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ABSTRACT. The hvbrid FDTD-MoMTD technique is a
powerful tool for analysing the transient excitation of
inhomogeneous permeable bodies by arbitrary thin-wire
antennas. This technique is based upon the calculation of
the equivalent electric and magnetic currents on a
Huygen’s surface that encloses the antenna. This paper
studies, by means of several numerical experiments, the
effects on the accuracy of the results of the size of the
Huygen's box, the size of the spatial increment in the FDTD
algorithm and the distance from the Huygen's surface to
the observation point.

1 INTRODUCTION

A hybrid technique that efficiently combines two
powerful numerical methods, the Finite Difference Time
Domain (FDTD) and the Method of Moments in the Time
Domain (MoMTD), was recently described in [1]. This
technique, which is applicable to complex geometries
comprising  thin-wire  structures and  arbitrary
inhomogeneous dielectric bodies, has been successfully
used to study linearly and non-linearly loaded broadband
antennas near arbitrary inhomogeneous bodies and to
simulate a three dimensional Ground Penetrating Radar
(GPR) [2)-[3].

The hybridization is based upon the surface
equivalence theorem (Huygen's principle) [4] and it is
implemented. using a time-stepping procedure, as follows
{11
1) An imaginary closed Huygens's surface Sy is located
around the thin-wire antenna. At each time step, the
equivalent scurces on Sy are derived from the fields
radiated by the antenna in free space by applying the
MoMTD.

2) Next, the FDTD algorithm is applied to compute the
fields in the entire computational domain, removing the
antenna inside Sy and replacing it by the equivalent
sources. Thus, according to the equivalence principle, we
obtain the total tield outside S, and just the field scattered
by the inhomogeneous part of the configuration inside S.

3) The FDTD solution inside Sy when the antenna is not
present is the extra incident field on this antenna needed to
compute, by the MoMTD, the currents induced on its
surface and subsequently the radiated fields and the
equivalent sources on Sy

This paper studies the effect of the size of the
FDTD cell used to model Sy and the size of Sy itself on
the precision of the method. To this end, a Hertzian
(infinitesimal) dipole, placed at the center of Sy, was
chosen as aradiation source. This choice allowed us to use
the known closed-form solution for the fields created by
the Hertzian dipole to calculate their exact values at the
points of interest and to make Sy arbitrarily small around
the radiation source. The difference between the values of
the fields derived using their analytical expressions and the
ones obtained using the hybrid method are calculated as a
function of the size of the FDTD cell on Sy and of the size
of Sy itself. The next section describes the numerical
experiments that have been carried out and the results
obtained.

2 NUMERICAL EXPERIMENTS AND RESULTS

The basic geometry used for the numerical
experiments is shown in Figure 1, where the arrow
represents a Hertzian dipole oriented along the z axis,
positioned at the center of the Huygen’s surface Sy and
radiating in free space. The extemal surface Sp is where
the FDTD algorithm is truncated by applying suitable
absorbing boundary conditions. The FDTD cells, as well as
Sy and Sz , are assumed to be cubic and the volume V4
inside Sy is uniformly discretized using a cell size A. If the
Hertzian dipole radiates in free space, according to the
equivalence theorem, there will be no scattered field inside
Sy and the total field should be zero. We chose three
observation points: P; and P- outside Sy and P; at the
center of the Huygen's volume. P, is located at a fixed
position, (0.48,-0.1,-0.36) m, while the coordinate of the
observation point P- depends on the size of Sy in such a
way that 1t always remains at a distance of two FDTD
cells from Sy. The fields at all these points are calculated
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both numerically, using the hybrid method, and analytically
from the expressions [5].

{( it + sy 21+ 4%"_](,:x(;xz))}
Hir)= 4n(/d[’] []j(éxr‘) ey

cr dt

E(rt =

where i=i(t) is the transient current excitation, r is the
radial distance from the center of the Hertzian dipole to the
observation point, 7 and # are unit vectors, and the
rectangular brackets denote that the variables contained
within them are to be evaluated at the retarded time
{'=t—r/c. The expressions in (1) are also used to calculate
the equivalent electric and magnetic currents from the
tangential component of the fields on the surface S,.
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Figure 1.- a) Geometry for the Hertzian dipole radiating in
free space; b) Projection on the plane x=0.

Henceforth the transient current excitation will be
particularized for a differentiated Gaussian pulse current
defined as

l.(f)=—2g2(t- gz(t‘tmax)z] @)

where g=10" s and ¢,,,~4/g.

to) exp[—

At the points P; and P, (outside Sy) an error
factor, Q;, is defined as the sum of the normalized root-
mean square error of each component of the electric field,
that 1s:

N
>
o = ZQ!,& ; 0. = =0 N B
a=xs Z!E:(”)’
n=0

3)

where N is the total number of time intervals and E,"(n) and
E."(n) represent the values, at time step n, of the « electric
field component calculated using expression (1) and the
hybrid method respectively.

