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ABSTRACT

A computer program based on the method of moments approach is developed to compute
electromagnetic scattering from axisymmetric objects. The object may consist of N linear
isotropic homogeneous regions. These regions may be arranged axially and/or radially with the
axis of symmetry. Surface integral equations (SIE) formulation, E-PMCHW, is used to
formulate the problem. Other formulations can easily be incorporated in the computer code.
Ristatic and monostatic Radar Cross Sections (RCS) for several benchmark geometries are
computed. The computed results are verified by comparison with measured and exact calculated
results. In some cases the self-consistency method is used to perform the verification. The
measured and calculated data presented in this paper are expected to serve as benchmarks for

other researchers in the field.!

I INTRODUCTION

The study of electromagnetic scattering from composite materials has become of interest
to many engineering societies. For example, in biomedicine modeling of human bodies and
tissues requires very complex composite objects. With the relative increase in the complexity
of the objects of interest, numerical solutions become necessary to study the electromagnetic

characteristics of these objects. Various numerical methods can be used to solve such problems

1 This work was sponsored by the Department of the Air Force. The views expressed are those of the
authors and do not reflect the official policy or position of the US Government.



[1-6], however, each method has limitations.

The method of moments has been proven to be efficient in solving Surface Integral
Equations (SIE). The SIE formulation is most suitable for objects made of linearly isotropic
homogeneous materials. For inhomogeneous objects, other formulations may be used, such as
the Volume Integral Equations (VIE) or Partial Differential Equations (PDE) formulations.
However, if the inhomogeneity of the material is simple, the use of SIE may be preferred,
because the matrix size will be smaller using SIE than the matrices that can be obtained from
other formulations.

In this paper, the SIE formulation is used to assess the problem of electromagnetic
scattering from bodies of revolution made of multihomogeneous regions. The present
formulation is similar to the one given in [1]. The method of moments is used to solve the SIE.
The resulting matrix system is a buildup of the basic Z and Y matrix obtained for conducting
or dielectric bodies of revolution [7-8]. The computer program that has been developed to
compute the bistatic or monostatic Radar Cross Sections (RCS) is tested and verified, and several
examples are selected to show the accuracy of this program in predicting RCS. Only one
formulation is discussed; however, the program has been written to implement easily other
surface formulations, such as those reported in [9]. Also, the program is written to efficiently
fill the matrix. The properties of symmetry in reference to the impedance and admittance
matrices that are used to build the final matrix are implemented. All the numerical results
presented in this paper are obtained by the same program (MRBOR) to show its flexibility and

generality.

I DEVELOPMENT OF THE SIE

a. Statement of the Problem:

In this section, the concept of the equivalence principle is used to derive the SIE
formulation for composite scatterers with N homogeneous regions. The geometry and notations
for such a scatterer are given in Fig. 1. The whole space is divided into N+1 homogeneous
regions with permittivities ¢; and permeabilities g;, i = 0, 1, 2, ..., N. Lossy materials are
considered by allowing ¢, p;, 1 = 1, 2, ..., N to be complex. Some homogeneous regions are
considered to be perfect conductors. The region V; is surrounded by a closed surface S; and

recognized by the inward normal unit vector n. The surface interface between regions V; and



Vj 18 Sij, i # j. Thus, §; is the set of all interface surfaces Sij> where ] represents all region

numbers interfacing with region V.. Note that Sij is the same surface as S;;; however, the

normal unit vectors i; and n; are in opposite directions to each other on Sij-

Vo E0:10 502

Fig. 1. General geometry of an object consisting of N regions.

b.SIE Formulation:

The total fields in each homogeneous region are denoted by E; and H;, i = 0, 1, 2, ...,
N for the electric and magnetic fields, respectively. If V; is a perfectly conducting region, the
fields are equal to zero. In the free-space region V, the total fields (Ey, H) are the summation
of the incident and scattered fields (E™° + ES¢, HI® 4+ H%)., From Maxwell’s equations and
the equivalence principle, one can express the field in each region in terms of unknown electric-
and magnetic-equivalent surface currents. In this paper, the sources of excitation are considered
to be due to a plane wave in the free space region; therefore, the fields at any observation point

r in the free space can be expressed as [1] (these expressions are given here for convenience)

6(r) Eg(r) = E™ - L3 Jo(r/) « § Mo(r) (1)

