
 Abstract— Recent developments in the design of
graphics processing units (GPUs) have made it
possible to use these devices as alternatives to
central processor units (CPUs) and perform high
performance scientific computing on them.
Though several implementations of finite-
difference time-domain (FDTD) method have been
reported, the unavailability of high level languages
to program graphics cards had been a major
obstacle for scientists and engineers who would
want to develop codes for graphics cards.
Relatively recently, compute unified device
architecture (CUDA) development environment
has been introduced by NVIDIA and made GPU
computing much easier.
 This paper presents an implementation of FDTD
method based on CUDA. Two thread-to-cell
mapping algorithms are presented. The details of
the implementation are provided and strategies to
improve the performance of the FDTD simulations
are discussed.

Index Terms—FDTD methods, parallel
architectures, graphics processing unit (GPU)
programming, Compute Unified Device
Architecture (CUDA), hardware accelerated
computing.

I. INTRODUCTION
Recent developments in the design of graphics

processing units (GPUs) have been occurring at a
much greater pace than with central processor
units (CPUs) and very powerful processing units
have been designed solely for the processing of

computer graphics. For instance, the current
generation of GPU based NVIDIA® Tesla™
C1060 Computing Processors are running at
approximately 1.3 GHz with a 512 bit data and
memory bandwidth of 102 GB/sec. While GPU
clock speed seems slow compared to modern 3.8
GHz Pentium CPU’s or 3.0 GHz Core Duo’s,
parallelism provided by the graphics cards enables
better efficiency in computations. Due to this
potential in faster computations, the GPUs have
received the attention of the scientific computing
community. Initially these cards were designed for
computer graphics and floating precision
arithmetic has been sufficient for such
applications. Due to the demand of higher
precision arithmetic from the scientific
community, the vendors have started to develop
graphics cards that support double precision
arithmetic as well, introducing a new generation of
graphical computation cards.

The computational electromagnetics community
as well has started to utilize the computational
power of graphics cards, and in particular, several
implementations of finite-difference time-domain
(FDTD) [1]-[3] method have been reported [4]-
[24]. Initially the GPUs were not designed for
general purpose programming and high level
programming languages were not conveniently
available; programmers were required to learn the
intricacies of specialized low-level hardware
languages. For instance, the FDTD
implementations in [4], [5] and [11] are based on
OpenGL. As a result of the need for high level
languages a new subset language for C titled
“Brook” has been introduced for general

Veysel Demir1 and Atef Z. Elsherbeni2

1Department of Electrical Engineering
Northern Illinois University, DeKalb, IL 60115, USA

demir@ceet.niu.edu

2Department of Electrical Engineering
The University of Mississippi, University, MS 38677, USA

atef@olemiss.edu

Compute Unified Device Architecture (CUDA) Based Finite-
Difference Time-Domain (FDTD) Implementation

303

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

programming environments [25]. This subset
negates the need for detailed low-level
programming knowledge by introducing a few,
relatively simple, commands in the C language.
Brook is used as the programming language in [7]-
[10], [14]-[15] and [24]. Moreover, use of High
Level Shader Language (HLSL) is reported in
[16].

Relatively recently, the introduction of the
Compute Unified Device Architecture (CUDA)
[26] development environment from NVIDIA
made GPU computing much easier. CUDA is a
general purpose parallel computing architecture.
To program the CUDA architecture, developers
can use C, which can then be run at great
performance on a CUDA enabled processor. The
CUDA architecture and its associated software
provide a small set of extensions to standard
programming languages, like C, that enable a
straightforward implementation of parallel
algorithms. With CUDA and C for CUDA,
programmers can focus on the task of
parallelization of the algorithms rather than
spending time on their implementation. The CPU
and GPU are treated as separate devices that have
their own memory spaces. This configuration also
allows simultaneous computation on both the CPU
and GPU without contention for memory
resources. CUDA-enabled GPUs have hundreds of
cores that can collectively run thousands of
computing threads [27].

CUDA has been reported as the programming
environment for implementation of FDTD in [17]-
[18] and [20]-[22]. In [21] the use of CUDA for
two-dimensional FDTD is presented, and its use
for three-dimensional FDTD implementations is
proposed. The importance of coalesced memory
access and efficient use of shared memory is
addressed without sufficient details. Another two-
dimensional FDTD implementation using CUDA
has been reported in [22] and use of convolution
perfectly matched layer (CPML) [28] boundaries
is discussed, however no implementation details
are provided. Some methods to improve the
efficiency of FDTD using CUDA are presented in
[20], which can be used as guidelines while
programming FDTD using CUDA. The
discussions are based on FDTD updating equations
in its simplest form: updating equations consider
only dielectric objects in the computation domain,

the cell sizes are equal in x, y, and z directions,
thus the updating equations include a single
updating coefficient. The efficient use of shared
memory is discussed; however the presented
methods limit the number of threads per thread
block to a fixed size. The coalesced memory
access, which is a necessary condition for
efficiency on CUDA, is inherently satisfied with
the given examples; however its importance has
never been mentioned.

