
 Abstract— Recent developments in the design of 
graphics processing units (GPUs) have made it 
possible to use these devices as alternatives to 
central processor units (CPUs) and perform high 
performance scientific computing on them. 
Though several implementations of finite-
difference time-domain (FDTD) method have been 
reported, the unavailability of high level languages 
to program graphics cards had been a major 
obstacle for scientists and engineers who would 
want to develop codes for graphics cards. 
Relatively recently, compute unified device 
architecture (CUDA) development environment 
has been introduced by NVIDIA and made GPU 
computing much easier. 
 This paper presents an implementation of FDTD 
method based on CUDA. Two thread-to-cell 
mapping algorithms are presented. The details of 
the implementation are provided and strategies to 
improve the performance of the FDTD simulations 
are discussed.  
 
Index Terms—FDTD methods, parallel 
architectures, graphics processing unit (GPU) 
programming, Compute Unified Device 
Architecture (CUDA), hardware accelerated 
computing. 
 

I. INTRODUCTION 
Recent developments in the design of graphics 

processing units (GPUs) have been occurring at a 
much greater pace than with central processor 
units (CPUs) and very powerful processing units 
have been designed solely for the processing of  

computer graphics. For instance, the current 
generation of GPU based NVIDIA® Tesla™ 
C1060 Computing Processors are running at 
approximately 1.3 GHz with a 512 bit data and 
memory bandwidth of 102 GB/sec. While GPU 
clock speed seems slow compared to modern 3.8 
GHz Pentium CPU’s or 3.0 GHz Core Duo’s, 
parallelism provided by the graphics cards enables 
better efficiency in computations. Due to this 
potential in faster computations, the GPUs have 
received the attention of the scientific computing 
community. Initially these cards were designed for 
computer graphics and floating precision 
arithmetic has been sufficient for such 
applications. Due to the demand of higher 
precision arithmetic from the scientific 
community, the vendors have started to develop 
graphics cards that support double precision 
arithmetic as well, introducing a new generation of 
graphical computation cards. 

The computational electromagnetics community 
as well has started to utilize the computational 
power of graphics cards, and in particular, several 
implementations of finite-difference time-domain 
(FDTD) [1]-[3] method have been reported [4]-
[24]. Initially the GPUs were not designed for 
general purpose programming and high level 
programming languages were not conveniently 
available; programmers were required to learn the 
intricacies of specialized low-level hardware 
languages. For instance, the FDTD 
implementations in [4], [5] and [11] are based on 
OpenGL. As a result of the need for high level 
languages a new subset language for C titled 
“Brook” has been introduced for general 
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programming environments [25]. This subset 
negates the need for detailed low-level 
programming knowledge by introducing a few, 
relatively simple, commands in the C language. 
Brook is used as the programming language in [7]-
[10], [14]-[15] and [24]. Moreover, use of High 
Level Shader Language (HLSL) is reported in 
[16].  

Relatively recently, the introduction of the 
Compute Unified Device Architecture (CUDA) 
[26] development environment from NVIDIA 
made GPU computing much easier. CUDA is a 
general purpose parallel computing architecture. 
To program the CUDA architecture, developers 
can use C, which can then be run at great 
performance on a CUDA enabled processor. The 
CUDA architecture and its associated software 
provide a small set of extensions to standard 
programming languages, like C, that enable a 
straightforward implementation of parallel 
algorithms. With CUDA and C for CUDA, 
programmers can focus on the task of 
parallelization of the algorithms rather than 
spending time on their implementation. The CPU 
and GPU are treated as separate devices that have 
their own memory spaces. This configuration also 
allows simultaneous computation on both the CPU 
and GPU without contention for memory 
resources. CUDA-enabled GPUs have hundreds of 
cores that can collectively run thousands of 
computing threads [27]. 

