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Abstract

Recently-developed fast integral equation solution
methods allow for the treatment of electrostatic
problems involving perfect conductors of complicated
shape. Using the precepts of Stevenson’s method, ex-
ternal electrostatic solutions can be used in the solu-
tion of internal low-frequency electric induction prob-
lems in electrically small isolated compact conducting
bodies. A precorrected FFT algorithm is implemented
to solve the electrostatic problem of an isolated human
body situated in an external field. The resulting in-
duced surface charge density serves as the source term
for a finite-difference solution for the internal induced
fields. Tt is shown that the resulting hybrid code pro-
duces results that are in excellent agreement with those
produced by other methods, while being significantly
more efficient in terms of computer memory and time
resources. '

1 Introduction

The theory of low-frequency electromagnetic induction
in compact conducting bodies can be developed using
Stevenson’s method [1, §9.6]. The basic requirements
are that the body be small compared to its own skin
depth, which is in turn small compared to any relevant
wavelength. The various internal and external pha-
sor amplitudes can then be developed in wavenumber
(or, equivalently, frequency) series. Maxwell’s equa-
tions and the boundary conditions on the conductor
provide a systematic scheme for solving for the various
terms in the series, with fields of each order forming
part of the excitation for those of next higher order.

This approach provides a particularly useful framework
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for solving low-frequency induction problems such as
those involving bioelectromagnetic effects associated
with power-line frequency (50-60 Hz) fields. Here the
zeroth- and first-order fields are of most interest. The
essential results are that (i) the lowest-order incident
magnetic field is static and is unperturbed by the con-
ductor, (ii) the lowest-order external electric field is
static, with the body serving as a perfect conductor,
and (iii) the internal electric field is first-order in fre-
quency, and has the static magnetic field and surface
charge density as its sources [1].

The two source terms can be considered independently
by linear superposition. The focus of the present work
is induction by electric fields. The most significant
complication in this situation is the perturbation of the
incident external field by the conductor. Although this
must be accounted for in any modelling, the solution
is hampered by the unbounded exterior domain, most
particularly with any finite-difference based method.

Finite element methods would offer an alternative so-
lution method, but suitable high-resolution models are
not readily available. The conductivity models used in
bioelectromagnetic modeling are typically voxel-based
and lend themselves readily to finite-difference solution
methods. Two such methods that have successfully
been applied solve for the internal and external fields
simultaneously. The first is a finite-difference method
with the external domain being handled with an ex-
panding mesh [2]. The second is a recently-developed
quasistatic finite-difference time-domain (QSFDTD) .
method [3]. Here the external problem is handled by
a very short time simulation and absorbing bound-
ary conditions located close to the conductor. The
QSFDTD method works well in practice, and can han-
dle both plane wave and line sources (of both electric
and magnetic type) [4]. It is however, a vector method,
and computer memory and time constraints rapidly be-
come prohibitive.
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Alternative approaches based on Stevenson’s method
handle the problem in two stages. The internal
problem can be solved independently, if the static
surface charge density is available. One recently-
published method for handling higher-resolution prob-
lems used a hybridization of the QSFDTD with
an efficient frequency-domain scalar-potential finite-
difference (SPFD) code [5]. In this approach, the
QSFDTD is applied to a lower-resolution model, and
the associated surface charge density distribution ob-
tained. This is then extrapolated onto the surface of
a higher-resolution model, to serve as the boundary
conditions for a run of the SPFD code. The hybrid
scheme was shown to be practical and efficient for esti-
mating the higher resolution induced fields fixed com-
puter resources. A weak point in the approach is the
extrapolation process, as it involves the surfaces of two
comparable but distinct voxel-based models.

Within the limitations of voxel-based models, however,
it would be preferable to obtain the correct surface
charge distribution for a given model for direct input to
the SPFD code. The solution to the external electro-
static problem can be formulated in terms of an integral
equation over the conductor surface [1, Ch.4]. In prin-
ciple, the integral equation provides a domain reduc-
tion and the associated free-space electrostatic Green'’s
function kernel handles the unbounded domain. This
raises of the idea of solving the integral equation using
the surface facets of the model in question. However,
any direct solution scheme involves a dense coefficient
matrix and again rapidly becomes prohibitive. For ex-
ample, the results in this paper are based on two hu-
man body models, having resolutions of 7.2 and 3.6
mm, respectively. The former has 49438 surface facets,
while the latter has 200062. The coefficient matrix as-
sociated with a solution of the latter problem would
contain over 4 x 100 entries, and a direct solution is
clearly out of the question.