In this current contribution a more
comprehensive discussion of CUDA
implementation of FDTD is provided. The FDTD
updating equations assume more general material
media and different cell sizes. Strategies to
improve the efficiency are discussed, and their
application to unified FDTD updating equations,
as presented in [3], is presented.

Section II summarizes an overview of concepts
in CUDA. Section III presents the FDTD equations
that are considered for CUDA implementation,
while Section IV introduces two algorithms of
implementation. Section V reports the
performances achieved in computation speed by
these implementations.

II. COMPUTE UNIFIED DEVICE

ARCHITECTURE
In this section, a brief description of some

concepts in CUDA is summarized from [29] in
order to prepare the reader for the discussions that
follow. Then, general guidelines to improve the
efficiency of CUDA programs, as they apply to
FDTD method, are summarized based on [29] and
[30]. Application of these guidelines to improve
the efficiency of an FDTD implementation is
discussed in the subsequent sections.

A. CUDA Concepts

A programmable graphics processor unit is
essentially a highly parallel, multithreaded, many
core processor. The GPU is especially well-suited
to address problems that can be expressed as data-
parallel computations – the same program is
executed on many data elements in parallel. FDTD
is such an algorithm in which the same
computation is performed on all field components
in the cells of a computation domain.

304 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

CUDA is a general purpose parallel computing
architecture with a new parallel programming
model and instruction set architecture. C for
CUDA extends C by allowing the programmer to
define C functions, called kernels, that, when
called, are executed N times in parallel by N
different CUDA threads, as opposed to only once
like regular C functions. Each of the threads that
execute a kernel is given a unique thread ID that is
accessible within the kernel through the built-in
threadIdx variable. For convenience,
threadIdx is a 3-component vector, so that
threads can be identified using a one-dimensional,
two-dimensional, or three-dimensional thread
index, forming a one-dimensional, two-
dimensional, or three-dimensional thread block. A
kernel function can be executed by multiple
equally-shaped thread blocks, so that the total
number of threads is equal to the number of
threads per block times the number of blocks.
These multiple blocks are organized into a one-
dimensional or two-dimensional grid of thread
blocks. Each block within the grid can be
identified by a one-dimensional or two-
dimensional index accessible within the kernel
through the built-in blockIdx variable. The
dimension of the thread block is accessible within
the kernel through the built-in blockDim
variable.

CUDA threads may access data from multiple
memory spaces during their execution. Each thread
has a private local memory and a shared memory
visible to all threads of the block and with the
same lifetime as the block. Finally, all threads
have access to the same global memory. Global
memory is the main memory space on the device
to store the application data. However, data access
to global memory is very small and that
inefficiency becomes the main bottleneck in the
execution of a kernel. On the other hand the shared
memory is much faster to access but the size of the
shared memory is very limited. However, though
very limited in size, the shared memory can
provide the means for data reuse and improve the
efficiency of a kernel. Constant and texture
memory spaces are two additional read-only
memory spaces, limited in size, accessible by all
threads during the lifetime of the application. The

kernels execute on a GPU that is referred to as
device and the rest of the C program executes on a
CPU that is referred to as host.

B. Performance Optimization Strategies

Recommendations for optimization and the list
of best practices for programming with CUDA are
explained in [30]. While not all of these
recommendations are applicable to the case of
FDTD; the following list of recommendations is
used to optimize our FDTD implementation:
R1) structure the algorithm in a way that exposes

as much data parallelism as possible. Once the
parallelism of the algorithm has been exposed,
it needs to be mapped to the hardware as
efficiently as possible.

R2) ensure global memory accesses are coalesced
whenever possible.

R3) minimize the use of global memory. Prefer
shared memory access where possible.

R4) use shared memory to avoid redundant
transfers from global memory.

R5) hide latency arising from register
dependencies, maintain at least 25 percent
occupancy on devices with CUDA compute
capability 1.1 and lower, and 18.75 percent
occupancy on later devices.

R6) use a multiple of 32 threads for the number of
threads per block as this provides optimal
computing efficiency and facilitates
coalescing.

Fig. 1. An FDTD problem space composed of cells

[3].

305DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION

III. THE FDTD FORMULATION
The FDTD formulation considered for CUDA

implementation is based on updating equations for
general anisotropic material properties including
arbitrary permittivity, permeability and electric
and magnetic conductivity parameter values [3].
The FDTD problem domain is a rectangular
domain composed of cells, referred to as Yee cells
[1], as illustrated in Fig. 1. The problem space size
is Nx Ny Nz× × , where Nx , Ny , and Nz are

number of cells in x, y, and z directions,
respectively. Field components are defined at
discrete positions on a Yee cell as shown in Fig. 2.
The formulation in consideration assumes different
cell sizes in x, y, and z directions in a rectangular
grid. Thus, for instance, the equation that updates
x-component of the magnetic field is given in [3]
as

() () ()
() () ()()
() () ()()