CUDA has been reported as the programming 
environment for implementation of FDTD in [17]-
[18] and [20]-[22]. In [21] the use of CUDA for 
two-dimensional FDTD is presented, and its use 
for three-dimensional FDTD implementations is 
proposed. The importance of coalesced memory 
access and efficient use of shared memory is 
addressed without sufficient details. Another two-
dimensional FDTD implementation using CUDA 
has been reported in [22] and use of convolution 
perfectly matched layer (CPML) [28] boundaries 
is discussed, however no implementation details 
are provided. Some methods to improve the 
efficiency of FDTD using CUDA are presented in 
[20], which can be used as guidelines while 
programming FDTD using CUDA. The 
discussions are based on FDTD updating equations 
in its simplest form: updating equations consider 
only dielectric objects in the computation domain, 

the cell sizes are equal in x, y, and z directions, 
thus the updating equations include a single 
updating coefficient. The efficient use of shared 
memory is discussed; however the presented 
methods limit the number of threads per thread 
block to a fixed size. The coalesced memory 
access, which is a necessary condition for 
efficiency on CUDA, is inherently satisfied with 
the given examples; however its importance has 
never been mentioned.   

In this current contribution a more 
comprehensive discussion of CUDA 
implementation of FDTD is provided. The FDTD 
updating equations assume more general material 
media and different cell sizes. Strategies to 
improve the efficiency are discussed, and their 
application to unified FDTD updating equations, 
as presented in [3], is presented.  

Section II summarizes an overview of concepts 
in CUDA. Section III presents the FDTD equations 
that are considered for CUDA implementation, 
while Section IV introduces two algorithms of 
implementation. Section V reports the 
performances achieved in computation speed by 
these implementations.   

II. COMPUTE UNIFIED DEVICE 

ARCHITECTURE 
In this section, a brief description of some 

concepts in CUDA is summarized from [29] in 
order to prepare the reader for the discussions that 
follow. Then, general guidelines to improve the 
efficiency of CUDA programs, as they apply to 
FDTD method, are summarized based on [29] and 
[30]. Application of these guidelines to improve 
the efficiency of an FDTD implementation is 
discussed in the subsequent sections. 

 
A. CUDA Concepts 

A programmable graphics processor unit is 
essentially a highly parallel, multithreaded, many 
core processor. The GPU is especially well-suited 
to address problems that can be expressed as data-
parallel computations – the same program is 
executed on many data elements in parallel. FDTD 
is such an algorithm in which the same 
computation is performed on all field components 
in the cells of a computation domain.  
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CUDA is a general purpose parallel computing 
architecture with a new parallel programming 
model and instruction set architecture. C for 
CUDA extends C by allowing the programmer to 
define C functions, called kernels, that, when 
called, are executed N times in parallel by N 
different CUDA threads, as opposed to only once 
like regular C functions. Each of the threads that 
execute a kernel is given a unique thread ID that is 
accessible within the kernel through the built-in 
threadIdx variable. For convenience, 
threadIdx is a 3-component vector, so that 
threads can be identified using a one-dimensional, 
two-dimensional, or three-dimensional thread 
index, forming a one-dimensional, two-
dimensional, or three-dimensional thread block. A 
kernel function can be executed by multiple 
equally-shaped thread blocks, so that the total 
number of threads is equal to the number of 
threads per block times the number of blocks. 
These multiple blocks are organized into a one-
dimensional or two-dimensional grid of thread 
blocks. Each block within the grid can be 
identified by a one-dimensional or two-
dimensional index accessible within the kernel 
through the built-in blockIdx variable. The 
dimension of the thread block is accessible within 
the kernel through the built-in blockDim 
variable.  

CUDA threads may access data from multiple 
memory spaces during their execution. Each thread 
has a private local memory and a shared memory 
visible to all threads of the block and with the 
same lifetime as the block. Finally, all threads 
have access to the same global memory. Global 
memory is the main memory space on the device 
to store the application data. However, data access 
to global memory is very small and that 
inefficiency becomes the main bottleneck in the 
execution of a kernel. On the other hand the shared 
memory is much faster to access but the size of the 
shared memory is very limited. However, though 
very limited in size, the shared memory can 
provide the means for data reuse and improve the 
efficiency of a kernel. Constant and texture 
memory spaces are two additional read-only 
memory spaces, limited in size, accessible by all 
threads during the lifetime of the application. The 

kernels execute on a GPU that is referred to as 
device and the rest of the C program executes on a 
CPU that is referred to as host. 

