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Abstract 
 
A new method for the robust estimation of target 
orientation using measured radar cross section is 
proposed. The method is based on a Generalized 
Regression Neural Network (GRNN) scheme. The 
network is trained by the FFT modulus of bistatic 
radar cross section data sampled at the receiver 
positions. The target value to be trained is the angle 
between a defined target orientation and the incident 
wave. Results based on actual measurements are 
presented. 
 

 
INTRODUCTION 

 
Accurate estimation of target orientation is essential 
in range profiling schemes [1-4]. In such cases, the 
knowledge of target orientation can yield information 
about the target-structure. The range profile itself, 
however, is quite sensitive to variations in target 
orientation and cannot be the basis for such 
estimation. A detailed tracking of object orientation is 
therefore necessary.  

 
Attempts have been made to use artificial neural 
networks (ANNs) for solving the inverse problem. 
However, the proposed methods have not been able 
to exploit the fundamental advantages of neural 
systems, which are their speed and robustness. In 
many instances, the problem formulation was fitted 
into previously developed algorithms for network 
training [5, 6]. Nevertheless, successful methods 
were developed for cases where a priori knowledge 
of the target geometry is available [7]. Neural 
networks have proven to do well in target 
classification area. A spectral approach to radar target 
classification using ANNs was proposed in [8].  

 
The Generalized Regression Neural Network 
(GRNN) [9] is among radial basis networks and has 
found applications in regression and function 

estimation processes. It has been shown that given a 
sufficient number of neurons in the hidden layer, a 
GRNN can approximate a continuous function to an 
arbitrary precision [10].  

 
In this paper, the orientation of a cylindrical 
conducting target is estimated with a GRNN network 
using radar cross section data. The definition of the 
problem is shown in Figure 1, where a target is 
illuminated by a number of transmitters/receivers at 
different angles of incidence. The orientation angle is 
defined as the angle between a preferred  
direction specified on the target geometry and the 
incident wave. The task is to find the orientation 
angle by using a number of bistatic radar 
measurements.  
 

THE FORWARD PROBLEM 
 

Consider a perfectly conducting cylinder of arbitrary 
cross section shape, as shown in Figure 2, illuminated 
by a plane wave in free space. The cylindrical 
contour is denoted by C. For the TM  polarization, 
the electric field integral equation (EFIE) is given by 
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where  and ρρ ′  are the field and source points, 

respectively, and  is the zeroth order Hankel 
function of the second kind.  
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The above integral equations are solved numerically 
by the method of moments. Once the induced current 
is calculated, the scattering echo width is given by  
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THE GRNN 
 
The Generalized Regression Neural Network belongs 
to the family of radial basis neural networks. Radial 
basis networks require more neurons than standard 
feed-forward backpropagation networks, but they can 
often be designed in a fraction of the time it takes to 
train standard feed-forward networks. They work best 
when many training vectors are available.  

 
Radial basis networks were previously used in field 
estimation processes. It is shown that given a 
sufficient number of neurons in the hidden layer, a 
GRNN can approximate a continuous function to an 
arbitrary precision. The GRNN is a memory based 
network, which provides estimates of continuous 
variables and converges to the underlying optimal 
linear or nonlinear regression surface. The network 
requires no prior knowledge of a specific functional 
from between input and output. The appropriate form 
is expressed as a probability density function that is 
empirically determined from observed data using 
Parzen window estimation [11]. For this reason, it 
works very well with sparse data. The network is a 
one-pass learning algorithm and can generalize from 
examples as soon as they are stored. The structure of 
the Network is depicted in Figure 3. 
 
Let x be a vector random variable of dimension  p, 
and  y  be a scalar random variable. Then f(x,y) is the 
joint continuous probability density function of x and 
y. Let X be a particular value of the random variable 
x. The conditional mean of y given X (regression of y 
on X) is given by 
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But the probability density function f(x,y) is not known a 
priori. It may be estimated from a sample of observations of 
x and y as proposed by Parzen as [9] 

