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Abstract ─ Diffraction of plane waves by an 
impedance wedge with surface impedances equal 
to the intrinsic impedance of surrounding medium 
is investigated for oblique incidence case. In the 
oblique incidence case, the scattering problem 
cannot be solved explicitly because of the resultant 
coupled system of functional equations unless the 
system is decoupled. Therefore under the assumed 
condition on wedge impedance, these functional 
equations are decoupled and the expression for the 
diffraction coefficient is derived as well as the 
diffracted fields.  
  
Index Terms ─ Functional equations, impedance 
wedge, Maliuzhinets theorem, Sommerfeld 
integrals.  
 

I. INTRODUCTION 
In many practical applications, scatterers are 

partly wedge shaped metallic structures covered 
by dielectric materials or metallic structures with 
finite conductivity which can be simulated with 
impedance boundary conditions. Therefore, the 
problem of diffraction by an impedance wedge is 
investigated by a number of scientists and is very 
important for both civil and military applications.  

Diffraction by an impedance wedge was first 
solved by Maliuzhinets for the normal incidence 
case [1]. In this solution, the total field was 
expressed by the integral of an unknown spectral 
function. The unknown spectral function was 
determined using the boundary conditions, the 
edge conditions, and the radiation condition. The 
fundamental contribution of the Maliuzhinets 
method is the reduction of the integral equation 

into a first order functional equation. But for the 
oblique incidence case, the problem cannot be 
solved explicitly, since the resultant equations 
form a coupled functional equations system.  

The solutions for the problem under 
consideration are available only for some limited 
wedge opening angles and only under some 
assumption for the surface impedance of this 
wedge [2-22].  

In this study, applying the Leontovich 
boundary conditions, a coupled differential 
equations system is derived for the z-components 
of the fields. Using the similarity transformation, 
the relevant matrices are diagonalized assuming 
that the surface impedance is equal to the free 
space impedance.  

The solution for the Helmholtz equation is 
sought in the form of Sommerfeld integrals. In 
order to solve the Maliuzhinets functional 
equations, the Maliuzhinets theorem is applied to 
the Sommerfeld integrals. Solving the functional 
equations, the closed form solution is derived and 
the uniform asymptotic solution is obtained by 
applying the steepest descent path method to the 
Sommerfeld integrals. The numerical results are 
obtained for different wedge opening and 
incidence angles and they are shown in Figs. 3 
through 7.  
 
II. FORMULATION OF THE PROBLEM 

The problem under consideration is a wedge 
with an opening angle of 2 , where the edge 
coincides with the z-axis. The direction of 
propagation of the incidence wave is specified by 
the angles   and 0  as shown in Fig. 1. The 
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incident field is determined by the z-components 
of the electromagnetic field.  

 

 
Fig. 1. The geometry of the problem. 

 
Due to the invariance of both the wedge 

geometry and the impedance with respect to z, the 
problem can be reduced to a two dimensional 
problem and the z-components of the electric and 
magnetic field vectors of the incident wave can be 
represented as  

    , exp cosi i
z zH H r ik z  , (1) 

               , exp cosi i
z zE E r ik z  ,            (2) 

where  
   0 0exp sin cosi

zH H ikr      , (3) 
and 

  0 0exp sin cosi
zE E ikr      .      (4) 

 Using the Maxwell’s equations, the field 
components can be expressed in terms of z-
components as follows: 
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, (6) 

where 0 0k     is the free space wave number 
and 0Z  is the free space impedance given by  

 0
0

0
Z 


 . (7) 

On the surfaces of the wedge, the Leontovich 
impedance boundary condition can be represented 

as   
   1,2ˆ ˆ ˆ.E n E n Z n H  

  
. (8) 

Applying boundary conditions result in a matrix 
equation system defined as  
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,
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                                       cos
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 

  

,(9) 

where sentence  
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j

j

Z
Z

A
Z
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 
 
   
 
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, (10) 

and 

 0

0

10

0
ZB

Z

    
  

,          (11) 

and j=1,2. To obtain the unknown, this coupled 
matrix system must be diagonalized. Applying 
similarity transformation to matrix B can produce 
a diagonal matrix system. To reach this aim the 
transformation matrix can first be written as 

 z

z

H u
P

E v
   

   
  

, (12) 

where P is the similarity transform of matrix B, 
and is defined as  

 11 12

21 22

P P
P

P P
 

  
 

. (13) 

After the necessary manipulations P can be 
rewritten as 

0

0

1i
ZP

Z i

 
   
  

.        (14) 

By using this similarity transform matrix, matrices 
A and B are diagonalized as follows 

+
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x
(r,) 
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 
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Z2 
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, (15) 

and 

 1 0
0
i

P BP
i

  
   

. (16) 

Within equation (15) the diagonalization condition 
is observed as 

 0

0
0j

j

ZZ
Z Z

  , (17) 

and finally the decoupled matrix system can be 
written as 
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i v
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. (18) 

The solutions for field components are sought in 
the form of Sommerfeld integrals as  

     sin cos1,
2

ikr
ju v f e d

i
 



  


  ,  (19) 

where  is the Sommerfeld double loops shown in 
Fig. 2, and  is the complex planes variable. The 
calculation of the unknown spectral functions 
represented by  fj is given in  the section titled far 
field solution.  

