined for a range of incident angles {f,¢) and frequencies. A
sequential code contains double loops over aspect angle and frequency while the parallel im-
plementation steps through the range of incident angles but simultaneously calculates the RCS
over the range of frequencies. The following sections will discuss parallel implementation of the
theory described above.

3. Parallel Concepts

There are two broad categories of parallelism to be considered from which other subcategories
could be defined: data parallelism and control parallelism. Machines employing data parallelism
perform operations simultaneously on large data sets while those employing control parallelism
run different parts of the algorithm simultaneously on different processors. Two other terms
used to describe the type of parallelism performed by a machine are fine-grained versus coarse-
grained parallelism. In fine-grained parallelism one elemental portion of a problem resides on
each processor whereas in coarse-grained parallelism several elemental portions may be grouped
onto a single processor.

Since the need for greater computational speed is the primary reason for considering paraliel
processing, it is expedient to have some convenient measure of comparison between the perfor-
mance of a parallel algorithm and its sequential counterpart. One measure of performance is
speed-up and is defined as the time required for sequential program execution divided by the
time required for execution on N processors. Other parameters of interest for evaluation are
scalability and portability. Scalability refers to the effect on speed-up as more or less processors
are used as the size of a problem increases or decreases. Portability indicates how readily a code
can be executed on different machine architectures.

The particular architecture of a parallel computer plays an important role in determining
scalability, portability, and speed-up of a particular algorithm. This is because the inherent
parallelism in a problem is usually suited for implementation on one of two basic architecture
classifications: Single Instruction Multiple Data (SIMD) or Multiple Instruction Multiple Data
(MIMD). SIMD machines are usually preferable for problems with a high degree of inherent
data parallelism, while MIMD machines are typically used for problems that are inherently
control parallel. The reader is referred to the literature for a more detailed discussion of these
classifications [6].

The parallelized RCS cavity code was executed on a MasPar MP-1 massively parallel com-
puter consisting of 4,096 processor elements (PEs) connected in a two-dimensional toroidal wrap
topology [7]. It is a fine-grained, data-parallel processing system that operates in a SIMD fash-
ion. For the MP-1 used here, each PE has 16 KBytes of memory and they are arranged in a
square matrix having 64 columns and 64 rows with toroidal wrap(8).

There are two programming languages available for use on the MP-1: MasPar Parallel Appli-
cation Language (MPL) and MasPar Fortran (MPF). MPL is based on Kernighan and Ritchie
C. MPF implements Fortran 77 as well as a portion of Fortran 90 programming features [9].
The parallel implementation of the sequential RCS Cavity code described here was accomplished
using the MPF programming language.

37

4. Implementation of Parallel Structures

First, the inherent parallelism in the algorithm must be identified. The two main outer DO
loops in this application are over frequency and aspect angle, respectively. From the previous
discussion, it can be seen that this problem is ideally suited for a SIMD machine such as the
MP-1 because it clearly contains a high degree of data parallelism. We chose frequency to be
the data parallel variable which eliminated the frequency DO loop from the algorithm. Every
scalar variable depending on frequency became a vector, and every array depending on frequency
increased by one dimension.

Second, the sequential code is compiled and executed without modification on the front end of
the parallel computer to make sure it runs without error before any attempt at paralielization has
begun. It is very useful when debugging the parallel code as it serves to generate intermediate
data values. Next COMMON blocks that contain both scalar and array variables must be
identified in order to separate them into blocks containing either scalars or arrays exclusively.
The reason for this is that any arrays used in a Fortran 90 mannet (i.e., operated on in parallel)
musi be allocated to the DPU whereas all other scalars and arrays reside on the front end. In
addition, when using Fortran 90 constructs on COMMON block arrays the nofecommon compiler
directive must be used or an error will occur at compile time. When nofecommon is used, all
numeric and logic arrays in COMMON blocks are placed on the DPU while character arrays
and scalars are placed on the front end. For this reason, it is important that arrays used only
in a Fortran 77 context not be placed in COMMON blocks because each time they are used
the compiler must move each element of the array from the PEs to the front end, significantly
slowing execution of the program. Also, EQUIVALENCE statements are not allowed for arrays
used in a Fortran 90 manner. At this point it is useful to briefly describe how the compiler maps
data to the 64 x 64 PE Array in MPF.