1 1

2 2, , , , , ,

, , , , 1 , ,

, , , 1, , ,

n n

x hxh x

n n
hxey y y

n n
hxez z z

H i j k C i j k H i j k

C i j k E i j k E i j k

C i j k E i j k E i j k

+ −
=

+ + −

+ + −

, (1)

where
1

2 (, ,)
n

xH i j k
+

is the x component of magnetic

field in a Yee cell, shown in Fig. 2, indexed with
(, ,)i j k , and n

yE and n
zE are the electric field

components. The superscripts indicate the time
instants at which the fields are evaluated: i.e.
superscript n indicates the field at time n t∆ , where

t∆ is the duration of time step. hxhC , hxeyC , hxezC are

the coefficients used to update xH . Similarly,

there are two other updating equations that update

yH and zH , and moreover, there are three other

updating equations that update electric field
components xE , yE , and zE . A reference example

for the update of magnetic field components when
using the FORTRAN programming language is
shown in Listing 1. As shown, all field and
coefficient parameters in this listing are three-
dimensional arrays.

subroutine update_magnetic_fields
! nx, ny, nz: number of cells in x, y, z
directions

Hx = Chxh * Hx &

+ Chxey * (Ey(:,:,2:nz+1) - Ey(:,:,1:nz)) &
+ Chxez * (Ez(:,2:ny+1,:) - Ez(:,1:ny,:));

Hy = Chyh * Hy &

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

Hz = Chzh * Hz &

+ Chzex * (Ex(:,2:ny+1,:) - Ex(:,1:ny,:)) &
+ Chzey * (Ey(2:nx+1,:,:) - Ey(1:nx,:,:));

end subroutine update_magnetic_fields

 Listing 1. Fortran code to update magnetic field
components.

Fig. 2. Yee cell: the basic building block of an

FDTD problem space [3].

IV. FDTD USING CUDA
In our implementation, the allocation of all field

components and the initialization of coefficient
arrays for the FDTD problem space are coded in
FORTAN and executed on the CPU (host). Then
these arrays are transferred to the global memory
of GPU and they are ready to use by the kernels
coded in CUDA and run on GPU (device). It
should be noted that while the arrays in
FORTRAN are three-dimensional, these same
arrays are stored in device (GPU) global memory
as one-dimensional arrays and elements of these
arrays are accessed in kernel functions in a linear
fashion. Thus, as will be shown later, a three-
dimensional to one-dimensional index mapping is
employed.

This section describes our procedure for
developing CUDA kernels.

A. Achieving Parallelism

At every time iteration of the FDTD loop new
values of three magnetic field components are

306 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

recalculated at every cell simultaneously using the
past values of electric field components. Similarly,
electric field components can be updated
simultaneously in a separate function. Since the
calculations for each cell can be performed
independent from the other cells, a CUDA
algorithm can be developed by assigning each cell
calculation to a separate thread, and the highest
level of parallelism can be achieved to satisfy the
recommendation R1 that is discussed in Section II.

In CUDA, a number of threads form a thread
block, and a number of thread blocks form a grid.
The maximum number of threads in a block can be
512, where these threads can be arranged to form a
one-dimensional, two-dimensional or three-
dimensional block. Thus a subsection of three-
dimensional problem space can be naturally
mapped to a three-dimensional thread block.
However, a grid (of thread blocks) can be
composed of blocks arranged in a one-dimensional
fashion or a two-dimensional fashion. Hence, the
entire three-dimensional FDTD domain cannot be
naturally mapped to a one-dimensional or two-
dimensional grid. Therefore, an alternative
mapping between threads and FDTD domain shall
be considered.

In this contribution, two different approaches
between cells and threads are presented and their
performance comparisons are provided.

 Fig. 3. Mapping of threads to cells of an FDTD

domain using the xyz-mapping.

In the first mapping, a thread block is
constructed as a one-dimensional array, as shown
on the first two lines in Listing 2, which is a piece
of code that defines the grid and block sizes. The

threads in this array are mapped to cells in an x-y
plane cut of the FDTD domain. The grid of the
thread blocks is constructed as two-dimensional as
shown on the third and fourth lines in Listing 2.
Then, the x dimension of the grid is mapped to x-y
plane, and y dimension of the grid is mapped to z-
dimension of the FDTD domain. Figure 3
illustrates the mapping of threads to an FDTD
domain. This mapping approach ensures one-to-
one mapping between threads and cells, thus the
highest level of parallelization is achieved. This
mapping will be referred to as xyz-mapping in the
following sections.

block_dim_x = number_of_threads;
block_dim_y = 1;
n_blocks_y = nz;
n_blocks_x = (nx*ny)/number_of_threads

+ ((nx*ny)%number_of_threads == 0 ? 0 : 1);

Listing 2. CUDA code to define block and grid

sizes.

Fig. 4. Mapping of threads to cells of an FDTD

domain using the xy-mapping.

 The second mapping is partly the same as the
first one: a thread block is constructed as a one-
dimensional array, as shown on the first two lines
in Listing 2, and the threads in this array are
mapped to cells in an x-y plane cut of the FDTD
domain as illustrated in Fig. 4. In the kernel
function, each thread is mapped to a cell; thread
index is mapped to i and j. Then, each thread
traverses in the z direction in a for loop by
incrementing k index of the cells. Field values are
updated for each k, thus the entire FDTD domain
is covered. As will be illustrated later, this

307DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION

algorithm helps for global memory reuse, which
improves efficiency. For the second mapping the
above Listing 2 code will be modified for one line
as
n_blocks_y = 1;

 This mapping will be referred to as xy-mapping
in the following sections.

