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Abstract ─ In this paper, a modified marching-on-
in-order time-domain integral equation method is 
utilized to analyze transient electromagnetic 
scattering from arbitrarily shaped objects. The 
spatial and temporal testing procedures are 
separate, and both of them are performed with the 
Galerkin’s method. The curvilinear RWG basis 
functions are used as spatial basis functions with 
curved triangular patch modeling. It gives a 
remarkable reduction to the number of unknowns, 
also the memory requirement and CPU time, 
without sacrificing the accuracy. The use of the 
weighted Laguerre polynomials as temporal basis 
functions ensures an absolutely stable solution 
even in late time. Several numerical results, 
including the single ogive and NASA almond, are 
given to demonstrate the accuracy and efficiency 
of the proposed method.   
 
Index Terms ─ Curvilinear RWG basis functions, 
Laguerre polynomials, marching-on-in-order time-
domain integral equation, transient scattering.  
 

I. INTRODUCTION 
Accurate and efficient transient simulation has 

drawn great interest in the past decades for its 
important applications in the ultra wide band 
(UWB) technology, electromagnetic compatibility 
(EMC), radar imaging, etc. Numerical techniques 
in time domain falls mainly within the scope of the 
finite difference time-domain (FDTD) [1], the 
time-domain finite element method (TD-FEM) [2], 
and the time-domain integral equation (TDIE) [3], 
which can overcome the drawbacks encountered in 
the partial differential equation (PDE) methods. 

The most popular method to solve TDIE is the 
marching-on-in-time (MOT) procedure [4], but it 
may suffer from late-time oscillation and 
inaccuracy. Some progresses seem to eliminate the 
drawback [5, 6].  

In the realm of the integral equation method, 
the RWG basis function defined over the planar 
triangular patches was proposed to model the 
behavior of the induced surface current [7, 8]. 
Afterwards, the curvilinear counterpart with 
curved triangular patch modeling was developed, 
and much less unknowns are required without a 
loss of accuracy [9, 10].   

References [11-13] used the curvilinear RWG 
(CRWG) basis functions and other techniques to 
analyze transient scattering based on the time-
domain magnetic field integral equation (TD-
MFIE) with MOT procedure. For closed bodies, 
because using the time-domain electric field 
integral equation (TD-EFIE) or TD-MFIE alone 
would lead to wrong results near the resonant 
frequencies, the time-domain combined field 
integral equation (TD-CFIE) is preferred [14].  

Recently, the marching-on-in-order (MOO) 
TDIE solver with weighted Laguerre polynomials 
as temporal basis functions was introduced, which 
can obtain unconditionally stable solution [15-18]. 
In this scheme, accurate results near the resonant 
frequencies can be ensured with only TD-EFIE or 
TD-MFIE [18]. However, the conventional MOO 
TDIE method is not efficient in terms of RAM and 
CPU time. To circumvent the bottleneck, in this 
paper CRWG basis functions are utilized with 
MOO TD-EFIE to analyze the electromagnetic 
scattering from conducting objects. 
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This paper is organized as follows. Section II 
presents the formulation of MOO TD-EFIE and 
the CRWG basis functions. This is followed, in 
Section III, by giving several numerical results to 
demonstrate the accuracy and efficiency of the 
proposed method. The conclusion is drawn in 
Section IV. 
 

II. FORMULATION 
 

A. MOO TD-EFIE 
With the boundary condition on the surface of 

the conducting scatterers, the time-domain electric 
field equation (TD-EFIE) is 
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where  ,i tE r  is the incident electric field, 

R  r r'  is the distance between the observation 
point r and source point r' , /Rt R c  , J  is the 
first derivative of the electric surface current 
density J with respect to time t, c, μ0, and ε0 are 
light speed, permeability, and permittivity in free 
space,  respectively. 

J can be expanded using N spatial basis 
functions and M temporal basis functions as 
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and  nf r  is the spatial basis function and 
specifically the CRWG in this paper. ( )j t  is the 
temporal basis function, i.e. the weighted Laguerre 
polynomial, defined as 
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where s is a temporal scaling factor and jL  is the j-
th order Laguerre polynomial with the form 
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The temporal derivative and integration terms 
in (1) are given as [17] 
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After the spatial and temporal testing procedure 
with the Galerkin’s method, for the i-th order case 
we obtain 
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where 
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Rewrite (7) into a matrix equation 
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We can solve the matrix equation recursively to 
get the temporal coefficients order by order. Then 
the surface current density can be obtained from 
(2). 
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B. CRWG basis function 
The CRWG basis functions are defined over 

curved triangular patches. Compared with planar 
triangular patches, the curved ones give a 
significant reduction to the mesh density, and 
hence the number of spatial unknowns, without a 
loss of the accuracy of the geometry modeling and 
the numerical solution. 

As shown in Fig. 1, a curved triangular patch is 
defined by six nodes, and a position in the ( 1 2,  ) 
parameter space is described by 
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where jr  is the Cartesian coordinate,  1 2,j    is 
the shape function with the form 

   
1 2

3 5

2 1/ 2 ,    1,2,3
 ,

4 ,             4,5,6
j j

j
j j

j

j

 
  

  

   


,     (17) 

and 
1 2 3 1     .                     (18) 

 

x 
z 

y 1 
2 

3 

4 

5 6 

1 

5 4 

6 3 

2 

1

2  

 
(a)                               (b) 

Fig. 1. (a) A curved triangular patch with six nodes 
in the Cartesian coordinate system, (b) The 
triangular patch in the  1 2,   parametric space. 
 

