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Abstract: The asymptotic waveform evaluation 
(AWE) technique based on fast lifting wavelet 
transform  (LWT) is applied to the method of 
moments to solve the combined-field integral 
equation (CFIE). The wide-band radar cross 
section of an arbitrarily shaped two-dimensional 
perfectly electric conduct object is calculated. The 
employment of CFIE eliminates the interior 
resonance problems. Numerical results presented 
in this paper are compared with the results 
obtained by the method of moments. It is shown 
that the computational efficiency is improved 
greatly. 

 
I.  INTRODUCTION 

The solution of the combined-field integral 
equation (CFIE) via the method of moments 
(MOM) has been a very useful method for 
accurately predicting the radar cross section (RCS) 
at a certain frequency [1], but many electro- 
magnetic applications require the computation of 
frequency responses over a broad band rather than 
at one or a few isolated frequencies. To obtain the 
RCS over a wide band using MOM, a set of 
algebraic equations must be solved repeatedly, 
which will greatly increase the central processing 
unit time and the storage required. Therefore, there 
is a need to find approximate solution techniques 
that can efficiently simulate a frequency response 
over a broad band. 

Over past few years, a similar technique called 
asymptotic waveform evaluation (AWE) has been 
proposed for the timing analysis of very large scale 
integration (VLSI) circuits [2], [3]. Recently, a 
detailed description of AWE applied to 
frequency-domain electromagnetic analysis was 
presented in [4], [5]. The traditional AWE presents 
great superiority when the electrical size of the 
problem is small enough. But the interior 
resonance problems take place frequently as the 
target size increasing, and the dimension of the 
dense impedance matrix also increased. Based on 
these facts, the traditional AWE almost can hardly 
deal with electrically large targets. Therefore, a 
new method called asymptotic waveform 
evaluation technique based on fast lifting wavelet 

transform (LWT-AWE) is presented here [6], in 
which the combined-field integral equation (CFIE) 
is reduced to a matrix equation, and the LWT is 
applied to the equation to get a new sparse matrix 
equation. Then the AWE technique is applied to 
the new equation, and finally, the inverse LWT is 
employed to obtain the electric current distribution 
quickly at any frequency point within the given 
frequency band. Numerical results are compared 
with the results obtained by the method of 
moments; CPU time and storage required are 
decreased drastically. 

 
II.  FORMULATION 

For a perfectly conducting object, the CFIE can 
be shown to be 

tanˆ ( ) ( )S Sα
η

− × −n H J E J  

tanˆ i iα
η

× += n H E        (1) 

where n̂ is the surface normal, iE and iH , 
denote the incident electric and magnetic fields 
respectively, and η  is the wave impedance. The 
weighting parameter α can be viewed as an 
arbitrary real constant range between 0 and 1 [7]. 
 
AWE implementation 

By MOM method, Eq.1 can result in a matrix 
equation in the following form: 

( ) ( ) ( )k k k=Z I V .           (2) 
Now let us consider a wavelet matrix transform; 

Eq.2 is transformed to 
( ) ( ) ( )k k k=Z I V            (3) 

where ( ) ( ) Hk k=Z W Z W , ( ) ( )k k=I W I , and 
( ) ( )k k=V WV ; W is assumed to be a N N×  

orthogonal wavelet matrix. 
The ith derivative of Z and the nth derivative of 

V  can be computed by 
( ) ( )( ) ( )i i Hk k=Z W Z W ,      (4) 

( ) ( )( ) ( )n nk k=V W V .       (5) 
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To obtain the solution of (3) over a wide 
frequency band, we expand ( )kI  into a Taylor 
series 

0
0

( ) ( )
N n

n
n

k k k
=

= −∑I m        (6) 

where 0k  is the expansion point, nm  denotes 
the unknown coefficients, and N  denotes the 
total number of such coefficients. Substituting this 
into (3), one can obtain 

0 0 0( ) ( )k k=Z m V            (7) 
( )

0
0

( )( ) [
!

n

n
kk

n
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VZ m  

( )
0

1

( ) ]
!

in
n i

i

k
i

−

=
∑

Z m
.  (8) 

To improve the computational efficiency, 
substitute (4) and (5) into (8) and carry out the 
associative law, one can obtain 

( )
0

0
( )( ) [
!

n

n
kk

n
= −

VZ m W  

( )
0

1

( )( )]
!

i Hn
n i

i

k
i

−

=
∑

Z W m
 .  (9) 

Then the multiplications between matrices in Eq.4 
degenerated to be multiplications between 
matrixes and vectors. Computing the coefficients 

nm  ( 0,1, 2, )n N= by iterative solvers, one can 

easily obtain ( )kI  in the given frequency band 
from Eq.6. Then the wavelet inverse transform is 
applied to ( )kI ( ( ) ( )Hk k=I W I ); the electric 
current distribution ( )kI  and the radar cross 
section over a wide band will be obtained. 