6(r)Hy(r) = H'™ -Kgo Jo(ry = (1/m5) Lgo M, (r') @)

and



8(r) E;(r) = -Lsii ¥,y +K‘Si M (r') 3)

6(r) H(r) = -xs J;(e) = (Un)) Lg My(r) )

in the region V;, where i = 1, 2, ... N. Time variation of &%t is implied and suppressed

throughout. The electric- and magnetic-surface currents along the boundaries are

M.z_n. X E 1 (5)

In these equations,n; = Mg yHir/€r» & = €0 € Hi = Hobip G and g, are the relative

permittivity and permeability in the region V;, and 7 is the intrinsic impedance of the free

space. The operators Lis and xiS are defined as

Lg Ci(r') = jou JS‘ [C,(r)) + (VePeu;) VV/.C(r))]&; S’ 6)

xisi C; () = JS_ C, (v'y x Vv &, ds’ %)

where Ci(r’ ) represents the currents J, or M;. For r = r’/ , the operators are interpreted as

Cauchy principal-value integrals. @, is the Green’s function of unbounded region, which can

be represented as
ki e -/
=e ) il |

e (r - r') /e - r/] (8)

where k; is the wave number of the region i, which is equal to wy¢jp; . In Equations (1) to
(4) the value of 8(r) is constant, depending on the position of r as

1 forr eV,
f(r) = 11/2 forr e S; )
0 elsewhere



Applying the boundary conditions on each Sij yields a set of coupled integral equations
for the unknown electric and magnetic currents on these surfaces. On the dielectric interfaces,

the tangential fields are continuous. Thus,

Ei!tzm = Ejltan on Sl] (10)

x H. on S (11}

n; X H; = n; i ij

]

On the conductor interfaces, the tangential electric fields vanish, yielding

E; |tan =0 on Sij (conductor surfaces) (12)

Substituting Equations (1) to (4) into (10) to (12), one obtains

. : : , Oinorj=20 (13)
1 1 .
[Ls Ji - x5, Mj - Lg, Jj + «’Sj M Jian = E™iorj-o0f o Si
an

+

. ., . ,
n; X [k J; + (1/5;) LgMj] - m; X [:c’Sij + Uy} Léj M;]

(14)
~ Oinorj =0
- n % HmCiOI'j =0 on Sij
i : 0inorj=0 (15)
L, Ji = x5, Midan = | g™ § o = 0 on Sj;

To enable the reader to have better understanding of Equations (13) to (15) (which yield
a coupled system of integral equations), a specific example will be considered. Consider a
scatterer consisting of two dielectric regions attached to a perfectly conducting body, all in free

space, as shown in Fig. 2. The boundary conditions in integral forms are
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Fig. 2. Example of a three regions object.

0 0 1 i inc
(Ls, Jo = ks, Mg = Lg J1 + k5 My Japy = By, 0N Sgy

0 2, .0 1 2 1

= ny X H™ on Sy,

where

Jo = Uo1> Jo2: Jo3 )
Iy = Jops Ji2: J13)
M, = (Mp;, Mp,)
M| = (-Mg;, Myy)

(16)

(17)

(18)



0 0 2 2 i
[Ls, Jo = ks, Mo ~ Lg, Jp + #5, My luy = Egp 00 Sgp (19)

tan

ng X [ka Jo + (1/75) LIMG] - ng X [k Jy + (1/73) La My
0 0 32 2 (20)

=ny X H™ on Sy
where

Jy = (=Jops J125 23 ) (21)
M2 = (-MOZ, _M12)

0 0 inc
[LSO JO B KSO MO ]tan = Etan on SO3 (22)
1 I M 2 2 M _ Einc S (23)
[LSl Jl - KSI 1 L82 J2 * "52 2 ]tan = Bgn 00O

1 2 1 a 2 2 2

. (24)
=n; X H™ on S
1 1 '
[Lg, J1 = &5, My lan = Eg, O Sp3 25)
2 2 inc
[Ls, J2 — &5, My Jun = Eqyy on Sy3 (26)

These are nine vectorial equations in nine vectorial unknowns. The unknowns are the
electric- and magnetic-surface currents Jqo;, Jo2. Jo3. 312, J13, J23, My, My, and Mj,. The
integral equations are reduced to matrix equations using the method of moments by using

triangle testing and triangle expansion functions [8].
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The above surface integral equations are applied to rotationally-symmetric bodies. The
reduction of the integral equations to matrix equations involving unknown surface currents
follows a well-known procedure [9]. After the necessary manipulations of the method of

moments, the general matrix takes the form

(T1 [, = VI, @7)

where T is a square matrix, representing a combination of impedance and admittance
submatrices that are given in {9]; 1 is a column matrix for the unknown expansion coefficients
of the unknown current components J and M; and V_ is the excitation column matrix. Once the
matrix is solved, the induced currents on all surface interfaces can be determined. Scattered far

fields can be determined from the induced currents on the outer surfaces.