However, recently developed fast methods make solu-
tion of the integral equation practical. The first point is
that the 1/R Green’s function has a simple closed form.
The second point is that iterative linear system solvers
only require matrix-vector products, and need no direct
access to the underlying coefficient matrix. A third
point is that the integral equation is in convolution
form, and a solution by Fast Fourier transforms would
be possible, aside from the restriction to the body
surface. These features are at the heart of the pre-
corrected fast Fourier transform (PCFFT) method [6].
The continuous surface charges are replaced with an
equivalent volume distribution of discrete point charges
on a regular Cartesian grid containing the conductor.
These discrete charges can be chosen in such a way that
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their potential approximates, to any desired accuracy,
the potential due to the actual sources at sufficiently
large distances. Thus, interactions between facets that
are sufficiently separated can be computed efficiently
using the volume grid charges and FFTs. Interactions
between nearby facets are computed directly. Once the
solution is available, the volume charges can be mapped
back to the facets of the original model to obtain the
required surface charge density distribution. This is
then converted to equivalent point charges at the sur-
face nodes of the body model. The resulting data is in
perfect alignment for use in the boundary conditions
for a subsequent SPFD solution of the internal prob-
lem.

In this work, it is shown that an implementation of
the PCFFT method provides an efficient and prac-
tical method for computing the surface charges on
the voxel-based human body models. It is shown
that excellent agreement is obtained between results
from the QSFDTD, QSFDTD+SPFD hybrid, and
PCFFT-+SPFD hybrid methods, for both vertical uni-
form field and a horizontal overhead line charge.

2 Methods

In this section, the body models are described briefly.
Next, the equations governing the dominant internal
and external electric fields using Stevenson’s method
are indicated. Finally a summary of the various nu-
merical methods is given.

2.1 Body Models

The human body models used in this work are anatom-
ically derived. They comprise cubic voxels, each of
which is assigned electrical properties appropriate to its
associated tissue at 60 Hz. Two model resolutions are
used. The low-resolution model comprises 204547 vox-
els with 7.2-mm edges, while the high-resolution model
has 1639143 voxels 3.6-mm edges. Figure 1 shows an
external view of the high resolution model. The models
are more fully described elsewhere [7].

2.2 External Problem

The time-harmonic electric field has the form

e(z,t) = R{E (z)et?*"}. (1)

In the absence of any applied magnetic field, the dom-
inant electric field amplitude outside the body is static
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Figure 1: Surface view of the body model and a
segment of the line source.

and has the representation

Ef(z) = -Vp(z). (2)

The potential satisfies
(3)

where p° (x) is the static limit of the volume charge
density associated with the external sources. The po-
tential can be decomposed as

Ve (®) = —p° (2) /20,

(4)

where ¢° is the potential due to the sources in the
absence of the body and ° is the potential due to
the induced surface charge on the body. The former
satisfies (3) subject to appropriate boundary conditions
at infinity. The latter satisfies (3) with zero right-hand
side. The boundary condition is that the body surface
be an equipotential,

o (x) = ¢ (z) +¢° (z),

(5)

This potential is unknown, and must be determined
from the constraint that the body have zero net charge.
The problem can be converted to the integral equation

¢’ (x) + ©° () = po.

ACES JOURNAL, VOL. 16, NO. 3, NOV. 2001

form [1]
S () + — n(z) 3 ,
o) 471'6()#3 lz— 2] da (x) = ¢y, (2’ €B),
(6)

where B denotes the body surface and 7 () is the asso-
ciated static surface charge density. The integral equa-
tion is to be solved subject to the constraint

§ n(@) da@) o,
B

the left-hand side being the total induced charge.

(7)

2.3 Internal Problem

The body has the conductivity distribution o (x). The
electric field inside the body has the representation

E'(x) = -V (), (®)

and is governed by the condition that the current den-
sity, J (x) = o (x) E (x), have zero divergence

V.J(x)=0, (zeV), (9)

in the body interior V. Consequently, the internal po-
tential satisfies

V-lo(x) Ve ()] =0, (z€V). (10)

The internal fields are governed by the boundary con-
dition
(x € B),

a(x) -J (z) = —jwn (), (11)

expressing charge conservation. Here n (x) is the static
surface charge obtained from solution of the external
problem, and 7(x) is the local outward normal unit
vector. This translates to the boundary condition

o (x) n(x) -V (z) = jun (x), (z€B),

on the internal potential. Finite difference approxima-
tion of equations (10) and (12) forms the basis of the
SPFD method for low-frequency electric induction.

