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Abstract

The problem of the computation of electromagnetic-field distributions in a strongly inhomoge-
neous human body is formulated in terms of an integral equation over the body. A weak form
of the integral equation is discussed, in which the spatial derivatives occurring in this equation
are integrated analytically. The resulting equation can then be solved very efliciently using the
advantageous combination of a conjugate-gradient iterative method and a fast Fourier technique
(CGFFT). Numerical calculations have been carried out for a strongly inhomogeneous, lossy radi-
ally layered sphere. A comparison with the Mie-series solution shows that the present weak form
of the CGFFT method yields accurate results. The absorbed power density inside a CAT-scan
generated model of the body of one of the authors is computed. It demonstrates that the present
method can be considered as a comparatively simple and efficient tool for solving electromagnetic
wave-field problems in strongly inhomogeneous bodies.

1. Introduction

During the past several years considerable effort has been put into the development of efficient tech-
niques for computation of electromagnetic wave fields in a strongly inhomogeneous object. One of
the extensively utilized methods is the domain-integral-equation technique. It takes into account
that the irradiated object is present in free space and that it manifests itself through the presence of
secondary sources of contrast currents. The first method for solving the electric-field integral equa-
tion over the domain of a dielectric object was developed by Richmond for the two-dimensional T™M
case [Richmond, 1965], and for the two-dimensional TE case [Richmond, 1966]. Here the method
of moments has been used with pulse expansion functions and point matching. The use of pulse ex-
pansion functions in the TE-case leads to numerical errors [Massoudi et al., 1984, Hagmann, 1985].
The method of moments requires the inversion of a (large) matrix, limiting the application of this
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method. This problem has been circumvented by using a conjugate-gradient iterative technique
[Van den Berg, 1984|. Bojarski [1982] has introduced the k-space method, obtaining an iterative
approach that reduces the storage and the computation time by using a fast Fourier transform
algorithm for the computation of the spatial convolution that occurs in the integral equation. A
comprehensive review of Bojarski’s work, together with the appropriate references to his k-space
frequency domain method, can be found in his 1982 k-space time-domain paper.

In the numerical solution of two-dimensional TE and three-dimensional scattering problems, the
applicability of the conjugate-gradient FFT method using pulse expansion functions casts some se-
rious doubts [Borup et al., 1987, Joachimowicz and Pichot, 1990]. The operator involved consists
of a grad-div operator that acts on a vector potential. The vector potential is an integral of the
product of a Green’s function and the electric contrast-current density inside the object. The vector
potential is a spatial convolution. In the spectral Fourier domain this convolution is algebraic: a
simple product. Recently, the weak formulation of the conjugate-gradient FFT method has proved
to be an efficient and accurate scheme for solving two-dimensional TE scattering by strongly inho-
mogeneous lossy dielectric objects [Zwamborn and Van den Berg, 1991a]. Therefore, in this present
paper, we present a weak formulation of the domain-integral equation for the modeling of full vecto-
rial, three-dimensional, electromagnetic wave-field problems. The domain-integral equation that is
obtained in its strong form is weakened by testing it with appropriate testing functions. This weak
form is the operator equation to be solved by a CGFFT method. The advantages of this procedure
are, firstly, that the grad-div operator acting on the vector potential is integrated analytically over
the domain of the dielectric object only and, secondly, that we have maintained the simple scalar
form of the convolution structure of the vector potential (in fact three scalar convolutions). The
integral equation is formulated in terms of the unknown electric-flux density rather than in terms
of the electric-field strength. The continuity of the normal component of the electric-lux density
yields a correct implementation of the boundary condition of the normal component of the electric
field at the interfaces of (strong) discontinuity. In conirast to the weak formulation of the two-
dimensional TE-case [Zwamborn and Van den Berg, 1991a], the three-dimensional formulation is
presented for different mesh sizes in the three Cartesian coordinates.