B. Coalesced Global Memory Access

Memory instructions include any instruction that
reads from or writes to shared, local or global
memory. When accessing local or global memory,
there are, 400 to 600 clock cycles of memory
latency. Much of this global memory latency can
be hidden by the thread scheduler if there are
sufficient independent arithmetic instructions that
can be issued while waiting for the global memory
access to complete [29]. Unfortunately in FDTD
updates the operations are dominated by memory
accesses rather than arithmetic instruction. Hence,
the memory access inefficiency is the bottle neck
for the efficiency of FDTD on GPU. Global
memory bandwidth is used most efficiently when
the simultaneous memory accesses by threads in a
half-warp (during the execution of a single read or
write instruction) can be coalesced into a single
memory transaction of 32, 64, or 128 bytes [29].

Fig. 5. An FDTD problem space padded with

additional cells to ensure coalesced
memory operations.

The three-dimensional field and coefficient

arrays in FORTRAN are treated as one-
dimensional arrays in kernel functions. It should
be noted that the first array index varies most
rapidly in FORTRAN multi-dimensional arrays.

As shown in Listing 1, i index varies most rapidly,
and then j. This ordering is retained after the
arrays are transferred to GPU. If the size of the
three-dimensional arrays, thus the size of the
FDTD domain in number of cells, in the x and y
directions is a multiple of 16, then the coalesced
memory access is ensured. In general an FDTD
domain size would be an arbitrary number. In
order to achieve coalesced memory access, the
FDTD domain is extended by padded cells such
that the number of cells in x and y directions is an
integer multiple of 16 as in Fig 5. Although, these
padded cells increase the amount of memory need
to be used to store array, it improves the efficiency
of the kernel function tremendously. Thus the
recommendation R2 is satisfied. The modified size
of the FDTD domain becomes Nxx Nyy Nz× × ,

where Nxx , Nyy , and Nz are number of cells in x,

y, and z directions, respectively.
Since the size of the FDTD domain has changed,

calculation of the number of blocks in Listing 2
need to be slightly modified as
n_blocks_x = (nxx*nyy)/ number_of_threads))

+ ((nxx*nyy)%number_of_threads == 0 ? 0 : 1);

C. Use of Shared Memory

Because it is on-chip, the access to shared
memory is much faster than the local and global
memory. Parameters that reside in the shared
memory space of a thread block have the lifetime
of the block, and are accessible from all the
threads within the block [29]. Therefore if a data
block on global memory is going to be used
frequently in a kernel, it is better to load the data
to shared memory and reuse the data from the
shared memory.

Shared memory is especially useful when
threads need to access to unaligned data. For
instance, examining Listing 1 reveals that in order
to calculate (), ,yH i j k , a thread mapped to the cell

(), ,i j k needs xE and zE in (), ,i j k as well as xE in

(), , 1i j k + and zE in ()1, ,i j k+ . In the kernel code

the index of a thread is calculated as
ci = blockIdx.x * blockDim.x + threadIdx.x;
This thread is mapped to a cell with i and j indices
as
j = ci/nxx;
i = ci - j*nxx;

308 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

A cell with indices (i+1, j, k) can be accessed by
ci+1, a cell with indices (i, j+1, k) can be
accessed by ci+nxx, and a cell with indices (i, j,
k+1) can be accessed by ci+nxx*nyy. Access to
(i, j+1, k) and (i, j, k+1) are coalesced, however
(i+1, j, k) is not. If an access to a field component
at a neighboring cell in the x direction is needed,
i.e. ()1, ,zE i j k+ while calculating (), ,yH i j k and

()1, ,yE i j k+ while calculating (), ,zH i j k , then

shared memory can be used to load the data block
mapped by the thread block, and then the
neighboring field value is accessed from the
shared memory. At this point one needs to use the
CUDA function __syncthreads() to ensure
that all threads in the block are synchronized; thus
all necessary data is loaded to the shared memory
before it is used by the neighboring threads.

As discussed above, uncoalesced memory
accesses can be eliminated by using shared
memory. However, a problem arises when
accessing the neighboring cells’ data through
shared memory. While loading the shared memory,
each thread copies one element from the global
memory to the shared memory. If the thread on the
boundary of the thread block needs to access the
data in the neighboring cell, this data will not be
available since it has not been loaded to the shared
memory. One way to overcome this problem is to
load another set of data, which includes the
neighboring cell’s data, to shared memory. In the
presented implementation the size of the data
allocation in the shared memory is extended by 16,
and some of the threads in the thread block are
used only to copy data from global memory to this
extended section in the shared memory. Then, for
instance, the piece of code that calls the kernel
function to update magnetic field components
would be as in Listing 3.
 The kernel function that updates magnetic field
components based on xyz-mapping is shown in
Listing 4.

threads = dim3(block_dim_x, block_dim_y, 1);
grid = dim3(n_blocks_x, n_blocks_y, 1);

shared_mem_size =
2*sizeof(float)*number_of_threads;

update_magnetic_fields_on_kernel

<<<grid, threads, shared_memory_size>>>

(nxx, nyy, nx, ny, nz,
 Ex, Ey, Ez, Hx, Hy, Hz,
 Chxh,Chyh,Chzh, Chxey,
 Chxez, Chyez, Chyex, Chzex, Chzey);

Listing 3. CUDA code to call kernel function for
magnetic field updates.