IIT RESULTS AND DISCUSSION
a. Bistatic RCS:
In this section the bistatic RCS is computed numerically. The numerical results are

verified by comparison with analytical and supplemental numerical results.

Dielectric sphere: First, to verify the numerical results of objects made of more than one
homogeneous region, the example of a sphere geometry is considered. The series solution for
a dielectric sphere [10] having e = 4-0.5, u,= 2-j0.25, and ka=3 is obtained and compared
with the numerical solution of the same object when it is divided into three homogeneous regions
of the same material type. The results obtained from both solutions must be identical, because
physically both cases represent the same object. The agreement between the two solutions is
excellent, as shown in Fig. 3. Several spherical objects have been considered, such as the

coated sphere and the multilayered sphere; however, their results have been omitted for brevity.
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Fig. 3. Bistatic RCS of dielectric sphere divided into three regions of the same materials,
e,=4-j0.5, u,=2-j0.25, and ks=3.

Dielectric toroid: Another geometry, of a
dielectric toroid, is considered, as shown in Fig.4a.
The numerical solution is obtained, once, when the
circular cross section is divided into six regions, all
of which have the same type of material. This
numerical solution is compared with the numerical
solution of the same object when it is treated as one
region. The agreement between both solutions is
excellent, as shown in Fig.4b. When each region is
filled with different homogencous materials, the

computed bistatic RCS is shown in Fig. 5. Notice

Fig. 4a. Toroid cross section divided
into six homogeneous regions.

that the scattering level has increased in the whole bistatic range.
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Fig. 4b. Bistatic RCS of the toroid when all regions have the same materials,
e, =4-j0.5, p,=2-j0.25, ka=3, kb=4.4.
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Fig. 5. Bistatic RCS of the toroid with, €., =33, en=2-j2, €,3=4-j0.5, €,4=6-]6,
€5 =515, €,4=4-j4, and p =2-j0.25 in all regions.
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Loaded conducting bicone: To examine the numerical solution performance of objects
made of dielectric and conductors, the case of a biconical conducting object is selected. The
numerical solution of this object and the conducting bicone is compared with the numerical
solution of a conducting bicone surrounded by an artificial dielectric material of free-space
permittivity and permeability, as shown in Fig. 6. In this example, the bicone is illuminated by
a plane wave of normal incidence (§=90°). Therefore, the number of the azimuthal modes that
is used to obtain the bistatic RCS is eleven, n=0,..., +5; for the axial incident cases the
required modes are +1. Figure 6 shows the excellent agreement between the two solutions.
Also shown is the symmetry around #§=90° 1In this example, the H-plane shows a zero-back
and forward-scattering, and the E-plane shows its maximum values at these directions. When
the free-space part of this object is filled with homogeneous materials of ¢, = 4, the RCS is
computed as shown in Fig. 7. The sidelobes of the scattered H-plane patteren disappear, and

the forward scattering for the E-plane pattern becomes higher than the back-scattering.
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Fig. 6. Bistatic RCS of a conducting bicone, ka=3, e, =1., u_=1.
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Fig. 7. Bistatic RCS of the bicone when e =4., u =1.

b. Monostatic RCS:

In the above examples, the bistatic RCS were considered. Next monostatic RCS are also

verified numerically and experimentally.

Half-conducting sphere: The first example is the perfectly-conducting dielectric
hemisphere. For numerical verification, the dielectric is considered as a free space. The
monostatic RCS is compared with the numerical solution of a conducting hemisphere, as shown
in Fig. 8. This figure indicates excellent agreement between both solutions in the whole 6
range. When the free-space part is replaced by materials of ¢,=2-j0.5, and g, =3-j0.5, the

monostatic RCS is computed as shown in Fig. 9. The effect of the presence of dielectric materials
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Fig. 8. Monostatic RCS of a conducting hemisphere compared with the scattering from
a conducting hemisphere-air hemisphere object, ka=3.
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Fig. 9. Monostatic RCS of a conducting hemisphere-dielectric hemisphere object,
ka=3, e, =2-j0.5, p,=3-j0.5.
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is different from the free space. This difference is clear in the backscattering data for ranges
of 8<90, which is the dielectric side. Significant reduction of the backscattering level is
observed. When e_=1, the effect of the flat surface and the sharp edges obviousty contributed
to the high backscattering levels.