We present some numerical results for three-dimensional problems. Numerical computations have
been carried out for a strongly inhomogeneous, lossy radially layered sphere. These numerical
results are compared with existing analytical solutions (Mie series) and it is directly observed that
the weak form of the conjugate-gradient FFT method yields accurate results. Subsequently, the
absorbed power density inside a realistic model of the body of one of the authors, the Jaap phantom,
is computed. These two test cases demonstrate that the present weak formulation of the conjugate-
gradient FFT method can be considered to be a comparatively simple and efficient tool for solving
scattering problems pertaining to (strongly) inhomogeneous lossy dielectric objects.

2. The domain-integral equation

The vectorial position in the three-dimensional space is denoted by 2 = (21,#2,23). The unit
vectors in the z;-, x2- and z3-directions are given by ;, #; and #3. The time factor exp(—iwt) has
been used for the field quantities in the frequency domain. We consider the problem of scattering
by a lossy inhomogeneous dielectric object with complex permittivity

,7(2), (1)

e(e) = e~(®)ep + 4 "

where ¢, denotes the relative permittivity of the object with respect to the lossless and homogeneous
embedding with permittivity o, and where & denotes the electric conductivity of the object. The
incident electric field is denoted as E' = (E}, E}, E4). In this paper, we formulate the scattering
problem as a domain-integral equation for the unknown electric-flux density D = (D;, D4, D3) over
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the object domain D° as

E'(=) = % — (k2 + graddiv)A(z), = € DS (2)

where ko = w(eopo)? and the vector potential A = (A, Az, A3) is given by

A@) == [ Gle - x(e)Dia)d, (3)
wx'eD’
in which the normalized contrast function y is defined as

2) = e(2) — g
x(z} = @) (4)

Further, the three-dimensional Green’s function G is given by

exp(ikoh’i)

Gl=) = dxle|

2 € R (5)

Egs. (2) - (5) are equations in a strong form. In the next section we shall present a weak form.

3. The weak form

We first introduce a discretization in the spatial domain & = (2,23, 23). We use a uniform mesh
with grid widths of Az, Az; and Azj3 in the z,,2; and z3 directions, respectively. For our
convenience the discrete values of @ are given by

S {(M . %)Aa:l, (N - %)mz,(P _ %)Aazg}, (6)

denoting the centerpoints of the volumetric subdomains. The boundary of the discretized object
now consists of surfaces parallel to the z,-, z2- or z3-axis. We assume that the discretized boundary
8D° of the object domain D° lies completely in the embedding where x = 0. This is always possible,
since we can extend the definition of the object domain D® by extending it with a zero contrast
function x. In each volumetric subdomain with center zps v p and dimension Az, x Az; X Az,
we assume the complex permittivity to be constant with values €57 v p. Note that jumps in the
(complex) permittivity function may occur at z; = MAz,, zo = NAz; and 23 = PAz;.

In order to cope with the grad-div operator in Eq. (2), we test the strong form of Eq. {2) by
multiplying both the sides of the equality sign by a vectorial testing function t,b‘(.‘f’,) N, ple),p=1,2,3,
and integrate the result over the domain @ € D° upon using Gauss’ theorem on each subdomain
where Bpt,b}(v’}? n p(®) div A(=) is continuously differentiable and by using the continuity of the normal
component of this function through the interfaces between these subdomains. Subsequently, we
expand the generalized electric-flux density, the electric-contrast vector potential and the incident
electric field in a sequence of vectorial expansion functions gb(,qz, x(®) = "/’g?}, x(®)ig, ¢ =1,2,3 and
obtain

Dyz) = & Y. d7 §Q}K(z) for = € D, (7)
1JK
1K
Eye) = ) E;,(.?)K IJK("’) for = € D°. (9)
1JK
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In view of the partial derivatives acting on the testing and expansion functions, the volumetric
rooftop functions [Catedra et al., 1989] are chosen as basis in the test and expansion functions.