For a given threshold value, 0( )kZ  will become 
a sparse matrix, namely, Eq.7 and Eq.9 become 
sparse matrix equations, which can be efficiently 
solved by a sparse solver. 

Since the Taylor expansion has a limited 
bandwidth, ( )kI can be represented with a 
better-behaved rational Padé function [2], 

0
0

0
0

( )
( )

( )

L i
i

i
M j

j
j

k k
k

k k
=

=

−∑
=

−∑

a
I

b
      (10) 

where L M N+ = ， L M= or 1M + ，and 0 1b = . 
The unknown coefficients can be calculated by 
substituting (6) into (10). Multiplying (10) by the 
denominator of the Padé expansion and matching 
the coefficients of the equal powers of 0k k− , 

leads to the matrix equation 

1 2 1 1

1 1 2 2

2 1 3 3

1 2 3

L L L L M

L L L L M
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L M L M L M L M
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+ − + − + −
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Fast lifting wavelet transform scheme  
 In discrete wavelet transform (DWT), the wavelet 
matrix W  can be constructed by wavelet filter 
coefficients [8].  

However, traditional implementation method 
caused auxiliary memories consumed by wavelet 
matrices, while operating wavelet using lifting 
scheme can avoid this limitation. 

In the lifting scheme, we don’t need to construct 
a wavelet matrix W , but to operate the impedance 
matrix itself directly.  

 

 
     Fig. 1. Filter bank for wavelet transform. 
 
The finite filter wavelet transform can be 

viewed as subband transform using finite impulse 

response (FIR) filters illustrated in Fig. 1. Forward 

transform uses two analysis filters h  (low pass) 

and g  (high pass), followed by subsampling, 

while inverse transform first upsamples and then 

uses two synthesis filters h  (low pass) and g  
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(high pass). The perfect reconstruction (PR) 

property is defined by Eq. (13) [6], 
1 1

1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

h z h z g z g z

h z h z g z g z

− −

− −

+ =

− + − =
      (13) 

where 1z−  in analysis filters is time reversion that 

compensates the delays in filters. 

The polyphase representation of filter h , is 

given by 
2 1 2( ) ( ) ( )e oh z h z z h z−= +          (14) 

where 2( ) k
e k

k
h z h z−=∑ contains the even 

coefficients, 2 1( ) k
o k

k
h z h z−+=∑ . 

Define the new polyphase matrices 

( ) ( )
( )

( ) ( )
e e

o o

h z g z
P z

h z g z
 

=  
 

 ,           (15a) 

( ) ( )
( )

( ) ( )
e e

o o

h z g z
P z

h z g z

 
=  
  

 .          (15b) 

Then the PR condition can be rewritten as 
1( ) ( )HP z P z u− =             (16) 

where u  is an identity matrix. 

 The problem of finding an FIR wavelet transform 

thus amounts to finding a matrix ( )P z . Once we 

have such a matrix, ( )P z  and other filters for the 

wavelet transforms follow immediately. From (16) 

it follows that 

1 1( ) ( ) , ( ) ( ) ,e o o eh z g z h z g z− −= = −   (17a) 

1 1( ) ( ) , ( ) ( ).e o o eg z h z g z h z− −= − =   (17b) 

For the transforms with Daubechies wavelets, 

ih  and ig  are the coefficients involved in the 

two-scale relations of the Daubechies wavelets: 
2 1

0
( ) 2 (2 )

mN

n
n

x h x nφ φ
−

=

= −∑  ,       (18a) 

2 1

0
( ) 2 (2 )

mN

n
n

x g x nψ φ
−

=

= −∑        (18b) 

where φ  and ψ  are the scaling and wavelet 

functions, respectively. mN  is the number of 

vanishing moments. 

Daubechies has proved that given a 

complementary filter pair { , }h g or { , }h g , then 

there always exist Laurent polynomials ( )is z  and 

( )it z  for 1 i m≤ ≤  and a nonzero constant K  so 

that 

1

1 01 ( ) 0
( )

( ) 10 1 0 1/
m i

i i

s z K
P z

t z K=

    
=∏     

    
,  (19a) 

1

1
1

1 0 1/ 01 ( )
( )

( ) 1 00 1

m
i

i i

Kt z
P z

s z K

−

−
=

   −  
=∏     −    

 . (19b) 

We can get inverse wavelet transform factoring 

formulation by simply inverse the forward 

formulation, switch additions and subtractions, and 

switch multiplications and divisions, 

11 1 01/ 0 1 ( )
( )

( ) 10 0 1
i

i m i

K s z
P z

t zK
−

=

−    
=∏     −    

 ,  (20a) 

111
1

1 00 1 ( )
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i m i

K t z
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s zK

−
−

−
=

   
=∏    

    
 .  (20b) 

We also describe lifting step by predict step and 

update step, which can be outlined in the following 

three basic operations. 