(12)

One additional point worth noting concerns conductors
containing internal air cavities. The fields in such cav-
ities are not computed directly by the SPFD method,
since they do not directly affect the fields in the con-
ductor. These fields can, however, be computed once
the conducting potential is found. They can be de-
rived from a harmonic potential, driven by boundary
conditions of continuity of tangential electric field at
the conductor boundary. Thus the field within the jth
cavity, C;, can be expressed as

E(z)=-Vy}(x), (z€C). (13)
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Each cavity potential satisfies Laplace’s equation

V) (@) =0, (z€Cy), (14)
within its associated volume, subject to continuity of
the cavity and conductor potentials

¥ (@) =9 (z), (x€dly), (15)

on the cavity walls.

2.4 Numerical Methods

Three numerical methods are used in computing the
results in this paper. The first is the QSFDTD
method [3]. This is based on a full solution of
Maxwell’s equations. The second is the hybrid two-
stage QSFDTD+SPFD method where the QSFDTD
solution is used to compute the static surface charge,
and the SPFD method used to compute the in-
ternal fields [5]. The third method is a newly-
implemented hybrid PCFFT+SPFD method. The
PCFFT method [6] is used to solve (6) and (7) to com-
pute the static surface charge, and the SPFD method
again used subsequently to solve the interior problem.

3 Results

Two source configurations are considered. The first is a
60-Hz, 1-kV/m (peak) electric field parallel to the long
axis of the body. The second is an infinite line charge
source producing a 60-Hz electric field normalized to
1-kV/m (peak) level at a radial distance of 1 m from
the wire centre. The line passes 0.26 m above the top
of the head, and is centered from left-to-right, with the
model looking along the wire as indicated in Figure 1.

Both configurations are run using the three numeri-
cal methods. The full QSFDTD results are used as a
benchmark. The hybrid QSFDTD+SPFD results at
each fixed resolution are included to further validate
the implementation of Stevenson’s method for the inte-
rior solution. In addition, the hybrid QSFDTD+SPFD
is run using the low-resolution surface charge density
extrapolated onto the 3.6-mm model, for a total of 7
data sets. This last set is to demonstrate that the
hybrid PCFFT+SPFD method gives results in closer
agreement to the high-resolution QSFDTD data than
the QSFDTD+SPFD method involving charge extrap-
olation.

To demonstrate the overall agreement between the var-
ious computations using the high-resolution model, Ta-

221

ble I presents several measures of the assorted whole-
body temporal rms electric fields, as well as compar-
isons among them. The upper part of the table per-
tains to the whole-body data sets, and gives the volu-
metric maximum, average and rms values taken solely
over voxels belonging to the body model. Column A
pertains to data obtained from the QSFDTD code,
considered as the reference solution. Column B con-
tains data computed by the hybrid QSFDTD+SPFD
method at the same resolution. Results from the hy-
brid PCFFT+SPFD method are in Column C. The
final column is obtained by extrapolating the surface
charge density taken from a low-resolution (7.2 mm)
QSFDTD run onto the high-resolution (3.6 mm) model
for an SPFD interior computation.

The central part of the table details the resulting dis-
crepancies among the various numerical schemes. Each
data set from columns B through D is subtracted voxel-
by-voxel from the QSFDTD reference solution to cre-
ate a set of whole-body difference fields. The indicated
measures pertain to these various difference fields. The
rows for the minimum, maximum and average respect
the signs of the differences in the computation, while
the row labelled “Avg.Abs” is for the absolute value of
the difference fields.

The lower line of the table is a measure of the whole-
body correlation coefficient between each calculation
and the reference solution.

The next set of results present a closer look at the dis-
crepancies. Figure 2 shows the total vertical current as
a function of height above the soles of the feet, for the
uniform external field on the left and the line source on
the right. Each panel contains three curves. Two are
from the QSFDTD computations based on each model
resolution. The third is from the QSFDTD+SPFD hy-
brid method involving the charge density extrapolation
process.