__global__ void
update_magnetic_fields_on_kernel(int nxx, int
nyy, int nz, float *Ex, float *Ey, float *Ez,
float *Hx, float *Hy, float *Hz, float *Chxh,
float *Chyh, float *Chzh, float *Chxey, float
*Chxez, float *Chyez, float *Chyex, float
*Chzex, float *Chzey)
{
 extern __shared__ float sEyz[];
 float *sEy = (float*) sEyz;
 float *sEz = (float*) &sEy[blockDim.x+16];

 // ci: cell index
 // si: index in shared memory array

 int ci = blockIdx.x * blockDim.x +
threadIdx.x;
 int j = ci/nxx;
 int i = ci - j*nxx;
 int si = threadIdx.x;
 int sip1 = si+1;
 int nxxyy = nxx*nyy;
 int cizp;
 int ciyp;
 float ex;

 ci = ci + blockIdx.y*nxxyy;

 if (j < ny)
 {
 cizp = ci+nxxyy;
 ciyp = ci+nxx;
 ex = Ex[ci];
 sEz[si] = Ez[ci];
 sEy[si] = Ey[ci];
 if (threadIdx.x<16)
 {

sEz[blockDim.x+threadIdx.x] =
Ez[ci+blockDim.x];
sEy[blockDim.x+threadIdx.x] =
Ey[ci+blockDim.x];
}

 __syncthreads();

 Hx[ci] = Chxh[ci] * Hx[ci]
 + Chxey[ci] * (Ey[cizp]-Ey[ci])
 + Chxez[ci] * (Ez[ciyp]-sEz[si]);

 Hy[ci] = Chyh[ci] * Hy[ci]

+ Chyez[ci] * (sEz[sip1]-sEz[si])
 + Chyex[ci] * (Ex[cizp]-ex);

 Hz[ci] = Chzh[ci] * Hz[ci]
 + Chzex[ci] * (Ex[ciyp]-ex)
 + Chzey[ci] * (sEy[sip1]-sEy[si]);
 }
}

Listing 4. CUDA code to update magnetic field
components based on xyz-mapping.

309DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION

D. Data Reuse
As discussed above, the global memory access

affects the performance of a CUDA program
significantly. Therefore, data transfers from and to
the global memory should be avoided as much as
possible. It may even be better to recalculate some
data instead of recalling the data from global
memory. If some data is already transferred from
the global memory and it is available, it is better to
use it as many times as possible. As can be
observed from Listing 1, such data reuse is
possible in an FDTD algorithm: while calculating

(), ,xH i j k and (), ,yH i j k , (), , 1yE i j k + and

(), , 1xE i j k + are used and the values of these

components are ready in the registers of the thread.
If one increments the k index by one, these values
will be reused to calculate (), , 1xH i j k + and

(), , 1yH i j k + . Therefore, a kernel function can be

constructed based on the xy-mapping in which
each thread traverses in the z direction in a for
loop by incrementing k index of the cells. A kernel
function based on xy-mapping can be coded as
shown in Listing 5.

__global__ void
update_magnetic_fields_on_kernel(int nxx, int
nyy, int nx, int ny, int nz, float *Ex, float
*Ey, float *Ez, float *Hx, float *Hy, float
*Hz, float *Chxh, float *Chyh, float *Chzh,
float *Chxey, float *Chxez, float *Chyez, float
*Chyex, float *Chzex, float *Chzey)
{
 extern __shared__ float sEyz[];
 float *sEy = (float*) sEyz;
 float *sEz = (float*) &sEy[blockDim.x+16];

 int ci = blockIdx.x * blockDim.x +
threadIdx.x;
 int j = ci/nxx;
 int i = ci - j*nxx;
 int si = threadIdx.x;
 int sip1 = si+1;

int nxxyy = nxx*nyy;
 int cizp;
 int cipnxx;
 float ey, eyzp;
 float ex, exzp;

 if (j < ny)
 {
 ey = Ey[ci];
 ex = Ex[ci];
 for (int k=0;k<nz;k++)
 {
 cizp = ci + nxxyy;
 exzp = Ex[cizp];
 eyzp = Ey[cizp];
 sEz[si] = Ez[ci];
 if (threadIdx.x<16)
 {

sEz[blockDim.x+threadIdx.x] =
Ez[ci+blockDim.x];

 }
 __syncthreads();

 Hx[ci] = Chxh[ci]*Hx[ci]
 + Chxey[ci]*(eyzp-ey)
 + Chxez[ci]*(Ez[ci+nxx]-sEz[si]);

 Hy[ci] = Chyh[ci] * Hy[ci]
 + Chyez[ci] * (sEz[sip1]-sEz[si])
 + Chyex[ci] * (exzp-ex);

 sEy[si] = ey;
 if (threadIdx.x<16)
 {

sEy[blockDim.x+threadIdx.x] =
Ey[ci+blockDim.x];

 }
 __syncthreads();
 Hz[ci] = Chzh[ci] * Hz[ci]
 + Chzex[ci] * (Ex[ci+nxx]-ex)
 + Chzey[ci] * (sEy[sip1]-sEy[si]);

 ci = cizp;
 ey = eyzp;
 ex = exzp;
 }
 }
}

Listing 5. CUDA code to update magnetic field

components based on xy-mapping.