Split: Divide the original data ( [ ]nx ) into odd 

subsets ( [ ]o nx ) and even subsets ( [ ]e nx ), 

[ ] [2 1]o n n= −x x , [ ] [2 ]e n n=x x .   (21a) 

Predict: Generate high frequency component 

( )nd as the error in predicting odd subsets from 

even subsets using prediction operator Q , 

[ ] [ ] ( [ ])o ed n x n Q x n= − .       (21b) 
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Update: Generate low frequency component 

[ ]nc  as a coarse similarity to original signal by 

applying an update operator U  to the wavelet 

coefficients and adding to even subsets, 

[ ] [ ] ( [ ])en n U n= +c x d .        (21c) 

The operators Q  and U  are decided by the 

polyphase matrixes. 

 To illuminate the steps for the fast lifting 

wavelet transform scheme, a D4 wavelet example 

is presented here. 

The h  and g  filters are given by: 

1 2 3
0 1 2 3( )h z h h z h z h z− − −= + + + ,    (22a) 

2 1 1
3 2 1 0g z h z h z h h z−= − + − +（ ）     (22b) 

with 0
1 3
4 2

h +
= , 1

3 3
4 2

h +
= , 2

3 3
4 2

h −
= , and 3

1 3
4 2

h −
= . 

The polyphase matrix is 
1 1

0 2 3 1

1 1
1 3 2 0

( )
h h z h z h

P z
h h z h z h

−

−

 + − −
=  

+ +  
   (23) 

and the factorization is given by 

-1

.

1 01 - 3
3 3-20 1 14 4

3 1 01 2
0 1 3 10

2

( )
z

z

P z
             

 
 

   
   
    

 
 

=
+

+

×
−

   

Forward row transforms ( ( ) HkZ W ) for impedance 

matrix ( )kZ  will be given by ( )P z : 

Set x  to be one row of impedance matrix 

( )kZ , x  to be one row of impedance matrix 

( )kZ  correspondingly. 

Step1 (Split): 

   (0)[ ] [2 1]n n= −d x , (0)[ ] [2 ]n n=c x . 

Step2 (Predict): 

(1) (0) (0)[ ] [ ] 3 [ ]n n n= −d d c . 

Step3 (Update): 

(1) (0) (1) (1)3 3 2[ ] [ ] [ ] [ 1].
4 4

n n n n−
= + + −c c d d

Then repeat step2 and step3: 

 (2) (1) (1)[ ] [ ] [ 1]n n n= + +d d c  , 

(1)3 1[2 ] [ ]
2

n n+
=x c  , 

(2)3 1[2 1] [ ]
2

n n−
− =x d  . 

Similarly, the forward column transforms 

( ( )kWZ or ( )kWV ) for impedance matrix ( )kZ  

will give by ( )P z which can be computed by Eq.17 

and Eq.15b; the inverse current vector transform 

( )H kW I  will be operated by 1( )P z− . The 

transform ( )kZ W  is not needed in this paper, and 

it can be operated by 1( )P z− . 

 

III.  NUMERICAL RESULTS 
To validate the analysis presented in the 

previous sections, a few numerical examples are 

considered. For perfectly conducting infinite 

objects excited by a TM plane wave at an angle of 

incident iθ , RCS calculations over a frequency 

band are done for a cylinder with perimeter 

0.36C = m ( 0iθ = ), a square cylinder with length 

0.1a = m ( 0iθ = ), and a strip with length 

w =0.25m and width d = 0.001m ( / 4iθ π= ). In 

the numerical examples presented below, the 

expansion frequency is chosen to be the center 

frequency of the band of interest. Fig.2 shows the 

nonzero components distribution of the impedance 

matrix after transforms. The results over a given 

102 ACES JOURNAL, VOL. 21, NO. 1, MARCH 2006



 

frequency band are calculated by the LWT-AWE 

method with Padé approximation ( 4L = , 3M = ). 

 

 
Fig. 2. Impedance matrix of cylinder  

   after transforms. 

 

Fig. 3. RCS frequency response of the cylinder. 

 
Fig. 4. RCS frequency response of the  

     square cylinder. 

 

The CPU time consumed by LWT-AWE and the 

moment methods are given in Table I. All the 

computations reported are done on a PIV 

2.66G/256MB computer. 

 

 
Fig. 5. RCS frequency response of the strip. 

 

Table I.  CPU time required comparison. 

Examples Figure 3 
time(s)  frequencies  

Figure 5 
time(s)  frequencies 

MOM 
LWT-AWE 

763.7         31 
194.2        301 

947.4        41     
279.1       401  

 

IV. CONCLUSIONS 
An implementation of AWE combined with 

LWT for frequency-domain MOM is presented. 

The RCS for different PEC objects are computed. 

From the numerical examples presented, 

LWT-AWE method is found to be superior in 

terms of the CPU time to obtain a frequency 

response: CFIE eliminates interior resonance 

problem, and the employment of LWT produces a 

sparse system of linear equations that are treated 

effectively by a sparse linear system solver. 
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