 
B. Performance Optimization Strategies 

Recommendations for optimization and the list 
of best practices for programming with CUDA are 
explained in [30]. While not all of these 
recommendations are applicable to the case of 
FDTD; the following list of recommendations is 
used to optimize our FDTD implementation:   
R1) structure the algorithm in a way that exposes 

as much data parallelism as possible. Once the 
parallelism of the algorithm has been exposed, 
it needs to be mapped to the hardware as 
efficiently as possible.  

R2) ensure global memory accesses are coalesced 
whenever possible.  

R3) minimize the use of global memory. Prefer 
shared memory access where possible.  

R4) use shared memory to avoid redundant 
transfers from global memory.  

R5) hide latency arising from register 
dependencies, maintain at least 25 percent 
occupancy on devices with CUDA compute 
capability 1.1 and lower, and 18.75 percent 
occupancy on later devices.  

R6) use a multiple of 32 threads for the number of 
threads per block as this provides optimal 
computing efficiency and facilitates 
coalescing. 

 
Fig. 1. An FDTD problem space composed of cells 

[3]. 
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III. THE FDTD FORMULATION 
The FDTD formulation considered for CUDA 

implementation is based on updating equations for 
general anisotropic material properties including 
arbitrary permittivity, permeability and electric 
and magnetic conductivity parameter values [3]. 
The FDTD problem domain is a rectangular 
domain composed of cells, referred to as Yee cells 
[1], as illustrated in Fig. 1. The problem space size 
is Nx Ny Nz× × , where Nx , Ny , and Nz  are 

number of cells in x, y, and z directions, 
respectively. Field components are defined at 
discrete positions on a Yee cell as shown in Fig. 2. 
The formulation in consideration assumes different 
cell sizes in x, y, and z directions in a rectangular 
grid. Thus, for instance, the equation that updates 
x-component of the magnetic field is given in [3] 
as  

( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1
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, , , , 1 , ,
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where
1

2 ( , , )
n

xH i j k
+

is the x component of magnetic 

field in a Yee cell, shown in Fig. 2, indexed with 
( , , )i j k , and n

yE  and n
zE  are the electric field 

components. The superscripts indicate the time 
instants at which the fields are evaluated: i.e. 
superscript n indicates the field at time n t∆ , where 

t∆ is the duration of time step. hxhC , hxeyC , hxezC  are 

the coefficients used to update xH . Similarly, 

there are two other updating equations that update 

yH and zH , and moreover, there are three other 

updating equations that update electric field 
components xE , yE , and zE . A reference example 

for the update of magnetic field components when 
using the FORTRAN programming language is 
shown in Listing 1.  As shown, all field and 
coefficient parameters in this listing are three-
dimensional arrays.   
 
subroutine update_magnetic_fields 
! nx, ny, nz: number of cells in x, y, z 
directions 
 
Hx =  Chxh  *  Hx & 

+ Chxey * (Ey(:,:,2:nz+1) - Ey(:,:,1:nz)) &       
+ Chxez * (Ez(:,2:ny+1,:) - Ez(:,1:ny,:));  

                           
Hy =  Chyh  *  Hy &  

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) & 
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));  

                        
Hz =  Chzh  *  Hz & 

+ Chzex * (Ex(:,2:ny+1,:) - Ex(:,1:ny,:)) & 
+ Chzey * (Ey(2:nx+1,:,:) - Ey(1:nx,:,:));  

 
end subroutine update_magnetic_fields 

 Listing 1. Fortran code to update magnetic field 
components. 

 

 
Fig. 2. Yee cell: the basic building block of an 

FDTD problem space [3]. 