The CRWG basis function is defined as 
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and J is the Jacobi factor 

1 2
1 2

( , )J  
 
 

 
 

r r .                (21) 

The surface divergence of the CRWG basis 
function is 

  2     ( =1,2,3)s J 
 f r .      (22) 

The differential tangent vector and normal 
surface element are given below, respectively, 
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The surface normal unit vector is 
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III. NUMERICAL EXAMPLES 

This section gives several numerical results 
obtained using an implementation described above 
to validate the proposed method. All CPU times 
are taken on a 3.0GHz processor. 
 
A. Sphere 

As the first example, we consider a metallic 
sphere centered at the origin with a radius of 0.5 
meter. The problem is discretized into 219 CRWG 
basis functions and 50 temporal basis functions 
(i.e., the weighted Laguerre polynomials). The 
incident Gaussian pulse is with the form of 

  24ˆ,
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where k̂  is the unit vector in the direction of the 
wave propagation and is along ˆz  direction in this 
example. t0 = 12 lm represents a time delay of the 
pulse peak from the time origin, and T = 8 lm is 
the pulse width. In this work, we use lm as time 
unit, which is the short form of light meter. One 
light meter is the time taken by the 
electromagnetic wave to travel one meter in free 
space. This pulse has a frequency spectrum of 125 
MHz. The scaling factor s is with the value of 
1.0×109. 
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The θ component of the backward far field 
response ( 0   , 0   ) from the sphere is shown 
in Fig. 2 (labeled C 219). For the sake of 
comparison, results obtained in Reference [18] 
(labeled Ref) and that via 795 conventional planar 
RWG (PRWG) basis functions (labeled P 795) are 
also shown. Good agreement can be observed. 
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Fig. 2. θ component of transient backward far field 
response from a sphere. 
 
B. Single ogive 

Another example is a metallic single ogive. 
The analytical expression for this target is as 
follows: 

for –1.27 m < x < 1.27 m and –π < φ < π, 
define 

2 2( ) 1 ( ) sin 22.62 cos22.62
5

( )cos
1 cos22.62

( )sin
1 cos22.62

xf x

f xy

f xz





  







 





.  (30) 

The incident wave used in this example is a 
modulated Gaussian pulse given by 
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where the central frequency 0f  is 160 MHz, 
ˆt c   r k/ , k̂  is along ˆz  direction, 

 6/ 2 bwf  , 4.5pt  , the bandwidth bwf  of 
the signal is 320MHz. 

The problem is discretized into 444 CRWG 
basis functions and 100 temporal basis functions. 
The scaling factor s is with the value of 1.5×109. 

After the solution procedure in time domain, 
the far-field signals are Fourier transformed into 
the frequency domain and then the bistatic radar 
cross section (RCS) in 0    plane at several 
representative frequencies are calculated. These 
frequencies are chosen near the lowest, the middle 
and the highest frequency of the frequency band, 
and in this example they are 20 MHz, 160 MHz 
and 300 MHz. The results (labeled CRWG 444 
DFT) are compared with those obtained via 
frequency domain MoM using 444 CRWGs 
(labeled C 444) and TD-EFIE using 648 PRWGs 
(labeled P 648 DFT) in Fig. 3. The results are in 
good agreement with each other. It’s worth 
mentioning that 648 is the minimum number of 
PRWGs through exhaustive numerical 
experiments with increasing spatial unknowns. 
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Fig. 3. Bistatic RCS of the single ogive: (a) 20 
MHz, (b) 160 MHz, and (c) 300 MHz. 
 
C. NASA almond 

A metallic NASA almond is referred to as the 
last structure. The mathematical description used 
for this target is as follows: 

for –0.41667 < l < 0 and –π < φ < π, define 

2

2

 m

0.193333 1 cos
0.416667

0.064444 1 sin
0.416667

x dl

ly d

lz d







    
 

    
 

,  (32) 

for 0 < l < 0.58333 and –π < φ < π 
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where d=2.52374 m. 
The incident wave used in this example is a 

modulated Gaussian pulse with the form of (31). 
The problem is discretized into 626 CRWG basis 
functions and 100 temporal basis functions. The 
central frequency of the incident modulated 
Gaussian pulse is 110 MHz and the frequency 
bandwidth is 220 MHz. The scaling factor s is 
with the value of 1.5×109. After a Fourier 

transform, the bistatic RCS in 0    plane at 20 
MHz, 110 MHz and 200 MHz are given.  

The result (labeled C 626 DFT) is compared 
with those obtained via frequency domain MoM 
using 626 CRWGs (labeled C 626) and TD-EFIE 
using 985 PRWGs (labeled P 985 DFT) in Fig. 4. 
985 is found to be the minimum number of 
PRWGs for an almost indistinguishable result, 
which are more than that of the CRWGs. 

The efficiency of the proposed method is 
further compared in Table 1. Considerable 
reduction to both memory requirement and total 
CPU time are achieved. 
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Fig. 4. Bistatic RCS of the NASA almond: (a) 20 
MHz, (b) 110 MHz, and (c) 200 MHz. 
 
Table 1: Comparison of memory requirement and 
total CPU time 

 Geometries 
Sphere Ogive Almond

Matrix 
Size 

PRWG 795 648 985 
CRWG 219 444 626 

RAM 
(MB) 

PRWG 244 321 744 
CRWG 18 151 300 

Total 
Time (s) 

PRWG 275 754 1896 
CRWG 14 298 734 

 
VI. CONCLUSION 

In this paper, the marching-on-in-order time-
domain integral equation method with curvilinear 
RWG spatial basis functions is presented to 
analyze transient electromagnetic scattering from 
arbitrarily shaped objects. Stable solutions can be 
ensured, and the memory requirement and CPU 
time are reduced without sacrificing the accuracy. 
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