The first dimension in a $wo-dimensional array will be mapped in the z direction, and the
second dimension will be mapped in the y direction. If a dimension in either z or y exceeds
64, the elements will be layered in memory on the PEs. For an array of rank three or higher,
the third dimension and above will be layered in memory. A one-dimensional array is mapped
in a raster-scan fashion: successive elements wrap around the array from top row to bottom
row. If the number of array elements exceeds the number of PEs, the wraparound proceeds into
successive layers of memory. Thus, care should be taken when dimensioning arrays to make the
most efficient use of the PE Array.

Although most of the parallelism was achieved by executing the code for all frequencies of
interest simultaneously, further parallelism was obtained by converting some of the Fortran 77
contructs to Fortran 90. For instance, initialization of all arrays was done in parallel through a
single assignment statement rather than a DO loop as shown in Table 1.

Another very important Fortran 90 feature is the WHERE statement. It must replace any
IF statements in the sequential code when the variable in the logical expression has become
an array. IF statements operate on scalars, but WHERE statements may operate on each
element of an array. In addition, all array variables defined within a WHERE block must be
conformable. Table 2 shows a portion of the code in which WHERE statements replaced IF
statemnents. In the sequential code the variables test and hcon were scalars. However, in the
parallel code these variables became vectors because they were frequency dependent. Thus,
the expression TEST > 10 might be true for some frequencies and not for others. For those

38

PEs whose variable {est was greater than 10, the corresponding variable hcon was given a value
determined by the first assignment statemeni. The hcon variable on all other PEs would be
assigned values according to the assignment statement in the ELSE WHERE portion of the
block.

2 ti e Parallel

implicit complex(h) implicit complex(h) .

. . . . 5 tial Cod
dimension hn5(5,5) dimension hn5(64,5,5) entia Barallel Code
dimension hn6(5,5) dimension hn6(64,5,5) implicit complex(h) implicit complex(h)
dimension hn7(5,5) dimension hﬂ7(64,5,5) dimension hgi(S,S} dimension hgi(64,5,5)
dimension hn8(5,5) dimension hn8(64,5,5) real test dimension hcon(64)
do5i=1,5 hn5 = real test(54)
do6j=15 ::f; = :g iftest.gt.10.) then where(test > 10.)

. - hcon = cmplx(1.E+10) hcon = cmplx(1.E+10
h“S(H) =hl hng = h1 else i ‘ else wherep (‘
hn6(!,_}) =h0 heon = hcon=
E:ZE:‘]; - E(l) cexp(cmplx(hgi(i,j))) exp(cmpix(hgi(:,i,j)))

J endif end where

6 continue Table 2: WHERE construct versus IF
5 continue

statement.
Table 1: Initialization Statements '

An interesting problem arose when rewriting the subroutine which uses the Gaunss-Jordan
method to solve the system of linear equations. Table 3 shows the partial pivoting portion of
the routine that searches down the column for the pivot value.The problem here was that a
separate matrix for each frequency of interest had to be evaluated simultaneously, and it was
very unlikely that the pivot value would occur in the same row for each matrix. In addition,
the IF statement used in the sequential code was invalid here because the variable for the pivot
value, anorm, was no longer a scalar since there was a different pivot value for each frequency.
Another problem was that anorm was not conformable to the arrays being assigned values within
the WHERE block for exchanging rows. Thus it was necessary to define two conformable arrays
anorml and anorm?2 by using the intrinsic function SPREAD. SPREAD is a transformational
function that creates an array of rank one greater than the source array. In this way the values

39

of one-dimensional anorm were copied to two-dimensional anerm! and anorm2 which were then
conformable to the arrays being operated on in the WHERE block. Another interesting problem
in this routine occurred in the statement that checked for a matrix singularity. The sequential
code checks the scalar variable anorm to see if it is equal to zero. If it is, an error message is
written to the screen and program execution halts. We implemented this check in parallel by
using the intrinsic functions MINVAL and MINLOC. MINVAL returned the lowest value in the
array anorm. H the lowest value returned was equal to zero; i.e., a singular matrix occurred
for at least one frequency, an error message was written to the screen giving the location of
the array element where the singular matrix occurred (using MINLOC) and program execution
terminated.