IV. FDTD USING CUDA 
In our implementation, the allocation of all field 

components and the initialization of coefficient 
arrays for the FDTD problem space are coded in 
FORTAN and executed on the CPU (host). Then 
these arrays are transferred to the global memory 
of GPU and they are ready to use by the kernels 
coded in CUDA and run on GPU (device). It 
should be noted that while the arrays in 
FORTRAN are three-dimensional, these same 
arrays are stored in device (GPU) global memory 
as one-dimensional arrays and elements of these 
arrays are accessed in kernel functions in a linear 
fashion. Thus, as will be shown later, a three-
dimensional to one-dimensional index mapping is 
employed. 

This section describes our procedure for 
developing CUDA kernels.  

 
A. Achieving Parallelism 

At every time iteration of the FDTD loop new 
values of three magnetic field components are 
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recalculated at every cell simultaneously using the 
past values of electric field components. Similarly, 
electric field components can be updated 
simultaneously in a separate function. Since the 
calculations for each cell can be performed 
independent from the other cells, a CUDA 
algorithm can be developed by assigning each cell 
calculation to a separate thread, and the highest 
level of parallelism can be achieved to satisfy the 
recommendation R1 that is discussed in Section II.  

In CUDA, a number of threads form a thread 
block, and a number of thread blocks form a grid. 
The maximum number of threads in a block can be 
512, where these threads can be arranged to form a 
one-dimensional, two-dimensional or three-
dimensional block. Thus a subsection of three-
dimensional problem space can be naturally 
mapped to a three-dimensional thread block. 
However, a grid (of thread blocks) can be 
composed of blocks arranged in a one-dimensional 
fashion or a two-dimensional fashion. Hence, the 
entire three-dimensional FDTD domain cannot be 
naturally mapped to a one-dimensional or two-
dimensional grid. Therefore, an alternative 
mapping between threads and FDTD domain shall 
be considered.  

In this contribution, two different approaches 
between cells and threads are presented and their 
performance comparisons are provided.  
 

 
              Fig. 3. Mapping of threads to cells of an FDTD 

domain using the xyz-mapping. 
 

In the first mapping, a thread block is 
constructed as a one-dimensional array, as shown 
on the first two lines in Listing 2, which is a piece 
of code that defines the grid and block sizes. The 

threads in this array are mapped to cells in an x-y 
plane cut of the FDTD domain. The grid of the 
thread blocks is constructed as two-dimensional as 
shown on the third and fourth lines in Listing 2. 
Then, the x dimension of the grid is mapped to x-y 
plane, and y dimension of the grid is mapped to z-
dimension of the FDTD domain. Figure 3 
illustrates the mapping of threads to an FDTD 
domain. This mapping approach ensures one-to-
one mapping between threads and cells, thus the 
highest level of parallelization is achieved. This 
mapping will be referred to as xyz-mapping in the 
following sections. 

 
block_dim_x = number_of_threads; 
block_dim_y = 1;  
n_blocks_y = nz; 
n_blocks_x = (nx*ny)/number_of_threads  

+ ((nx*ny)%number_of_threads == 0 ? 0 : 1); 

 
Listing 2. CUDA code to define block and grid 

sizes. 

 
Fig. 4. Mapping of threads to cells of an FDTD 

domain using the xy-mapping. 
 
 The second mapping is partly the same as the 
first one: a thread block is constructed as a one-
dimensional array, as shown on the first two lines 
in Listing 2, and the threads in this array are 
mapped to cells in an x-y plane cut of the FDTD 
domain as illustrated in Fig. 4. In the kernel 
function, each thread is mapped to a cell; thread 
index is mapped to i and j. Then, each thread 
traverses in the z direction in a for loop by 
incrementing k index of the cells. Field values are 
updated for each k, thus the entire FDTD domain 
is covered. As will be illustrated later, this 
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algorithm helps for global memory reuse, which 
improves efficiency. For the second mapping the 
above Listing 2 code will be modified for one line 
as  
n_blocks_y = 1; 
 

 This mapping will be referred to as xy-mapping 
in the following sections. 