Using these functions we obtain the following weak formulation of the domain-integral equation,
see [Zwamborn, 1991b, Zwamborn and Van den Berg, 1992},
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2
P = Az Az.Az; —% 4 +(Atp)""2 2 N (16)

while the coefficients of the matrix t(P) follow from

t? = Az, ( _1 _i ) (17)

The values of ej\’}ﬁ{,! p follow from E M('}?, p as

Az AzyAzy 10 1 1

1\}1{'13 = 6 [E (+)1NP+4E () p+ Ej )lNP] (18)
Az \AzylAzs [ i 02

A}J)VP = T > [EA},£’+1,P+4EA}12’P+EM(2RI IP] (19)
AziAzsAzs i3 (3 i(3

31\};{'1) = 76 [EM(,RJ,PH + 4EA/I(12(P+EM(,]2’,P—1]' (20)

With our particular choice of expansion functions, the quantities dg}) NP> AE&), ~.p and e?’}p ]{, p follow

from

D (zM,N,P — lASB i )
diyp = —ENIETERL pm12, (21)
?:[)Np = Ap(zM,N.P - %Azpip)a p=1,2,3, (22)
M(:INJIP = E;;(‘BM‘N,P_ %Azpiv)a p=1,2,3. (23)

The electric-contrast vector potential A,, is related to the electric-flux density D via Eq. (3).
Note that with this procedure we have enforced the equality sign of Eqs. (21) - (23) exactly in a
single point. Again, this is a strong form and we will weaken this form by taking the spherical
mean. The computation of the electric contrast-vector potential is discussed in [Zwamborn, 1991b,
Zwamborn and Van den Berg, 1992] and we will only summarize the results.

Replacing the continuous convolution integral of Eq. (3} and using the convolution theorem of the
discrete Fourier transform (DFT), the discrete convolution is evaluated numerically by

Ay p = AziAzyAz;DFT™! {DFT {Gppr.r )} DET (XD nrdSnpt}s (24)
in which p = 1,2, 3; the discrete values of the normalized contrast function follow from
(1)’N,‘D _ x(zM-LN,P)Z-I- X(-'BM,N,P)’ (25)
xg\?!)N = X(ZM,N—l,P); X("’M,N,P)’ (26)
XDy p = X(Z’M,N,P~1)2+ x(Zm.vp) 27)
The discrete values of the weakened Green’s function are given by
Gunp = [G(MAz, NAzy, PAz;), (28)
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where

¢ 1; 1s
(1 — 2ikpAz)exp(sikoAz) — 1 . _
%wkg(An:)s if |=] = 0,
G](=) = inh( Lika A
ﬁ exp(ikojx|) w — cosh(LikoAz)
7ikoAz if |z| > 1Az
( sr(koAz)’|e| B

(29)

Note that, for the limiting case Az — 0, the weak form of the Green’s function [G] (), |2} > }Az,
tends to the strong form of the Green’s function G(z). The subscripts M', N' and P’ of Gpyr vv pr
in Eq. (24) are dictated by Eq. (6) and the spatial periodicity of the discrete Fourier transform.

Let us assume that the domain D° of the object lies completely inside a block with Mys meshpoints
in the z;-direction, Nys meshpoints in the z;-direction and Pps meshpoints in the z3-direction. It is
easily shown [Zwamborn, 1991b, Zwamborn and Van den Berg, 1992] that the numerical evaluation
of Eq. (3) using a trapezoidal integration rule is equivalent with Eq. (24) inside the object domain
5 if the relevant DFT’s are defined inside a block with Mppr meshpoints in the z,-direction,
NppT meshpoints in the z;-direction and Pppr meshpoints in the z3-direction, such that

Mppr > 2(Mys +1), Nprr > 2(Nps + 1), Porr > 2(Pps + 1). (30)

Finally, the quantity E;‘}'}.)J p is given in case the incident field is taken to be a uniform plane wave.

Then, E* follows from '
E'(z) = € exp(ikof - x), (31)

in which £ denotes the amplitude of the plane wave and & denotes the unit vector of the di-
rection of propagation. The spherical mean (weak form) of this incident field is given by, see
[Zwamborn, 1991b],

[Eil (2) = € exp (iko8 - ) 2 [Sinh(%ikOAz)

~ cosh(LikoAz)] . 32
(oba)? | Likohs  coR(zthoda) (32)

1.(p)

The latter weak form is used in the representations for the quantity E\;'s p as

Eyp = |By] (2un.p = §Azpiy). (33)

Note that, for the limiting case Az — 0, the strong form of the incident uniform plane wave is
obtained (cf. Eq. (31)). B