A detailed indication of the differences is presented in
Figure 3. The central panel shows the total vertical
induced current as a function of height above the soles
of the feet for the two sources, based on the high-
resolution QSFDTD calculations. The two flanking
panels indicate on a logarithmic scale errors of the the
three alternative high-resolution calculations relative
to the QSFDTD results as a function of height. The
left panel pertains to the uniform source and the right
panel to the line source.

Table II presents various volumetric measures of the
temporal rms electric fields induced in the skin by
the two sources as computed by the various numeri-
cal methods in both model resolutions. The first col-
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A B C D
QSFDTD3.6 QSFDTD3.6 PCFFT3.6 QSFDTD7.2
+SPFD3.6 +SPFD3.6 +SPFD3.6

Max. 6.5293 6.5290 6.4792 6.5902
Avg. 0.3245 0.3245 0.3224 0.3290
RMS 0.5500 0.5400 0.5366 0.5400
A-B A-C AD
Min. 1937 x 103 —5558 x 10~ 2 —2.460 x 1077
Max. +1.268 x 1073 +2.445 x 1071 +3.078 x 107}
Avg. —6.237x 10~ +2.092x 1073 —4.444 x 1073
Avg.Abs. +6.313x 107% +2.164 x 1073  +6.898 x 1073
RMS +1.213 x 1074 +4.304 x 1073 +1.221 x 1072
Std.Dev. +9.499 x 10~8  +3.989 x 10~ +1.057 x 1073
1-Corr. +1532x 108 +7.397x107% +1.348x 10~

Table I: Measures of, and comparisons between, the whole-body temporal rms electric field modulus
for various high-resolution computations under line source excitation.

Source Method Model Std.Dev. Average RMS Maximum  L95 L99

Line QSFDTD 3.6 0.4806 0.4926  0.6882 5.2524 1.3937 2.6014
Line QSFDTD+SPFD 3.6 0.4800 0.4924 0.6876 5.2439 1.3916 2.5972
Line PCFFT+SPFD 3.6 0.4716 0.4792 0.6723 5.1780 1.3730 2.5640
Line QSFDTD+SPFD 72436  0.4728 0.4965 0.6855 5.2142 1.4361 2.5300
Line QSFDTD 7.2 0.4306 0.4918 0.6536 3.9930 1.3449 2.3002
Line QSFDTD+SPFD 7.2 0.4303 0.4914 0.6532 3.9867 1.3428 2.2967
Line PCFFT+SPFD 7.2 0.4179 0.4765 0.6338 3.9320 1.3230 2.2650
Uniform QSFDTD 3.6 0.6136 0.5407 0.8179 6.9150 1.7650 3.3550
Uniform QSFDTD+SPFD 3.6 0.6129 0.5404 0.8172 6.9050 1.7620 3.3500
Uniform  PCFFT+SP¥D 3.6 0.6057 0.5271  0.8029 6.8260 1.7420 3.3120
Uniform QSFDTD+SPFD 7.2+3.6  0.5938 0.5367  0.8004 6.8240 1.6730 3.2420
Uniform QSFDTD 7.2 0.5616 0.5260 0.7694 5.5610 1.6980 3.0320
Uniform QSFDTD+SPFD 7.2 0.5612 0.5256  0.7689 5.5540 1.6960 3.0280
Uniform  PCFFT+SPFD 7.2 0.5481 0.5103  0.7489 5.4750 1.6170 2.9300

Table II: Various measures of the temporal RMS electric fields (mV/m) induced in the skin.
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Source Method Model Std.Dev. Average RMS Maximum L95 L99

Line QSFDTD 3.6 0.2290 0.5793  0.6230 2.4098 0.9560 1.2869
Line QSFDTD+SPFD 3.6 0.2289 0.5789  0.6225 2.4084 0.9553 1.2862
Line PCFFT+SPFD 3.6 0.2264 0.5717 0.6149 2.3760 0.9424 1.2690.
Line QSFDTD+SPFD 7.243.6  0.2475 0.6220 0.6695 2.6319 1.0225 1.3831
Line QSFDTD 7.2 0.1947 0.6694 0.6971 1.8300 0.9998 1.1915
Line QSFDTD+SPFD 7.2 0.1946 0.6691  0.6968 1.8293 0.9991 1.1915
Line PCFFT+SPFD 7.2 0.1897 0.6517 0.6787 1.7800 0.9722 1.1590
Uniform QSFDTD 3.6 0.1427 0.3450  0.3733 1.4670 0.5820 0.7691
Uniform QSFDTD+SPFD 3.6 0.1426 0.3447 0.3730 1.4660 0.5816 0.7685
Uniform PCFFT+SPFD 3.6 0.1409 0.3402  0.3682 1.4490 0.5745 0.7593
Uniform QSFDTD+SPFD 7.2+3.6 0.1530 0.3683  0.3988 1.5640 0.6199 0.8194
Uniform QSFDTD 7.2 0.1193 0.3949 0.4125 1.1280 0.5895 0.7091
Uniform QSFDTD+SPFD 7.2 0.1193 0.3947  0.4123 1.1270 0.5892 0.7088
Uniform PCFFT+SPFD 7.2 0.1164 0.3847  0.4020 1.1000 0.5752 0.6919

