A MAGNETIC FIELD ITERATIVE TECHNIQUE FOR IMPROVING
HIGH FREQUENCY PREDICTION METHODS

Daniel D. Reuster and Gary A. Thiele
Department of Electrical Engineering
University of Dayton
Dayton, OH 45469-0226

Paul W. Eloe
Department of Mathematics
University of Dayton
Dayton, OH 45469-2316

Abstract

A Magnetic Field Iterative Technique (MFIT) is developed
as a technique for improving the results from high frequency
based prediction methods. The technique combines the
accuracy of low frequency methoeds with the speed of high
frequency methods to develop a contraction mapping based,
iterative solver, which is directly parallelizable on current
massively parallel processing machines. In this paper, the
MFIT is developed from a Magnetic Field Integral Equation
(MFIE) and its contraction mapping properties are
discussed. Results obtained using the technique and
illustrations of the technique’s convergence properties are
presented for both two and three dimensional perfect
electrically conducting (PEC) targets.

Introduction

High frequency based numerical prediction methods such as
Physical Optics - Physical Theory of Diffraction (PO-PTD)
[1] and Geometrical Optics - Geometrical Theory of
Diffraction (GO-GTD) {2] have been shown to be successful
at approximating the induced current distributions on
electrically large targets (e.g., three dimensional bodies with
at least one dimension greater than approximately ten
wavelengths). For these electrically large bodies, the high
frequency series expansion associated with their scattering
properties converges quickly and scattering centers located
about the bodies can be easily identified. However, as the
electrical size of these perfect electrically conducting (PEC)
bodies begin to decrease, the ability to clearly define the
required scattering centers becomes difficult and the
convergence rate of the associated series expansions
decreases rapidly. Most often, more exact numerical
methods such as the Method of Moments (MoM) [3,4] and
the Finite Element Method (FEM) [5] have been utilized for
these particular situations. While these methods (MoM and
FEM) have been proven to be both accurate and reliable for

PEC bodies which are less than approximately three
wavelengths on a side, these methods become difficult to
implement for much larger bodies. Large memory
requirements coupled with long execution times, make the
utilization of these methods difficult for large bodies.

The Magnetic Field Iterative Technique (MFIT) is
developed here for those PEC bodies whose electrical size
falls into the awkward gap which exists between the two
groups of numerical methods. Currently, there are few
options that exist for efficiently calculating the induced
current distributions on these particular PEC bodies. The
following method is a hybrid numerical technique which
takes advantage of the desired features from both the high
frequency and nearly exact solution methods. The method is
an extension of previous research performed by Thiele et al.
{6-8] on hybrid and iterative methods for solving electrically
large problems.

Mathematical Development
For closed volumetric PEC bodies, a Magnetic Field

Integral Equation (MFIE) may be stated in terms of the total
magnetic field as [3]:
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S is the closed volumetric PEC surface, G is the standard
free space Green’s function, T is the total field, and [ is the

incident field. Equations 1 and 2 are in the form of a
contraction mapping [9,10}, and it may be shown that direct
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incident field. Equations 1 and 2 are in the form of a
contraction mapping {9,10], and it may be shown that direct
iteration of these equations will yield monotonic mean-
square convergence provided that the integral operator is
bounded by unity. If the integral operator does satisfy this
bound, then the above convergence is guaranteed
independent of the initial guess. While this unity bound
may be shown for explicit geometries, a general proof does
not yet exist. Extensive discussion regarding the guarantee
of convergence may be found in references [11-14].

Since equations | and 2 are normally implemented in
discretized form, it is best to discuss the issue of
convergence in terms of the discretized equations.
Applying a pulse-basis point-matching expansion to the
above MFIE results in the following discretized equation
where delta is the area of the discretized facets (see Figure

1):
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Expressing the discretized MFIE in matrix form transforms
the problem of establishing convergence from bounding the
integral operator to determining the spectral radius of the
reaction matrix [Z,] (Equation 6). [f the spectral radius of
the reaction matrix is less than unity, then the discretized
MFIE is a true contraction mapping and direct iteration of
the discretized equation will guarantee monotonic mean
square convergence.
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For cases where the spectral radius is not less than unity, it
is possible to shift the spectral radius of the matrix [Z,,,] by
using a relaxation parameter {11-14]. The implementation
of the relaxation parameter ¢ is given in Equation 7 and its
numerical value is a function of the largest eigenvalue of the
[Z.,] matrix. Thus, for all given reaction matrices. it is
possible to obtain the desired solution through direct
iteration with the guarantee of monotonic mean-square

convergence if o is properly chosen as required by the
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following equation where L is the linear operator used in
Equation 6:

H =oL(H)+(1-0)H* o<l
While the guarantee of convergence is independent of the
initial guess, the rate of convergence is not; and thus, for the
MPFIT to serve as an efficient method to obtain the induced
cutrent distributions on volumetric PEC bodies, the iterative
procedure must be initiated with the best guess available
such that the computation time associated with the
calculation of the initial guess is small compared to the
computation time associated with the iterative procedure.
For this reason, high frequency techniques such as GO-GTD
and PO-PTD are used to generate the initial guess. Both of
these techniques have negligible computer run times and are
capable of producing approximations for the induced
current distributions which are in the realm of rapid
convergence. It is the use of the high frequency prediction
methods’ results, as an initial guess to the iterative process,
which creates the hybrid method. By initiating the iterative
process with these results, the large amount of
computational work associated with calculating the
principle current distributions using the more exact methods
is removed from the solution process, leaving the iterative
process to fine tune the resuits rather than regenerating the
first order solutions which constantly reoccur. In essence, a
high frequency prediction method is used to quickly obtain
the general portion of the solution and the iterative solution
method is used to fine tune the general solution to the
particular PEC body.
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Figure | Discretized Geometry
2-Dimensional Example
For the 2-dimensional transverse electric {TE) case, the

previous vector MFIE (Equations 1 and 2} simplifies to the
following scalar integral equation [6].
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Applying a pulse-basis point-matching expansion to the
above integral operation results in the following series
expansion [3].