 At this point it should be noted that although the
electric field updating equations are the same in
form as the magnetic field updating equations, the
implementation of kernels for electric field
updates will be slightly different than those shown
in Listings 4 and 5. The indices of the electric and
magnetic field components adjacent to the FDTD
domain boundaries and need to be updated are
different as discussed in [3], and this difference
need to be accounted for in the kernel
implementations. Thus the implementations and
also the performances of these kernels are slightly
different.

E. Optimization of Number of Threads
 As pointed out in recommendations R5 and R6,
occupancy of the microprocessors and number of
threads in a block are two other important
parameters that affect the performance of a CUDA
program. Number of threads and occupancy are
tightly connected. It is possible to set the number
of threads as a desired value while it may not be
possible to control the occupancy; it is a function
of number of threads, number of registers used in
the kernel, amount of shared memory used by the

310 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

kernel, compute capability of the device, etc. A
good practice is to optimize the number of threads
while keeping the occupancy a reasonable value.

In order to determine optimum number of
threads CUDA Visual Profiler is used: the kernel
functions that update the electric and magnetic
field components are run using different values of
number of threads per block for both the xyz-
mapping and xy-mapping algorithms, and the cpu
times are recorded as they are captured by the
CUDA Visual Profiler. For this test, an FDTD
domain with size of 8 million cells
(200 200 200)× × is used. The result of the

parameter sweep is shown in Fig. 6. It is found that
for the magnetic field updates using xy-mapping
algorithm performs the best with 512 threads per
block, while electric field updates performs best
with 128 threads per block. For the xyz-mapping
both electric and magnetic field updates perform
the best with 64 threads per block. These numbers
are used in the subsequent performance analysis
tests. From the figure it can be noticed that xy-
mapping algorithm is faster than the xyz-mapping
algorithm.

One can notice in Fig. 6 that, the cpu time is not
shown for 448 and 512 number of threads for the
electric field kernel using the xy-mapping. The
number of registers for this kernel is 37 and
occupancy becomes zero for large number of
threads. Hence, the kernel cannot be run with 448
or 512 threads per block.

Fig. 6. CPU time versus number of threads per
block.

V. PERFORMANCE ANALYSIS

The performance of the developed CUDA code
for a general FDTD method as described before is
examined as a function of problem size for both
the xy-mapping and xyz-mapping algorithms. The
analysis is performed on an NVIDIA® Tesla™
C1060 Computing Processor installed on a 64 bit
Windows XP computer. This card has 240
streaming processor cores operating at 1.3 GHz.
Size of a cubic FDTD problem domain has been
swept and the number of million cells per second
(NMCPS) processed is calculated as a measure of
the performance of the CUDA program. Number
of million cells is calculated as [20]

 610steps

s

n Nx Ny Nz
NMCPS

t
−× × ×

= × , (2)

where stepsn is the number of time steps the program

has been run and st is the total time of program run

in seconds. The result of the analysis is shown in
Fig. 7. It can be observed that the xy-mapping
algorithm processes about 450 million cells per
second on the average while xyz-mapping
algorithm processes 400 million cells per second.

Fig. 7. Algorithm speed versus problem size.

VI. CONCLUSION
A CUDA implementation of FDTD method is

presented in this contribution. The FDTD
formulation considered is for general dielectric
media and conductive media and does not assume
the same cell sizes in x, y, and z directions. Two
thread-to-cell mapping algorithms are discussed
and it is shown that the so referred to as xy-

311DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION

mapping algorithm is better in terms of
performance.

It should also be noted that each cell in the
FDTD problem space can have a different
material. If a limited number of materials are
considered, the presented codes can be revised
based on material indexed FDTD formulation, thus
GPU constant memory space, which is faster than
the global memory, can be utilized and a faster
CUDA implementation for these FDTD
formulations can be achieved.

REFERENCES
[1] K. S. Yee, “Numerical Solution of Inital

Boundary Value Problems Involving
Maxwell's Equations in Isotropic Media,”
IEEE Transactions on Antennas and
Propagation, vol. 14, pp. 302–307, May
1966.

[2] A. Taflove and S. C. Hagness, Computational
Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd edition, Artech
House, 2005.

[3] A. Elsherbeni and V. Demir, “The Finite
Difference Time Domain Method for
Electromagnetics: With MATLAB
Simulations,” SciTech Publishing, 2009.