Table III: Various measures of the temporal RMS electric fields (mV/m) induced in the brain.

Source Method Model Std.Dev. Average RMS Maximum  L95 L99

Line QSFDTD 3.6 0.1505 0.4921 0.5146 1.2014 0.7863 0.9440
Line QSFDTD+SPFD 3.6 0.1504 0.4920 0.5145 1.2007 0.7863 0.9433
Line PCFFT+SPFD 3.6 0.1496 0.4890 0.5113 1.1940 0.7820 0.9385
Line QSFDTD+SPFD 7.2+3.6 0.1563 0.5134 0.5366 1.2480 0.8174 0.9808
Line QSFDTD 7.2 0.1200 0.4356  0.4518 0.8662 0.6620 0.7517
Line QSFDTD+SPFD 7.2 0.1199 0.4352 0.4514 0.8655 0.6615 0.7509
Line PCFFT+SPFD 7.2 0.1183 0.4290 0.4450 0.8535 0.6527 0.7412
Uniform QSFDTD 3.6 0.1432 0.4527  0.4748 1.1370 0.7252 0.8840
Uniform QSFDTD+SPFD 3.6 0.1431 0.4526  0.4747 1.1370 0.7249 0.8837
Uniform PCFFT+SPFD 3.6 0.1423 0.4495 0.4715 1.1300 0.7204 0.8782
Uniform QSFDTD+SPFD 7.2+3.6  0.1470 0.4672  0.4898 1.1700 0.7459 0.9092
Uniform QSFDTD 7.2 0.1106 0.3844  0.4000 0.7770 0.5885 0.6812
Uniform QSFDTD+SPFD 7.2 0.1105 0.3841  0.3996 0.7763 0.5879 0.6806
Uniform PCFFT+SPFD 7.2 0.1090 0.3785  0.3939 0.7654 0.5796 0.6710

Table IV: Various measures of the temporal RMS electric fields (mV/m) induced in the heart.
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Figure 2: Comparison of total vertical current as a function of height above the soles of the feet for the
line current and uniform electric field sources for the two model resolutions (lighter curves) obtained by the
quasistatic FDTD code, together with the data from the high-resolution data obtained using SPFD with charge

extrapolation from the low-resolution FDTD data.

umn indicates the source. The second column indicates
the numerical method (either the quasistatic FDTD
reference method or one of the two hybrid methods).
The third column indicates the model resolution used
in millimeters. The rows labelled “7.2 + 3.6” indicate
use of the charge density extrapolation algorithm. The
various volumetric measures included are the standard
deviation (as a measure of the variation of the field
across the tissue), the average, the root-mean-square,
and maximum. The final two columns, labelled “L.95”
and “L99” are the field values not exceeded in 95% and
99%, respectively, of the voxels comprising the tissue.
All tabulated values are in mV/m.

Finally, Table III is analogous to Table II, but for the
brain. Table IV presents the corresponding results for
the heart.

4 Discussion

The goal of the research underlying this work is to com-
pute induced bioelectromagnetic fields as accurately as
possible. This requires efficient computational meth-
ods for moving to higher resolution and the associated
increased realism of the models. At the same time, it is
essential that the numerical schemes be well-validated.

The QSFDTD code has proved to be a useful tool,
but is increasingly demanding of computer resources
as the resolution increase. Each doubling of resolu-
tion increases the memory requirements by a factor
of 8 and the computational time by a factor of 16.
The whole-body high-resolution QSFDTD computa-
tions have only recently become feasible at our labora-
tory. One additional point is worth mentioning. The
quasistatic FDTD code used for this work is entirely
distinct from that used for earlier work [3], providing
an additional check on the coding.
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Figure 3: Total vertical current as a function of height above the soles of the feet for the line current and uniform
electric field sources (center panel), with log,, relative errors of three high-resolution computations compared
to the quasistatic FDTD results for the uniform field (left) panel and line source (right panel) sources.