Collecting all the results, the weak form of the domain-integral equation is given by Eqgs. (10) -
(20), (24) and (33). This domain integral equation is symbolically written as

' = Ld. (34)

The latter operator equation is solved numerically by applying a conjugate-gradient iterative
scherne, where the DFT’s are computed efficiently using fast Fourier transform (FFT) algorithms.
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Figure 1: The numerical convergence obtained for the scattering by a inhomogeneous sphere. The
numerical results pertaining to a mesh size of 15 x 15 x 15 and 29 x 29 x 29 (Fig. 2) are presented
by the dotted line and the solid line, respectively, while the results for the refined mesh (Fig. 3) are
presented by the dashed Line.

4. Numerical results

The numerical convergence is measured by the normalized root-mean-square error Err

(35)

in which ||r(®)|| denotes the norm of the residual error in the satisfaction of the operator equation of
Eq. (34) over the domain D of the object in the n'" iteration. In all cases we have taken a zero initial
estimate. All computations were carried out on a VAX 3100/76 workstation in double precision
arithmetic. The DFT’s are efficiently computed using fast Fourier transform (FFT) algorithms in
single precision arithmetic only. The incident field is taken to be a uniform plane wave with (cf.
Eq. (32))

81 le/m, 82:0, 8320, (36)
91 = 0, 92 — 0, 93 = —1, (37)

while the frequency of operation is 100 MHz.
We firstly consider a radially layered lossy dielectric spherical cbject to be present with its origin

at £ = {a, e, a}, where a denotes the outer radius of the sphere. It is noted that for this special test
case, analytical results are obtained with the Mie series {Kong, 1986]. The relative permittivities
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Figure 2: The magnitude of the components of the total electric field inside a lossy inhomogeneous
sphere. The numerical results pertaining to a mesh size of 15 x 15 x 15 are presented by the symbols
% and the numerical results pertaining to a mesh size of 29 x 29 x 29 are presented by the symbols
*. The analytical solution of the inhomogeneous sphere is presented by the solid line.
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Figure 3: The magnitude of the components of the total electric field inside a 15 x 15 x 15 discretized
lossy inhomogeneous sphere. The numerical results pertaining to a mesh size of 15 x 15 x 15 are
presented by the symbols x. The discretized object is refined with a mesh size of 30 x 30 x 30 and
the numerical results are presented by the symbols o. The analytical solution of the inhomogeneous
sphere is presented by the solid line.
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and conductivities are &,,; = 71.5, oy == 0.83 S/m, and &,;2 = 15, o3 = 0.22 5/m, respectively. The
dimensions are given by kga; = 0.163 and koaz = 0.314. It is noted that a; denotes the radius of the
inner sphere and ¢; = a denotes the radius of the outer sphere. The computations are performed for
different mesh sizes of Mys = Nps = Pps = 15 (Mprr = Nprr = Porr = 32) and Mps = Nys =
Pys = 29 (Mprt = Nprr = Porr = 64), respectively. The numerical convergence rate of the
iterative scheme is presented in Fig. 1, while the magnitudes of the components of the total electric
field are presented in Fig. 2. In order to investigate the discrepancies of the numerical resulis and
the analytical results, we have taken the discretized sphere of the case Mps = Nys = Pps = 15 as
new object. As next step, this new object has been subdivided with Mys = Nys = Pps = 30. The
number of iterations to obtain an error less than 0.1 percent is 194. From Fig. 3 it is observed that
refining the mesh in the interior of the object yields hardly no improvement. The same discrepancies
between the numerical results and the analytical results are observed. The latter reveals that the
differences between the analytical and numerical results are caused by the block approximation of
the spherical boundary. In order to obtain a better approximation of the spherical boundaries, the
discretization of the sphere has to be improved.