 
B. Coalesced Global Memory Access 

Memory instructions include any instruction that 
reads from or writes to shared, local or global 
memory. When accessing local or global memory, 
there are, 400 to 600 clock cycles of memory 
latency. Much of this global memory latency can 
be hidden by the thread scheduler if there are 
sufficient independent arithmetic instructions that 
can be issued while waiting for the global memory 
access to complete [29]. Unfortunately in FDTD 
updates the operations are dominated by memory 
accesses rather than arithmetic instruction. Hence, 
the memory access inefficiency is the bottle neck 
for the efficiency of FDTD on GPU. Global 
memory bandwidth is used most efficiently when 
the simultaneous memory accesses by threads in a 
half-warp (during the execution of a single read or 
write instruction) can be coalesced into a single 
memory transaction of 32, 64, or 128 bytes [29].  
 

 
Fig. 5. An FDTD problem space padded with 

additional cells to ensure coalesced 
memory operations. 

 
The three-dimensional field and coefficient 

arrays in FORTRAN are treated as one-
dimensional arrays in kernel functions. It should 
be noted that the first array index varies most 
rapidly in FORTRAN multi-dimensional arrays. 

As shown in Listing 1, i index varies most rapidly, 
and then j. This ordering is retained after the 
arrays are transferred to GPU. If the size of the 
three-dimensional arrays, thus the size of the 
FDTD domain in number of cells, in the x and y 
directions is a multiple of 16, then the coalesced 
memory access is ensured. In general an FDTD 
domain size would be an arbitrary number. In 
order to achieve coalesced memory access, the 
FDTD domain is extended by padded cells such 
that the number of cells in x and y directions is an 
integer multiple of 16 as in Fig 5. Although, these 
padded cells increase the amount of memory need 
to be used to store array, it improves the efficiency 
of the kernel function tremendously. Thus the 
recommendation R2 is satisfied. The modified size 
of the FDTD domain becomes Nxx Nyy Nz× × , 

where Nxx , Nyy , and Nz  are number of cells in x, 

y, and z directions, respectively.  
Since the size of the FDTD domain has changed, 

calculation of the number of blocks in Listing 2 
need to be slightly modified as  
n_blocks_x = (nxx*nyy)/ number_of_threads))  

+ ((nxx*nyy)%number_of_threads == 0 ? 0 : 1); 

   
C. Use of Shared Memory 

Because it is on-chip, the access to shared 
memory is much faster than the local and global 
memory. Parameters that reside in the shared 
memory space of a thread block have the lifetime 
of the block, and are accessible from all the 
threads within the block [29]. Therefore if a data 
block on global memory is going to be used 
frequently in a kernel, it is better to load the data 
to shared memory and reuse the data from the 
shared memory.  

Shared memory is especially useful when 
threads need to access to unaligned data. For 
instance, examining Listing 1 reveals that in order 
to calculate ( ), ,yH i j k , a thread mapped to the cell 

( ), ,i j k  needs xE and zE in ( ), ,i j k as well as xE  in 

( ), , 1i j k +  and zE in ( )1, ,i j k+ . In the kernel code 

the index of a thread is calculated as  
ci = blockIdx.x * blockDim.x + threadIdx.x; 
This thread is mapped to a cell with i and j indices 
as  
j  = ci/nxx; 
i  = ci - j*nxx; 
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A cell with indices (i+1, j, k) can be accessed by 
ci+1, a cell with indices (i, j+1, k) can be 
accessed by ci+nxx, and a cell with indices (i, j, 
k+1) can be accessed by ci+nxx*nyy. Access to 
(i, j+1, k) and (i, j, k+1) are coalesced, however 
(i+1, j, k) is not. If an access to a field component 
at a neighboring cell in the x direction is needed, 
i.e. ( )1, ,zE i j k+  while calculating ( ), ,yH i j k and 

( )1, ,yE i j k+  while calculating ( ), ,zH i j k , then 

shared memory can be used to load the data block 
mapped by the thread block, and then the 
neighboring field value is accessed from the 
shared memory. At this point one needs to use the 
CUDA function __syncthreads() to ensure 
that all threads in the block are synchronized; thus 
all necessary data is loaded to the shared memory 
before it is used by the neighboring threads.  