The hybrid QSFDTD+SPFD calculations at a fixed
resolution are redundant, since the internal electric
fields can be extracted from the QSFDTD data. They
are included to validate the precepts and implementa-
tion of Stevenson’s method. The bottom row of Ta-
ble I indicates the almost-perfect agreement between
the two calculations at a fixed resolution. A corre-
lation coefficient of 1 would indicate a perfect match
(apart from a scale factor) and would lead to a value
of 0 in the table. One point worth noting is that the
recent addition of the cavity field computation brings
the hybrid QSFDTD+SPFD results into almost perfect
agreement with the straight QSFDTD data. Such was
not the case in earlier work [8], where the cavity fields
were not computed in the SPFD portion of the calcula-
tion. These results provide validation of the postprior
computation of the SPFD cavity fields.

The principal reason for the development of the hybrid
QSFDTD+SPFD code [5] was to allow for charge ex-
trapolation and use of more efficient SPFD code for
the internal calculations at higher resolution. The fifth
column indicates the resulting algorithm provides rea-

sonable agreement, and remains a viable scheme.

The fourth column of the table indicates that the hy-
brid PCFFT+SPFD in fact provides closer agreement
with the reference solution than that obtained from
the QSFDTD+SPFD hybrid code with extrapolation.
This is confirmed by the other results. The increased
agreement is due to the ability of the PCFFT solution
to more accurately account for differences in detail be-
tween the two model resolutions.

In Figure 2, the QSFDTD vertical current curves ob-
tained from the two models are virtually indistinguish-
able from each other on the plots. This result may
be expected, since the models are closely related and
the vertical current depends largely on body shape.
Computation of the high-resolution QSFDTD data was
not possible with the computer resources available at
the time the interpolation algorithm was published [5].
The present work illustrates the slight deficiencies in
the latter process. The hybrid data are represented
by the darker lines. They are in reasonable agreement
with the direct QSFDTD results, but overestimate the
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vertical current in the upper part of the body and un-
derestimate it in the lower part.

The deficiencies of the extrapolation algorithm and su-
perior performance of the integral equation based hy-
brid algorithm are further indicated in Figure 3. The
central panel containing the high-resolution reference
curves shows the expected result that the the non-
uniform line source field is associated with higher cur-
rents closer to the head [4]. Since the vertical current
curves produced by the various computational meth-
ods are virtually indistinguishable in a common plot,
the flanking panels show the relative differences on
a logarithmic scale. These clearly indicate the su-
perior performance of the (accurate but redundant)
QSFDTD+SPFD hybrid calculation at the fixed res-
olution, with the error being generally less than 0.1%.
These results do, however, provide a useful validation
of the correctness of the two distinct computer codes.
It is also apparent that the QSFDTD+SPFD hybrid
calculation with extrapolation is the least accurate rel-
ative to the reference solution, with errors of the order
of 3%-10%. The final point illustrated by the first and
third panels is that the new PCFFT+SPFD hybrid
data are in generally excellent agreement, with the er-
rors relative to the QSFDTD reference data being of
the order of 1%.

Since the principal applications of the codes described
here are presently to bioelectromagnetic problems, it
is of interest to examine the results produced by the
various codes at a finer level. This is of particular im-
portance if numerical modeling is to play a role in the
setting of protection standards for human exposure to
low frequency electric and magnetic fields. This pur-
pose is addressed in Tables II through IV.

The skin data are not particularly realistic due to the
sharp corners and associated field singularities inher-
ent in the voxel-based computations [9]. However, this
information is useful in illustrating the nature of the
discrete surface charge representations.