This section has highlighted some of the modifications made to the sequential code so that
it would execute in parallel on the MP-1. Although some of the specific details are peculiar to
the MP-1, the general methodology is applicable to a wide range of parallel machines. The next
section provides a comparison of run times for the sequential versus parallel code.

Parallel Code
implicit complex(h)
dimension hal(64,40,80)
real anorm(64), anorm1(64,80), anorm2(64,30)
complex xc(64,80)

doi=1,12 ! COLUMNS
if{i.ne.n) then
do j=i+1,12! ROWS

anorm = abs(real(hal(:,j,i))) + abs(aimag(hai(:,j,0))
anorm1 = spread(anorm,dim=2,ncopies=80)
anorm = abs(real(hal(:,i,i))) + abs(aimag(hal (:.i,i)})
anorm? = spread(anorm,dim=2,ncopies=80)

where(anorm1.gt.anorm2)
xc = hal(.,i,;} TEXCHANGE ROWS
hal(:,i,2) = hal(:,j,?)
hal(z,j,:) = xc

end where

end do

ICHECK TO SEE IF PIVOT IS TOO SMALL

Table 3: Parallel version of Gauss-Jordan partial
pivoting routine.

40

5. Timing Results

In this section we compare execution times for the sequential and parallel versions of the code
discussed above. The sequential code was executed on a SPARCstation IPX. It should be noted
that there is no unique way to compare the performance of the two machines [10]. Based on
manufacturer’s specifications, we estimate that for integer operations this workstation is about
20 times faster than a single processor of the MasPar whereas for floating point operations
the ratio is about 603. Since the present application involves both integer and floating point
operations, we will assume in the remainder of this paper that the ratio of the speeds is 40.
For timing and output comparisons of the sequential versus parallel code, we considered a
total of 24 cavity modes and 1,849 free-space modes (to provide adequate convergence of the
solution). The frequency range in both cases was from 9 to 11 GHz with the number of steps
taken ranging from 1 to 255 for the sequential code and from 1 to 266 for the parallel version.
Only one aspect angle was considered for this timing information as aspect-angle-dependent
variables were not parallelized. Figure 2 plots the runtime in seconds versus the number of
frequencies for the parallel version. Figure 3 plots the same variables for the sequential code. It
can be seen that for a single frequency the sequential code ran faster than the parallel code. This
is, in part, due to the fact that the sequential code was executed on the SPARCstation IPX.
HBowever, it is interesting to note that even with the slower individual processor speed on the
MP-1, at 35 frequencies the parallel version executed faster than the sequential code. In addition,
Figure 3 shows a linear increase in run time versus number of frequencies for the sequential code
while Figure 2 shows an almost constant run time versus frequency for the parallel version with
discrete jumps at multiples of 64 frequencies. A fit describing the timing data for the sequential
code is T;{Ny) = 4.9 - Ny where N; is the total number of frequencies considered. Likewise, a

fit describing the timing data for the parallel code is To(Ny) = 93+20 - [4%]. The constant

term reflects the overhead associated with setting up the arrays. The discrete jumps in the
parallel timings are due to the layering in memory that occurs (as explained in Section 4) each
tirne the number of frequencies considered exceed the physical dimensions of the PE grid in
the z direction (the first dimension of all frequency-dependent array variables was frequency).
Timing information was obtained for three of the more computation-intensive subroutines in the
program using the modified code. These subroutines were identified by looking at the percentage
of time spent in each program segment. Subroutines summa and sig match the fields at the cavity
aperture and calculate the matrix elements by summing over the cavity and free-space modes.
Subroutine cgyr utilizes the Gauss-Jordan method to solve a system of linear equations with
complex coefficients. Figure 4 shows that each graph retains the general shape of Figure 2 as