m

HL =53 A, HIG(R,,

man

Ycos@,, )+ EIH;; +HL (9

This 2-dimensional series expansion was applied to a 1
wavelength diameter PEC cylinder (see Figure 2). The 2-
dimensional contour was discretized at twenty points per
wavelength, and the iterative procedure was initiated with
its high frequency Physical Optics approximation [1].
Figure 4 shows the converging currents for the circular
cylinder starting with the initial guess, then the current after
1, 5, and 10 iterations ending with the “converged” current.
For this example, convergence was based upon a light
mean-square error norm of 0.001. The converged solution
was obtained after 19 iterations and the vast improvement
after only 5 iterations should be noted. As can be seen, the
monotonic mean square convergence associated with
contraction mappings is present in the converging iterative
solution.
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Figure 2 One Wavelength PEC Cylinder Geometry

3-Dimensional Example

A 1 wavelength PEC cube, with a normally incident
transverse electric (TE) plane wave is shown as a 3-

dimensional example (see Figure 3). The cube geometry
was selected because of the non-uniform and singular
current distributions that exist about its sharp edged
structure. These particular current distributions have been
traditionally difficult to calculate and would serve as a
rigorous test on the contraction mapping properties of the
MFIE formulation. The cube surface was facetized with
approximately 1,300 triangular facets and Xpatch [15], a
high frequency ray based prediction code, was used to
provide the initial current distribution (see Figure 5a). As
can be seen from Figure 5a, while the high frequency
prediction does a good job of predicting the current
distribution on the front face of the cube, it fails to predict
any current distributions on the remaining five faces of the
cube.

Performing a single iteration on the high frequency
predicted current distribution (Figure 5b) results in a non-
zero current distribution on all faces of the cube surface.
Further iterations (Figures 5c¢ and 5d) again illustrate the
contraction like mapping properties of the MFIE
formulation and the convergence of the induced current
distributions along the surfaces of the PEC cube.
Comparing the high frequency predicted current distribution
(Figure 5a) with the converged current distribution obtained
after 20 iterations (Figure 5d) shows a substantial difference
in all but the front face of the cube. Finally, it should be
noted that all of the non-uniform and singular current
distributions are present and observable in the converged
current distribution, and that these difficult current
distributions had no detrimental effect on the convergence
of the iterative procedure.
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Figure 3 One Wavelength PEC Cube Geometry
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Figure 4 The current magnitudes after 1, 5, 10, and 19 iterations starting with the Physical
Optics current distribution on a circular cylinder of 1 wavelength in diameter.
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(b) 1 Iteration

(c) 10 Iterations (¢) 20 [terations

Figures 5a-d Current Magnitudes on a | Wavelength Cube




Conclusions and Comments

Based upon the results presented, the MFIT shows promise
as an efficient method for bridging the gap between
traditional high frequency and low frequency numerical
techniques. Although this hybrid method is designed for
bodies which are 3 to 10 wavelengths in size, the 1
wavelength bodies selected in the examples were chosen
because of their ability to compactly illustrate the
fundamental principles underlying the MFIT. The use of
high frequency methods to provide an initial guess to an
iterative solution formulation of low frequency methods
allows the combination of the best of both techniques. The
information readily obtained using high frequency methods
greatly reduces the run time associated with the low
frequency methods. Hence, the low frequency portion of
this hybrid method is used solely to obtain the desired
selution accuracy and valuable computer time is not wasted
on obtaining portions of the solution which are well known
or more readily obtainable. Furthermore, iterative solvers
for systems of linear equations are highly parallelizable on
current massively parallel processing machines, thus further
reducing the run times associated with the low frequency
portion of the hybrid technique.

The contraction mapping principie, associated with the
formulation of the MFIT presented, removes many of the
dangers commonly encountered when working with
iterative solvers [9-10]. The use of the relaxation parameter
o allows generic reaction matrices to be quickly
reformulated into contraction mapping based systems. For
more information on the use of relaxation parameters to
ensure contraction mapping propetties, the authors
recommend references [11-14] and the references therein.

In summary, a procedure has been presented which uses a
magnetic field integral equation in an iterative process. The
MFIE is discretized and a relaxation parameter is used to
ensure the spectral radius of the reaction matrix is less than
unity. The discretized MFIE has contraction mapping
properties such as guaranteed monotonic mean square
convergence. The iterative process starts with a first order
approximation to the current by using a high frequency
technique such as physical optics or geometrical optics
(shooting and bouncing rays) rather than starting at zero
current. The use of a high frequency technique as a starting
point in the iterative process significantly speeds up the
iterative convergence but is not necessary to obtain a
converged result since that is guaranteed by the contraction
mapping. A future paper will deal with two MFIE
formulations in the MFIT and explore their convergence
properties in more detail.
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