Both finite difference codes assign the primary electric
field mesh to the edges of the material voxels. The
voxel vertices form a set of nodes. The conducting
model may then be viewed as a lattice of discrete re-
sistors associated with each edge and connecting the
nodes. An edge contacting at least one body voxel is
termed “internal”, while an edge surrounded by four
external air voxels is termed “external”. In the post-
processing of the QSFDTD data to obtain the physical
quasistatic fields, internal edge fields are typically a
factor of 108 (mV/m) smaller than external edge fields
(kV/m) in the present situation. The QSFDTD code
thus only gives rise to static surface charges at “exte-

S

ACES JOURNAL, VOL. 16, NO. 3, NOV. 2001

rior” boundary nodes, defined as having at least one
external edge. For example, the high-resolution model
has a total of 200051 surface nodes, of which 131502
are exterior. The low resolution model has 33145 ex-
terior nodes out of a total of 49368 surface nodes. The
hybrid QSFDTD+SPFD hybrid code only makes use
of the exterior node charges.

In contrast, the integral equation based approach works
with the surface facets of the model. The implemen-
tation used in the present calculations assumes a con-
stant surface charge density on each boundary facet.
After solution for the facet charge densities, charges
are assigned at every boundary node by attributing
one quarter of each facet’s total charge to each of its
four corner nodes.

The result is that a different discrete surface charge
representation is used in each of the two hybrid codes.
The overall consequences are clearly not very signif-
icant. For example, Table II shows that the stan-
dard deviations computed by the QSFDTD and hybrid
QSFDTD+SPFD differ in the fourth decimal place,
while the hybrid PCFFT+SPFD data differ in the sec-
ond, in either model resolution. Similarly, the hybrid
PCFFT+SPFD data are associated with slightly less-
singular surface fields, evident in the maximum, L95
and L99 values. Thus despite the different surface
charge descriptions, the electric field measures com-
puted from the hybrid PCFFT+SPFD code generally
agree with the reference solution values to at least two
significant figures.

The remaining two tabulated comparisons are of more
interest in a bioelectromagnetic context. These pertain
to the heart and brain, both of which contain excitable
tissue and are relevant in the setting of protection stan-
dards. Since these organs are internal to the body, less
discrepancy in the numerical results might be expected.
In fact, Table III shows that the hybrid PCFFT+SPFD
data generally agree with the reference solution to three
significant figures, for both source types and for both
model resolutions. A similar comment applies to the
heart data in Table IV.

Comments on the relative efficiency of the methods are
in order, based on computer resources presently avail-
able to us. A full QSFDTD solution based on the high-
resolution model uses 9800 time steps of 6.86 ps and
requires 1.9 GB of memory and over 18 hours using 6
processors on an IBM SP2 SMP machine. A solution
for the low-resolution model can be obtained in roughly
2 hours on the same machine, and in approximately 16
hours on a 4-processor SGI Origin 2000 machine (with
an approximate 16-fold time increase for the high reso-
lution model). In contrast, once the surface charge data
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is available, the SPFD code requires roughly 1 hour on
the SGI machine for a high-resolution run and of the
order of 15 minutes for a low-resolution computation.
The PCFFT code requires about 2 hours to compute
the surface charge distribution on the high-resolution
model, and less than 0.5 hours for the low-resolution
one, using a single processor on the SGI machine. A
complete hybrid PCFFT+SPFD solution for the 3.6-
mm model thus takes approximately 3 hours on the
SGI box, which is a significant improvement over the
QSFDTD method. The efficiency of the PCFFT algo-
rithm is such that the 7.2-mm surface charge can be
computed in reasonable time on a PC.

5 Conclusions

It is apparent that the hybrid PCFFT+SPFD method
is both efficient and accurate, and is the most suitable
candidate for modeling low-frequency electric induc-
tion in complicated inhomogeneous conductors. The
differences obtained among the various modeling ap-
proaches used in the present results are clearly far
smaller than uncertainties associated with the voxel-
based body models themselves.

The most serious defect of voxel-based models is the
sharp edges and associated singularities (9], particu-
larly at the (staircased) air-conductor outer boundary.
The PCFFT has the added advantage that its imple-
mentation is independent of facet geometry. This opens
the possibility of future implementation involving so-
lution of the external problem on a smoothed (for ex-
ample, triangular facets) model of the body surface to
alleviate the errors associated with staircasing. Finite
element methods could also be used to alleviate stair-
casing errors, if suitable models were available.

The examples presented here are all based on electri-
cally isolated body models. A more realistic configu-
ration involves a ground plane, with the body either
grounded or insulated from it. This situation can be
modeled in a crude manner in the present PCFFT code
by introducing an actual image model, thereby dou-
bling the computational domain. Future work will ad-
dress implementing a ground plane in an efficient man-
ner within the PCFFT algorithm.
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