As discussed above, uncoalesced memory 
accesses can be eliminated by using shared 
memory. However, a problem arises when 
accessing the neighboring cells’ data through 
shared memory. While loading the shared memory, 
each thread copies one element from the global 
memory to the shared memory. If the thread on the 
boundary of the thread block needs to access the 
data in the neighboring cell, this data will not be 
available since it has not been loaded to the shared 
memory. One way to overcome this problem is to 
load another set of data, which includes the 
neighboring cell’s data, to shared memory. In the 
presented implementation the size of the data 
allocation in the shared memory is extended by 16, 
and some of the threads in the thread block are 
used only to copy data from global memory to this 
extended section in the shared memory. Then, for 
instance, the piece of code that calls the kernel 
function to update magnetic field components 
would be as in Listing 3. 
 The kernel function that updates magnetic field 
components based on xyz-mapping is shown in 
Listing 4. 
 
threads = dim3(block_dim_x, block_dim_y, 1); 
grid    = dim3( n_blocks_x,  n_blocks_y, 1); 
 
shared_mem_size = 
2*sizeof(float)*number_of_threads; 
     
update_magnetic_fields_on_kernel 

<<<grid, threads, shared_memory_size>>> 

(nxx, nyy, nx, ny, nz,  
  Ex,  Ey,  Ez,    Hx, Hy, Hz,  
  Chxh,Chyh,Chzh,  Chxey,  
  Chxez,    Chyez, Chyex,  Chzex, Chzey); 
 
Listing 3. CUDA code to call kernel function for 
magnetic field updates. 
 
 
__global__ void 
update_magnetic_fields_on_kernel(int nxx, int 
nyy, int nz, float *Ex, float *Ey, float *Ez, 
float *Hx, float *Hy, float *Hz, float *Chxh, 
float *Chyh, float *Chzh, float *Chxey, float 
*Chxez, float *Chyez, float *Chyex, float 
*Chzex, float *Chzey) 
{ 
 extern __shared__ float sEyz[]; 
 float *sEy = (float*) sEyz; 
 float *sEz = (float*) &sEy[blockDim.x+16]; 
 
 // ci: cell index 
 // si: index in shared memory array 
 
 int ci = blockIdx.x * blockDim.x + 
threadIdx.x; 
 int j  = ci/nxx; 
 int i  = ci - j*nxx; 
 int si = threadIdx.x;  
 int sip1 = si+1; 
 int nxxyy = nxx*nyy; 
 int cizp; 
 int ciyp; 
 float ex; 
 
 ci = ci + blockIdx.y*nxxyy; 
 
 if (j < ny)  
  { 
   cizp = ci+nxxyy; 
   ciyp = ci+nxx; 
   ex = Ex[ci]; 
   sEz[si] = Ez[ci]; 
   sEy[si] = Ey[ci]; 
   if (threadIdx.x<16) 
   { 

sEz[blockDim.x+threadIdx.x] = 
Ez[ci+blockDim.x]; 
sEy[blockDim.x+threadIdx.x] = 
Ey[ci+blockDim.x]; 
} 

   __syncthreads(); 
 
   Hx[ci] = Chxh[ci] *  Hx[ci] 
      + Chxey[ci] * (Ey[cizp]-Ey[ci])  
      + Chxez[ci] * (Ez[ciyp]-sEz[si]);  
 
   Hy[ci] = Chyh[ci] *  Hy[ci] 

+ Chyez[ci] * (sEz[sip1]-sEz[si])  
      + Chyex[ci] * ( Ex[cizp]-ex);      
 