41

would be expected for frequency-dependent computations.

g

5. 8

2
2

Runtime (Seconds)

ot

|

=

50

100 150 200 250 300

Number of Frequencies

Fig. 2: Runtime vs. Number of Frequencies (Parallel Code)

_A
-"‘
r/
o
f“
50 u:m 150 P 50 300
Number of Frequencics

Fig. 3: Runtime vs. Number of Frequencies (Sequential Code)

42

8 & 8 8

8
!
i
.

Rumtime (Seconds)

w4

o 'T‘—".’_’:_.-

200 £ 60 20 100 120 140 160 130 200

Number of Frequencies

Fig. 4: Runtime vs. Number of Frequencies (Individual
Subroutines in Parallel Code)

As indicated in Section 3, speed-up, scalability, and portability are three common measures
of a code’s performance. Figure 5 is a plot of speed-up versus number of frequencies. Recall that
speed-up is defined as the ratio of runtime on a single processor versus runtime on N processors.
The speed-up achieved in this case ranged from 1.5 for 35 frequencies to 6.95 for 255 frequencies.
It is important to remember that the sequential code was timed on the SPARCstation IPX.
Thus, from the previous discussion, a speed-up of 1.5 and 6.95 would translate to 60 and 278,
respectively, if the parallel processors operated at the same speed. As indicated in Figure 5,
there was a slight decrease in speed-up as the boundary of the PE grid was reached at each
multiple of 64 frequencies. This is most likely due to increased router communication at the PE
grid boundary and is a common feature in this type of application [11][12].

Speed-up continued to increase as the number of frequencies increased, indicating a scaling of
code performance versus problem size for the portion of the code that was parallelized. Execution
time for 64 frequencies, 20 aspect angles, 24 cavity modes, and 1,849 free-space modes was 52.5
hours. This execution time does, however, compare favorably to the 150 hours that would be

required for the sequential code.

|
7 =
6 /’/
g5
8
3
2 ‘/
In 5; 100 150 m 250 300
Nuxber of Frequencies

Fig. 5: Speed-up of Parallel to Sequential Code

43

6. Conclusions

While significant speed-up was achieved by exploiting the parallelism inherent in the frequency-
dependent portion of the algorithm, performance could in principle be further improved by
parallelizing the code over aspect angle as well. An attempt was made to do this, but the amount
of memory required quickly exceeded that available on the MP-1 due to the fact that many more
scalar variables became arrays and arrays that were both frequency and aspect angle dependent
increased by yet one more dimension. However, as parallel computers with increased memory
space become available further speed enhancement is likely since parallelization methodologies
are of general validity (not restricted to the MP-1). Moreover, it is likely that more inherently
parallel algorithms could be developed by carefully rethinking problems with a massively parallel
platform in mind. For instance, the number of modes required for an accurate solution is
proportional to the size of the wavelength cross section in wavelength[l]. Thus, execution time for
both the sequential and parallel codes discussed here becomes prohibitive for waveguides greater
than approximately three wavelengths in size. However, by rethinking the problem to parallelize
execution over modes as well as frequency and aspect angle, the modal analysis technique might
still be a valid solution method for larger waveguides. Nevertheless, as demonstrated here,
significant increases in code performance can already be realized by modifying existing sequential
codes for use on massively parallel machines.