 Application of the Malyuzhinets’ theorem to 
the functions u and v gives the following equations 
for    . 

  
     

     

1

1 1

sin 1

sin 1 sin

j

j

f

f C
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, (20) 

and 
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2
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j

j

f
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 

, (21) 

where 1 1cos
sin




  
  

 
. 

 

 
 
Fig. 2. The complex  plane with Sommerfeld 
double loops and the steepest descent paths   
SDP(-) and SDP(). 
 

III. FAR FIELD SOLUTION 
 The homogeneous solutions  10f   and  20f   
for the functional equations (20) and (21) can be 
represented in terms of   functions as follows  

 

2 2

10 2 2
2 2 ,

2 2

f
 

 

      


      

            
   
            
     

 

(22) 
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2 2

20 2 2
2 2

2 2

f
 

 

      


      

            
   
           
   

.  

(23) 

It is known that 
 
 

2
cos

2 2




 
 

       
. 

 The functional equations for  jf   should be 
supplemented by an additional condition [13] 

namely  
0

1
jf 

 



 is regular in Re   . 

Then, the solution can be represented in the 
following form to satisfy the additional condition 

Im{} 

Re{} 

+

-
- 0

SDP(-) 

SDP() 
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        0 0 .j j jf f        (24) 
Here a new function is defined as  

      0 0 0j jF f     . (25) 

New unknown spectral functions  j   are 

introduced to facilitate the solution and  0   is 
defined as  

    
   

0
0

0

cos
sin sin

 
 

 



, (26) 

where  is equal to 
2
 


 and  j   has no 

poles and zeros in the strip Re   .The 
function  0   satisfies the following relation 

   0 0        .       (27) 

The known functions  0jF   satisfy equation 

(20) and (21) as  0jf  . Then,  j   obey the 
simple functional equations where λ is wavelength 
sentence. 

     0j j        . (28) 

Since the residue of fj at 0   must give the 
incident field, the following can be written 

   0
0

Res 1j jF
 

  


 ,     (29) 

where  
0

Res f
 




 is used for the residue of a 

function  f   at a point 0 . It follows that 

    0 0

1
j

jf
 


 . (30) 

So the solutions for the unknown spectral 
functions are given by 

  
   

 
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0 0

j
j

j

f
f

f
  




 . (31) 

By substituting (31) into (19) and by evaluating 
the integral asymtoticly by the steepest descent 
method gives 

     
sin

2 4 4

1 1,
2 sin
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    
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(32) 
and   
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  

      . 

(33) 
When inverse transformation is applied to (32) and 
(33), Hz and Ez  are obtained as 

 0

0

1
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z

iH u
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E v
Z i

 
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. (34) 

zH  is also written as 
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1
zH iu v
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  . (35) 

More specifically 
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(36) 
where  D   is the diffraction coefficient given as 

     

   

4

1 1

2 2
0

2 sin

1                             ,

i
eD i f f
k

f f
Z


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 
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


       



      



 (37) 

where  jf   is defined in (24) and the related 

functions  10f  ,  20f  ,  0  , and  j   
are given in (22), (23), (26), and (30), respectively. 

 
IV. NUMERICAL RESULTS  

In this paper, diffraction of obliquely incident 
plane electromagnetic waves by impedance being 
equal to the intrinsic impedance of surrounding 
medium is considered. This study is the first to 
investigate this case. Therefore, we reduced the 
problem to the normal incidence case taking 

90o   to be able to compare our results with the 
known studies. In Figs. 3 through 5, it is obvious 
that our results and the results obtained by İkiz 
previously and by Büyükaksoy [17, 23] are very 
similar. 
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Fig. 3. Comparison of the results (=120o, 
o=30o). (*): results obtained previously by İkiz      
(): results obtained by İkiz in this study.  

 

 
Fig. 4. Comparison of the the results (=165o, 
o=45o) (*): results obtained previously by İkiz      
(): results obtained by İkiz in this study. 

 
 

 
Fig. 5. Comparison of the results by Büyükaksoy 
& Uzgören(o) and by İkiz(*) =180o. 

In Figs. 6 and 7, we represent the diffraction 
coefficients for different values of incidence and 
wedge opening angles. 
 

 
Fig. 6. Diffraction coefficient  1010 log D   

versus observation angle with =120o, o=90o , 
=30o (*), 45o (o), 60o.(), 75o (), 90o (). 

 

 
Fig. 7. Diffraction coefficient  1010 log D   

versus observation angle with =157,5o, o=120o , 
=30o (*), 45o (o), 60o.(), 75o (), 90o (). 
 

V. CONCLUSION 
The wedge surface impedance being equal to 

the intrinsic impedance of the surrounding 
medium, not only presents a convenient 
mathematical problem, but it can also correspond 
to a practical structure especially when it is 
assumed that this condition can be satisfied by 
choosing the appropriate r  and r  values for any 
composite material.  From a mathematical point of 
view, this problem should also be considered as a 
first step for solving a wedge scattering problem 
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with any surface impedance, with plane waves at 
any random incidence angle. 
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