[4] S. E. Krakiwsky, L. E. Turner, and M. M.
Okoniewski, “Graphics Processor Unit (GPU)
Acceleration of Finite-Difference Time-
Domain (FDTD) Algorithm,” Proc. 2004
International Symposium on Circuits and
Systems, vol. 5, pp. V-265–V-268, May 2004.

[5] S. E. Krakiwsky, L. E. Turner, and M. M.
Okoniewski, “Acceleration of Finite-
Difference Time-Domain (FDTD) Using
Graphics Processor Units (GPU),” 2004 IEEE
MTT-S International Microwave Symposium
Digest, vol. 2, pp. 1033–1036, June 2004.

[6] R. Schneider, S. Krakiwsky, L. Turner, and
M. Okoniewski, “Advances in Hardware
Acceleration for FDTD,” Ch. 20 in
Computational Electrodynamics: The Finite-
Difference Time-Domain Method, 3rd
edition, Artech House, 2005.

[7] M. J. Inman, A. Z. Elsherbeni, and C. E.
Smith “GPU Programming for FDTD
Calculations,” The Applied Computational

Electromagnetics Society (ACES) Conference,
2005.

[8] M. J. Inman and A. Z. Elsherbeni,
“Programming Video Cards for
Computational Electromagnetics
Applications,” IEEE Antennas and
Propagation Magazine, vol. 47, no. 6, pp. 71–
78, Dec. 2005.

[9] M. J. Inman and A. Z. Elsherbeni,
“Acceleration of Field Computations Using
Graphical Processing Units,” The Twelfth
Biennial IEEE Conference on
Electromagnetic Field Computation CEFC
2006, April 30 - May 3, 2006.

[10] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney,
and B. N. Baker, “Practical Implementation of
a CPML Absorbing Boundary for GPU
Accelerated FDTD Technique,” The 23rd
Annual Review of Progress in Applied
Computational Electromagnetics Society, 19-
23 March 2007.

[11] S. Adams, J. Payne, and R. Boppana, “Finite
Difference Time Domain (FDTD)
Simulations Using Graphics Processors,”
Proceedings of the 2007 DoD High
Performance Computing Modernization
Program Users Group (HPCMP) Conference,
pp. 334–338, 2007.

[12] D. K. Price, J. R. Humphrey, and E. J.
Kelmelis, “GPU-based Accelerated 2D and
3D FDTD Solvers,” in Physics and
Simulation of Optoelectronic Devices XV, of
Proceedings of SPIE, vol. 6468, Jan. 2007.

[13] D. K. Price, J. R. Humphrey, and E. J.
Kelmelis, “Accelerated Simulators for Nano-
Photonic Devices,” International Conference
on Numerical Simulation of Optoelectronic
Devices 2007, pp. 103–104, Sept. 2007.

[14] M. Inman, A. Elsherbeni, J. Maloney, and B.
Baker, “Practical Implementation of a CPML
Absorbing Boundary for GPU Accelerated
FDTD Technique,” Applied Computational
Electromagnetics Society Journal, vol. 23, no.
1, pp. 16–22, 2008.

[15] M. J. Inman and A. Z. Elsherbeni,
“Optimization and parameter exploration
using GPU based FDTD solvers,” IEEE MTT-
S International Microwave Symposium
Digest, pp. 149-152, June 2008.

312 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

[16] N. Takada, N. Masuda, T. Tanaka, Y. Abe,
and T. Ito, “A GPU Implementation of the 2-
D Finite-Difference Time-Domain Code
Using High Level Shader Language,” Applied
Computational Electromagnetics Society
Journal, vol. 23, no. 4, pp. 309–316, 2008.

[17] A. Valcarce, G. de la Roche, and J. Zhang, “A
GPU Approach to FDTD for Radio Coverage
Prediction,” Proceedings of the 11th IEEE
Singapore International Conference on
Communication Systems (ICCS '08), pp.
1585–1590, Nov. 2008.

[18] P. Sypek and M. Michal, “Optimization of a
FDTD Code for Graphical Processing Units,”
17th International Conference on Microwaves,
Radar and Wireless Communications
(MIKON), pp. 1–3, May 2008.

[19] A. Balevic, L. Rockstroh, A. Tausendfreund,
S. Patzelt, G. Goch, and S. Simon,
“Accelerating Simulations of Light Scattering
Based on Finite-Difference Time-Domain
Method with General Purpose GPUs,”
Proceedings of the 2008 11th IEEE
International Conference on Computational
Science and Engineering, pp. 327–334, 2008.

[20] P. Sypek, A. Dziekonski, and M. Mrozowski,
“How to Render FDTD Computations More
Effective Using a Graphics Accelerator,”
IEEE Transactions on Magnetics, vol. 45, no.
3, pp. 1324–1327, 2009.

[21] N. Takada, T. Shimobaba, N. Masuda, and T.
Ito, “High-speed FDTD Simulation Algorithm
for GPU with Compute Unified Device
Architecture,” IEEE International Symposium
on Antennas & Propagation & USNC/URSI
National Radio Science Meeting,. 4, 2009.