We have already mentioned that portability is an important issue in considerations of parallel
programs. A code that has been extensively fine tuned for a specific parallel computer may be
highly efficient, but it will be difficult to maintain and update and may not easily be adapted
to other architectures. In this context it is important to note that the present code has been
written in a language that is essentially the Fortran 90 standard and thus can be ported with
relative ease to other platforms supporting Fortran 80. Moreover, new Fortran standards are
currently under development, including Fortran D and High Performance Fortran languages.
The former provides facilities for automatic parallelization by the compiler. Thus Fortran will
continue to be one of the prime languages for parallel computation and will most likely not be
surpassed in terms of portability at least for the foreseeable future. A second issue that needs
to be addressed is the code’s dependence on the specific interconnection network of the parallel
machine such as, in the case of the MasPar, a two-dimensional mesh with toroidal wrapping. It
is known [6] that this topology may be embedded with dilation 1 in the three-dimensional mesh
and the hypercube. Thus the present implementation can be used without any major changes
on these other commonly encountered architectures. Most compilers will automatically allocate
processors according to the desired topology (“logical” grid as opposed to “physical” grid).

In summary, execution time for the sequential code is impractical for obtaining wideband data
when an adequate number of modes is considered for accurate results. However, since the code
has been adopted by the U.S. Electromagnetic Code Consortium it was of interest to determine
whether significant speed-up could be achieved by parallelizing the code. The algorithm is well
suited for SIMD implementation since it possesses a high degree of data parallelism evident in
the outer loops over frequency and aspect angle. Even though memory restrictions precluded
parallelizing the algorithm over both frequency and aspect angle to achieve even greater speed-
up, this kind of effort will only gain in importance as more and more powerful machines with
faster processors and increased memory space enter the market place.

7. Acknowledgements

The authors would like to thank S. W. Lee for his invaluable assistance in the completion of this
work. The authors would also like to acknowledge G. G. Dominick for his help in preparing the
paper and the U.5. Department of Energy for fellowship support provided to L. D. Vann through
the Computational Science Graduate Fellowship Program administered by Ames Laboratory.

References

(1] Lee, SSW., H. Ling, and L. Lin. “RCS of Circular Waveguide Cavity.” Final Report for
the period November 1989 through May 1990, AD-B154 226, Defense Electromagnetic
Analysis Company, 5 Moraine Court, Champaign, IL 61821-5263, March 1991. Prepared
for Headquarters Ballistic Missile Organization/MYET.

[2] Harrington, R. F. Time-Harmonic Eleciromagnetic Fields. New York: McGraw-Hill, 1961.

[3] Balanis, C. A. Advanced Engineering Eleciromagnetics. New York: John Wiley & Sons,
1989.

[4] Kong, J. A. Electromagnetic Wave Theory. New York: John Wiley & Sons, Inc., 1990.

[5] Mittra, R., and 5. W. Lee. Analytical Technigues in the Theory of Guided Waves. New
York: The Macmillan Company, 1971.

[6] Kumar, V., A. Grama, A. Gupta, and G. Karypis. Introduction o Parallel Computing -
Design and Analysis of Algorithms. Redwood City: Benjamin/Cummings, 1994.

[7] Hwang, K. Advanced Computer Architecture - Parallelism, Scalability, Programmability.
New York: McGraw-Hill, 1993,

(8] Blank, T.“The MasPar MP-1 Archilecture.” Proceedings of the IEEE Compcon Spring
1990, IEEE, February 1990.

9] Metealf, M. and J. Reid. Fortran 90 Ezplained. Oxford: Oxford University Press, 1990.

[10] Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitalive Approach.
San Mateo: Morgan Kaufmann, 1990.

(11} Wille, L. T., J. L. Rogers, C. P. Burmester, and R. Gransky. “Towards First-principles
Theories of Materials and Biological Sysiems - The Need for Masstve Paragllelism.” Future
Generation Computer Systems, 10, 331 {1994).

[12] David, R. S. and L. T. Wille. “Massively Parallel Finite-Difference Time-Domain Meth-
ods For Electromagnetic Scatlering Problems.” Proceedings of the Applied Computational
Electromagnetics Society 1994 Meeting, March 1994, Vol. I, pp. 495-502.

f13] Personal communication with Dr. S. W. Lee, August 1993.

45