   Hz[ci] = Chzh[ci] *  Hz[ci] 
      + Chzex[ci] * (Ex[ciyp]-ex)   
      + Chzey[ci] * (sEy[sip1]-sEy[si]);  
 } 
} 

 
Listing 4. CUDA code to update magnetic field 
components based on xyz-mapping. 
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D. Data Reuse 
As discussed above, the global memory access 

affects the performance of a CUDA program 
significantly. Therefore, data transfers from and to 
the global memory should be avoided as much as 
possible. It may even be better to recalculate some 
data instead of recalling the data from global 
memory. If some data is already transferred from 
the global memory and it is available, it is better to 
use it as many times as possible. As can be 
observed from Listing 1, such data reuse is 
possible in an FDTD algorithm: while calculating 

( ), ,xH i j k  and ( ), ,yH i j k , ( ), , 1yE i j k + and 

( ), , 1xE i j k +  are used and the values of these 

components are ready in the registers of the thread. 
If one increments the k index by one, these values 
will be reused to calculate ( ), , 1xH i j k +  and 

( ), , 1yH i j k + . Therefore, a kernel function can be 

constructed based on the xy-mapping in which 
each thread traverses in the z direction in a for 
loop by incrementing k index of the cells. A kernel 
function based on xy-mapping can be coded as 
shown in Listing 5. 
 
__global__ void 
update_magnetic_fields_on_kernel(int nxx, int 
nyy, int nx, int ny, int nz,  float *Ex, float 
*Ey, float *Ez, float *Hx, float *Hy, float 
*Hz, float *Chxh, float *Chyh, float *Chzh, 
float *Chxey, float *Chxez, float *Chyez, float 
*Chyex, float *Chzex, float *Chzey) 
{ 
 extern __shared__ float sEyz[]; 
 float *sEy = (float*) sEyz; 
 float *sEz = (float*) &sEy[blockDim.x+16]; 
 
 int ci = blockIdx.x * blockDim.x + 
threadIdx.x; 
 int j  = ci/nxx; 
 int i  = ci - j*nxx; 
 int si = threadIdx.x;  
 int sip1 = si+1; 

int nxxyy = nxx*nyy; 
 int cizp; 
 int cipnxx; 
 float ey, eyzp; 
 float ex, exzp; 
 
 if (j < ny)  
 { 
  ey = Ey[ci]; 
  ex = Ex[ci]; 
  for (int k=0;k<nz;k++) 
  { 
   cizp   = ci + nxxyy; 
   exzp   = Ex[cizp]; 
   eyzp   = Ey[cizp]; 
   sEz[si]  = Ez[ci]; 
   if (threadIdx.x<16) 
   { 

sEz[blockDim.x+threadIdx.x] = 
Ez[ci+blockDim.x]; 

   } 
   __syncthreads(); 
 
   Hx[ci] = Chxh[ci]*Hx[ci] 
      + Chxey[ci]*(eyzp-ey)  
      + Chxez[ci]*(Ez[ci+nxx]-sEz[si]);  
 
   Hy[ci] = Chyh[ci] * Hy[ci] 
      + Chyez[ci] * (sEz[sip1]-sEz[si])  
      + Chyex[ci] * (exzp-ex);      
 
   sEy[si] = ey; 
   if (threadIdx.x<16) 
   { 

sEy[blockDim.x+threadIdx.x] = 
Ey[ci+blockDim.x]; 

   } 
   __syncthreads(); 
   Hz[ci] = Chzh[ci] * Hz[ci] 
      + Chzex[ci] * (Ex[ci+nxx]-ex)   
      + Chzey[ci] * (sEy[sip1]-sEy[si]);  
 
   ci = cizp; 
   ey = eyzp;  
   ex = exzp; 
  } 
 } 
} 

 
Listing 5. CUDA code to update magnetic field 

components based on xy-mapping. 
 