As second test case we consider the absorbed power density in a CAT-scan generated model of
a human body. In order to arrive at a standard discretized three-dimensional model of a human
body, an X-ray computer tomographic scan of one of the present authors, Jaap Mooibroek, has
been carried out. A model of 128 x 128 x 512 subdomains with a mesh width of 4 mm in each
direction is the result. This so-called ”?Jaap phantom” consists of muscle with permittivity e, = 71.5
and conductivity ¢ = 0.83 S/m and fat with permittivity ¢, = 15 and conductivity ¢ = 0.22
S/m. In this Jaap phantom we have increased the mesh size with a factor of 4 x 4 X 8 and
determined the smallest rectangular domain containing this Jaap phantom. This leads to the
reduced Jaap phantom, subdivided with Mys = 21, Nps = 31 and Pys = 53 and mesh sizes Az; =
1.33751 cm , Azy = 1.6041 em and Azj = 3.1479 cm . In order to obtain a global impression of
the discretized model at hand, we present in Fig. 4 the projection of the Jaap phantom on the
(21, 23)-plane and (z3, z3)-plane, respectively. The incident field, see Egs. (32)), (36) and (37), is
a plane wave propagating from head to feet. The number of iterations to obtain an error less than
1 percent amounts to 601 iterations. In Figs. 5 - 7, we present the absorbed power density,

Wi = 10|El%, (38)

together with the tissue composition of the Jaap phantom in some cross-sections. Note that we do
not use the Specific Absorption Rate (SAR), since using SAR we also need the values of the volume
density of mass. The latter quantity is not significant for solving the electromagnetic field problem.
The absorbed power density is normalized to its maximum value in the Jaap phantom. From the
latter figures, it is observed that the maximum absorbed power density can be found at the area
above the lung. Although the incident plane wave travels from the head to the feet, the absorbed
power density has a much smaller value in the area around the brains. This enforces the necessity
of having a adequate computer code for the prediction of the electromagnetic field distribution in
a strongly inhomogeneous body.

The numerical convergence of the iterative scheme is presented in Fig. 8. In Table 1, the com-
putation time needed to evaluate one iteration on the VAX 3100/76 workstation and the number
of unknowns in the the pertaining field problems have been presented. It is noted that the VAX
Fortran computer code pertaining to these values is, however, not optimized. Examining this
table reveals that the computation time of each iteration is proportional to (Mppr X Nppr X

Porr) [L + Zlog(Mprr X Nprr X Porr)-

35



Figure 4: The projection of the Jaap phantom on the plane z, = 0 (left) and the plane z; = 0
(right).
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A cross-section of the Jaap phantom (top) and the absorbed power distribution (bottom)

transverse plane XY.
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Figure 8: The numerical convergence obtained for the CAT-scan generated model of the human
body, the Jaap phantom.

Table 1: Computation time and storage of VAX 3100/76 workstation.

Mps X NDS X P:Ds Mpyr X Nppr X Pppr | number of CPU-time computer
unknowns | of one iteration | storage

15x 15 x 15 32 x 32 x 32 10800 0.55 min 5 Mb
(sphere)

31 x31x31 64 x 64 x 64 92256 5 min 18 Mb
(sphere)

21 x 31 x 53 64 x 64 x 128 106916 9 min 25 Mb

(Jaap phantom)
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5. Conclusions

In this paper we have presented a three-dimensional weak formulation of the conjugate-gradient
FFT method for strongly inhomogeneous bodies. It is observed that the present weak formulation
yields excellent agreement with the analytical results for the radially layered lossy dielectric sphere.
Modeling the curved boundaries using a cubical mesh seems to be feasible and the discretization
errors tend to vanish for increasingly finer discretizations.

Since we have maintained the simple scalar convolution structure of the vector potential, the
computation time of our present weak form is even less than the computation time of the stan-
dard conjugate-gradient FFT methods discussed in the Introduction. A realistic model of the
human body can now be handled by workstations, the exclusive need of a supercomputer for three-
dimensional modeling is not necessary. It is noted that in contrast with the weak formulation of
the two-dimensional TE scattering problems presented in [Zwamborn and Van den Berg, 1991al,
the present formulation allows the use of different mesh sizes in each Cartesian coordinate. The
latter enhances the applicability of the weak formulation to complex, strongly inhomogeneous struc-
tures. Finally, it is mentioned that the extension of the present formulation to anisotropic objects
is rather straightforward [Zwamborn, 1991b).
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