∑

∑

=

=









−









−

≅
n

i

i

i
n

i

i

C

C
Y

yE

1

1

exp

exp
]|[

σ

σ
X                     (4) 

where  

∑
=

−=
p

j

i
jji XXC

1
||                            (5) 

is the city block distance.  Note that in (4), σ  is the 
spread parameter of the density estimator, and should 

not be confused with the echo-width defined in (2). 
The estimate (4) can be considered as a weighted 
average of all the observed values, each being 
weighted exponentially according to its distance from 
X. It can be shown that this density estimator used in 
estimating (3) asymptotically converges to the 
underlying probability density function f(x,y) at all 
points (x,y) at which the density function is 
continuous, provided that the spread parameter 

)(nσσ =  is chosen as a decreasing function of n. 
When σ  is large, the estimated density function 
approaches a multivariate Gaussian function. For 
intermediate values of σ , all values of iY  are taken 
into account, but those corresponding to points closer 
to  are weighted heavier. The estimate cannot 
converge to poor solutions corresponding to local 
minima of the error criterion. 

X

σ

 
 

TRAINING 
 

The sensors are assumed to be fixed with respect to 
the wave direction. The target is impinged upon by 
transverse magnetic plane waves from different 
directions. To prepare the training data, a total of 10 
equally spaced receivers are used.  

It was found that the FFT modulus of the echo-width 
patterns sampled at the receiver positions for angles 
of incidence provided better generalization 
capabilities for the network, compared with the case 
when the network was trained with the echo-width 
vector (amplitude and phase). Simulated bistatic 
echo-width was used for the training of the network. 
The forward problem was solved using the method of 
moments. These calculations formed a 10 element 
input vector at every receiver for the network.  

Some noisy data created by displacing the receivers, 
were added to the training data set to let the system 
face small sensor position drifts. These vectors were 
used in training the network. The spread parameter 

 was manipulated so that the network angular 
estimation was sufficiently robust. The target value to 
be trained was the angle between the target 
orientation and the incident wave. 

 

RESULTS 

In this section, the performance of the network will 
be examined.  
 
The network was trained using the data described in 
the previous section for the triangular shaped target 
shown in Figure 1. To check the generalization power 
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of the network, a set of 40 new input data was 
produced, this time by angles not previously 
encountered by the network with all other parameters 
held unchanged. Figure 4 shows the cumulative error 
for estimating the target orientation for trained and 
untrained data. The network clearly displays a very 
good level of generalization of its estimates based on 
the training data set and more than 99% of the cases 
have less than one-degree error. 
 
The triangular cylindrical target shown in Figure 5 
was considered next. This is the Ipswich target IPS-
009. The network was trained using the simulated 
echo-width data. Then the network was presented 
with the RCS data collected at Ipswich bistatic RCS 
range. Only the bistatic echo-width data on 180 
degree range was used (that is, one side of the 
cylinder was examined). The performance of the 
network in estimating the orientation of the target is 
shown in Figure 6. It is observed that the error is less 
than one degree in more than 98% of the cases. 
 
Next, the performance of the network was examined 
for the case when the target size is not exactly known 
a priori, but rather the geometry of its shape is 
known. The system was tested in facing an elliptical 
cylinder when the electrical size of the cross-section 
was rescaled from –7% to +5%. The cumulative error 
is shown in Figure 7 for three different frequency 
scaling factors in the above range.  
 
 

CONCLUDING REMARKS 
 

The problem of estimation of two-dimensional 
conducting target orientation was efficiently handled 
by a Generalized Regression Neural Network. The 
training data set consisted of the calculated bistatic 
echo-width data when the target was exposed by an 
incident single frequency TM plane wave. The 
performance of the network does not change if the 
frequency of the plane wave is altered. Currently, The 
network performance against sensor misplacements, 
sensor noise (correlated and uncorrelated), are under 
study.  
 
It is believed that time domain schemes such as range 
profiling techniques can utilize this method to 
overcome difficulties in estimating the orientation of 
the target.  
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Figure 1- Problem set-up. 
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Figure 2- A uniform plane wave impinging upon a perfectly conducting cylinder. 
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Figure 3- The structure of GRNN. 
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Figure 4- The GRNN estimates the orientation of the target shown  

in Figure 1 by the concept of generalization. 
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Figure 5- A triangular cylinder of sides 10 cmcmcm 5.1092.45. ××  illuminated  
         by a 10 GHz TMz plane wave. The height of the cylinder is 40.8 cm. 
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Figure 6- Error diagram for the network response for the target shown in Figure 5. 
 
 

 
 

Figure 7- Cumulative error at various levels of frequency scaling. 
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