 At this point it should be noted that although the 
electric field updating equations are the same in 
form as the magnetic field updating equations, the 
implementation of kernels for electric field 
updates will be slightly different than those shown 
in Listings 4 and 5. The indices of the electric and 
magnetic field components adjacent to the FDTD 
domain boundaries and need to be updated are 
different as discussed in [3], and this difference 
need to be accounted for in the kernel 
implementations. Thus the implementations and 
also the performances of these kernels are slightly 
different.  
 
E. Optimization of Number of Threads 
 As pointed out in recommendations R5 and R6, 
occupancy of the microprocessors and number of 
threads in a block are two other important 
parameters that affect the performance of a CUDA 
program. Number of threads and occupancy are 
tightly connected. It is possible to set the number 
of threads as a desired value while it may not be 
possible to control the occupancy; it is a function 
of number of threads, number of registers used in 
the kernel, amount of shared memory used by the 
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kernel, compute capability of the device, etc. A 
good practice is to optimize the number of threads 
while keeping the occupancy a reasonable value.  

In order to determine optimum number of 
threads CUDA Visual Profiler is used: the kernel 
functions that update the electric and magnetic 
field components are run using different values of 
number of threads per block for both the xyz-
mapping and xy-mapping algorithms, and the cpu 
times are recorded as they are captured by the 
CUDA Visual Profiler. For this test, an FDTD 
domain with size of 8 million cells 
(200 200 200)× ×  is used. The result of the 

parameter sweep is shown in Fig. 6. It is found that 
for the magnetic field updates using xy-mapping 
algorithm performs the best with 512 threads per 
block, while electric field updates performs best 
with 128 threads per block. For the xyz-mapping 
both electric and magnetic field updates perform 
the best with 64 threads per block. These numbers 
are used in the subsequent performance analysis 
tests. From the figure it can be noticed that xy-
mapping algorithm is faster than the xyz-mapping 
algorithm.  

One can notice in Fig. 6 that, the cpu time is not 
shown for 448 and 512 number of threads for the 
electric field kernel using the xy-mapping. The 
number of registers for this kernel is 37 and 
occupancy becomes zero for large number of 
threads. Hence, the kernel cannot be run with 448 
or 512 threads per block. 

 

 
 

Fig. 6. CPU time versus number of threads per 
block.  

V. PERFORMANCE ANALYSIS 

The performance of the developed CUDA code 
for a general FDTD method as described before is 
examined as a function of problem size for both 
the xy-mapping and xyz-mapping algorithms. The 
analysis is performed on an NVIDIA® Tesla™ 
C1060 Computing Processor installed on a 64 bit 
Windows XP computer. This card has 240 
streaming processor cores operating at 1.3 GHz. 
Size of a cubic FDTD problem domain has been 
swept and the number of million cells per second 
(NMCPS) processed is calculated as a measure of 
the performance of the CUDA program. Number 
of million cells is calculated as [20]    

        610steps

s

n Nx Ny Nz
NMCPS

t
−× × ×

= × ,     (2) 

where stepsn is the number of time steps the program 

has been run and st is the total time of program run 

in seconds. The result of the analysis is shown in 
Fig. 7. It can be observed that the xy-mapping 
algorithm processes about 450 million cells per 
second on the average while xyz-mapping 
algorithm processes 400 million cells per second.  

 

 
Fig. 7. Algorithm speed versus problem size. 

VI. CONCLUSION 
A CUDA implementation of FDTD method is 

presented in this contribution. The FDTD 
formulation considered is for general dielectric 
media and conductive media and does not assume 
the same cell sizes in x, y, and z directions. Two 
thread-to-cell mapping algorithms are discussed 
and it is shown that the so referred to as xy-
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mapping algorithm is better in terms of 
performance.   

It should also be noted that each cell in the 
FDTD problem space can have a different 
material. If a limited number of materials are 
considered, the presented codes can be revised 
based on material indexed FDTD formulation, thus 
GPU constant memory space, which is faster than 
the global memory, can be utilized and a faster 
CUDA implementation for these FDTD 
formulations can be achieved.    
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