Round-tip cone: In this section, new numerical results are presented and verified with
measurements, which have been collected at the RCS Range of Group 95 at Lincoln Laboratory.
The first geometry that is considered is the partially coated, perfectly conducting round-tip cone,
shown in Fig. 10. The first case that has been considered is the one that corresponds to a
homogeneous coating; in other words, the materials in both coating regions are the same. The
monostatic RCS are shown in Fig. 11 for both 68 polarization (left) and ¢¢ polarization (right),
respectively.  When the coating on the second region is removed, the second region is then
equivalent to free-space permittivity. The monostatic RCS is computed and compared with the
measurements as shown in Fig. 12 for 8¢ polarization and ¢¢ polarization, respectively. Figure
13 show the monostatic RCS of both polarizations when second region is filled with materials
of ¢,=2.60. In the above three cases, excellent agreement is obtained between the measured

data and the computed data.

All dimensions in Ag {free space wavelength)
L=1978b=02328, a =0.0424,t=0.0847 ¢=0.86

case Ert Ero
1 2.05 2.05
2 2.05 1.00
3 2.08 2.60

Fig.10. Geometry of a partially coated, perfectly conducting round-tip cone.
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Fig. 11. Computed and measured monostatic RCS of casel in Fig. 10.
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Fig. 12. Computed and measured monostatic RCS of case2 in Fig. 10.
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Fig. 13. Computed and measured monostatic RCS of case3 in Fig. 10.
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Fig. 14. Geometry of a perfectly-conducting cylinder partially coated with two
dielectric layers
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Finite cylinders: Another geometry, double layered coating of a finite conducting
cylinder, is considered. Figure 14 shows the geometry of the cylinder. The values of the
parameters of Fig. 14 are given in Table I for three cases. All the measurements in this section
have been performed at 4GHz. Figure 15 (left) shows the comparison between the computed
and measured data of the monostatic RCS for #8 polarization of casel in Table I. In this case

only one layer is considered.

Table 1. Parameters of Figure 14

case | a(cm) | L{cm) { ty(cm) €r | talem) €2

1 3.0 27.94 | 0.1528 | 35.2-328.68 - -

2 3.0 27.94 1 0.1528 35.2-j28.68 0.68 1.757-j1.569

3 2.814 | 21.59 | 0.988 2.05 0.1528 | 35.2-j28.68

The measured data of ¢¢ polarization are not available, however, the computed data are shown
in Fig. 15 (right). The monostatic RCS of the second case in Table I of the two layered coating
1s shown in Fig. 16. Again, only the measurements of the 66 polarization are available. In the
last case, the first layer is a high loss material of large permittivity and the second one is high
loss of small permittivity. In the third example of Table I, the first layer is made of a lossless
material of small permittivity; the second layer is made of high-loss high-permittivity materials.
The monostatic RCS is shown in Fig. 17 for the 88 and ¢¢ polarization, respectively. The last
three cases represent large objects. The agreement between the measured and computed data
is satisfactory. In general, the above results show accuracy of the measurements within a wide

dynamic range of sensitivity.
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Fig. 15. Computed and measured monostatic RCS of casel in Table I.
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Fig. 16. Computed and measured monostatic RCS of case2 in Table I.

21



0
------ 68 (computed)
- B — @@ (measured)
-10 A0 ¢@ (computed)
— 20
£ -
e 30 |- Al
= |
s f i i i
-50 -
_60 1 1 L 1 L 1 1 1 1 i
0 30 60 900 30 60 90

6o Qo0

Fig. 17. Computed and measured monostatic RCS of case3 in Table 1.

IV CONCLUSION

In this paper, a computer program has been developed to compute the electromagnetic
scattering from axisymmetric objects. The method of moments is used to solve the surface-
integral equations formulation (E-PMCHW). A number of objects has been analyzed by this
program. Each object consisted of arbitrarily arranged homogeneous regions. Both bistatic and
monostatic RCS data were presented. The computed data were verified either numerically or

experimentally and excellent agreement was demonstrated.
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