[22] A. Valcarce, G. De La Roche, A. Jüttner, D.
López-Pérez, and J. Zhang, “Applying FDTD
to the coverage prediction of WiMAX
femtocells,” EURASIP Journal on Wireless
Communications and Networking, Feb. 2009.

[23] C. Ong, M. Weldon, D. Cyca, and M.
Okoniewski, “Acceleration of Large-Scale
FDTD Simulations on High Performance
GPU Clusters,” 2009 IEEE International
Symposium on Antennas & Propagation &
USNC/URSI National Radio Science Meeting,
2009.

[24] M. J. Inman, A. Elsherbeni, and V. Demir,
“Graphics Processing Unit Acceleration of
Finite Difference Time Domain”, Ch. 12 in
The Finite Difference Time Domain Method
for Electromagnetics (with MATLAB
Simulations), SciTech Publishing, 2009.

[25] I. Buck, Brook Spec v0.2, Stanford Univ.
Press, 2003.

[26] NVIDIA CUDA ZONE,
http://www.nvidia.com/object/cuda_home.ht
ml.

[27] CUDA 2.1 Quickstart Guide,
http://www.nvidia.com/object/cuda_develop.
html.

[28] J. A. Roden and S. Gedney, “Convolution
PML (CPML): An Efficient FDTD
Implementation of the CFS-PML for
Arbitrary Media,” Microwave and Optical
Technology Letters, vol. 27, no. 5, pp. 334–
339, 2000.

[29] CUDA 2.1 Programming Guide,
http://www.nvidia.com/object/cuda_develop.
html.

[30] CUDA Best Practices Guide,
http://www.nvidia.com/object/cuda_develop.
html.

Veysel Demir is an Assistant
Professor at The Department of
Electrical Engineering, Northern
Illinois University. He received
his B.Sc. degree in electrical
engineering from Middle East
Technical University, Ankara,
Turkey, in 1997. He studied at

Syracuse University, New York, where he received
both a M.Sc. and Ph.D. in electrical engineering in
2002 and 2004, respectively. During his graduate
studies, he worked as research assistant for Sonnet
Software, Inc., Liverpool, New York. He worked
as a visiting research scholar in the Department of
Electrical Engineering at the University of
Mississippi from 2004 to 2007. He joined
Northern Illinois University in August 2007. His
research interests include numerical analysis
techniques as well as microwave and
radiofrequency (RF) circuit analysis and design.

313DEMIR, ELSHERBENI: CUDA BASED FINITE-DIFERENCE TIME-DOMAIN IMPLEMENTATION

Dr. Demir is a member of IEEE and ACES and
has coauthored more than 20 technical journal and
conference papers. He is the coauthor of the books
Electromagnetic Scattering Using the Iterative
Multiregion Technique (Morgan & Claypool,
2007) and The Finite Difference Time Domain
Method for Electromagnetics with MATLAB
Simulations (Scitech 2009).

Atef Z. Elsherbeni is a
Professor of Electrical
Engineering and Associate
Dean for Research and
Graduate Programs, the
Director of The School of
Engineering CAD Lab, and
the Associate Director of The

Center for Applied Electromagnetic Systems
Research (CAESR) at The University of
Mississippi. In 2004 he was appointed as an
adjunct Professor, at The Department of Electrical
Engineering and Computer Science of the L.C.
Smith College of Engineering and Computer
Science at Syracuse University. On 2009 he was
selected as Finland Distinguished Professor by the
Academy of Finland and Tekes.

Dr. Elsherbeni has conducted research dealing
with scattering and diffraction by dielectric and
metal objects, finite difference time domain
analysis of passive and active microwave devices
including planar transmission lines, field
visualization and software development for EM
education, interactions of electromagnetic waves
with human body, sensors development for
monitoring soil moisture, airports noise levels, air
quality including haze and humidity, reflector and
printed antennas and antenna arrays for radars,
UAV, and personal communication systems,
antennas for wideband applications, antenna and
material properties measurements, and hardware
and software acceleration of computational
techniques for electromagentics.

Dr. Elsherbeni is the co-author of the book “The
Finite Difference Time Domain Method for
Electromagnetics With MATLAB Simulations”,
SciTech 2009, the book “Antenna Design and
Visualization Using Matlab”, SciTech, 2006, the
book “MATLAB Simulations for Radar Systems
Design”, CRC Press, 2003, the book

“Electromagnetic Scattering Using the Iterative
Multiregion Technique”, Morgan & Claypool,
2007, the book “Electromagnetics and Antenna
Optimization using Taguchi's Method”, Morgan &
Claypool, 2007, and the main author of the
chapters “Handheld Antennas” and “The Finite
Difference Time Domain Technique for Microstrip
Antennas” in Handbook of Antennas in Wireless
Communications, CRC Press, 2001.

Dr. Elsherbeni is a Fellow member of the
Institute of Electrical and Electronics Engineers
(IEEE) and a Fellow member of The Applied
Computational Electromagnetics Society (ACES).
He is the Editor-in-Chief for ACES Journal and an
Associate Editor to the Radio Science Journal.

314 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