At point P; (inside Sy), as previously stated, the
total field should be null unless a scattered field exists. To
calculate an error factor similar to O, inside Sy, a known
scattered electromagnetic field is required there. To this
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end, a perfect electric conducting (PEC) plate is
introduced into the original geometry at a fixed distance,
dr=0.2 m, from the center of the Huygens’s zone as shown
in Figures 2a-c. The expression of the field inside Su,
scattered by the PEC, can be also obtained from (1) by
replacing the PEC surface by the image of the original
radiation source (see Figure 3). Then, an error factor, 0>,
inside Sy is defined as

> |ET () - B ()]
ZQla > QZ,a = |=2

a=x,y,z

4)

N 2
E]'(m)

n=0

where E,"(n) and EaN(n) represent the values of the
electric field components at P; calculated using the image
of the radiation source and the hybrid method respectively.
To calculate O, the effect of the undesired return from Sy
due to the staggered position of the equivalent electric and
magnpetic currents [5] has been eliminated. This was
carried out by time gating when there is no overlapping
between the undesired and the desired signals or, if
overlapping exists, calculating the field inside Sy with the
Hertzian dipole radiating in the free space and subtracting
these results from those obtained including the PEC.
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. f Image
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Figure 2.- a) Hertzian dipole in front a PEC interface; b)
Projection on the x=0 plane; ¢) Equivalent problem
including the image source.

To study the effects of the size of the FDTD cell
and Sy, the error factors O, and O, have been evaluated for
three different cases:

i) Keeping the value of A constant and changing the
size of Sy (Figure 3).

ii) Changing the value of A and maintaining the
number of cells inside Sy constant which, in
consequence, does not remain constant (Figure 4).
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iii) Changing the value of A while the size of Sy is
unchanged (Figure$).
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Figure 3.- Error factors at the observation points as a
function of /;; and the number of cells inside Sy for a fixed

value of A=5 mm.
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Figure 4.- Error factors at the observation points as a
function of /5 and the cell size A keeping p=8.
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Figure 5.- Emror factors at the observation points as a
function of the cell size A and the number of cells inside
Sy, for a fixed size of Sy.

The parameter p in Figures 3 and 5 is an integer
number, such that, the half length /5 of one side of Sy, is
given by /,;=p A and the surface of Sy equals 24(p A )’ (see
Figure 2). Moreover, in all cases, the principal spectral
components have been resolved with at least 15 cells per
wavelength.

Figure 3 shows how the error factors O and O,
increase as /y decreases while the value of A= 5 mm is
kept constant. This can be explained from the dependence
upon r as 1/r° and 1/~ of the near-field contributions to
the total field in (1). When /;; decreases the influence of the
near fields increases and a smaller value of A would be
necessary to get a greater number of points on /y in order
to take into account the strong dependence of the near fields
upon r. On the contrary, when Iy increases, the smoother
variation of the amplitude of the fields allows us to use a
greater value of A. Another way of illustrating this effect
is given in Figure 4, which shows that O, and @, increase
when I;; decreases even though A also decreases. The
method used to decrease /gy was to keep the parameter p
constant (p=8) in Iy=p A while A decreases.

For a fixed value of /y =40 mm, the dependence

upon A of the error factors Q; and 0, is shown in Figure
5. As expected, in the three cases the error factors
decrease as A decreases because the number of field
samples on /; increases.

Figures 6a-b show the temporal evolution of the
three electric field components calculated numerically and
analytically in the cases where greater values of the error
factors, represented in Figures 3 and 4, were found. These
correspond to point P, for Iy =20 in Figure 4 and point
P; for I;=40 in Figure 5. It can be observed that even in
these cases the agreement between the numerical and
analytical results is very good. All these results show that
the method works properly even when the Huygen’s
surface is small and the observation point is near the
surface. With regard to this, the smallest Sy that we were
able to implement (in a 600 MHz PC with 768 Mbytes of
RAM) had /y =10 mm and was modeled with A =1 mm
(Iy=10 A) with P,being at 2 mm from Sy or equivalently
at 1.2 cm from the radiation source. In this case, not
included in the previous plots, the value obtained for O, at
point P-, was 0;=0.0673. Figure 7 shows the three electric
field components calculated numerically and analytically at
this point. Again, it is observed that there is very good
agreement. It should be pointed out that similar conclusions
to the ones includes in this paper were obtained for
narrower gaussian excitations.
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Figure 6.- Temporally evolution of the electric field
calculated numerically and analytically. a) Point P, for [
=20; b) Pont P, for I;;=40.
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Figure 7.- Temporally evolution of the electric field
calculated numerically and analytically to point P- for /y
=10 mm.

3 CONCLUSIONS

This paper studies the effects of the following
parameters on the accuracy of the results obtained by the
hybrid FDTD-MoMTD technique: the size of the Huygen’s
box around the antenna, the size of the spatial increment in
the FDTD algorithm and the distance from the Huygen’s
surface to the observation point. By means of several
numerical experiments the method is shown to be robust
and gives very good results even when the
Huygens's’surface is very near the radiation source.
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