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Abstract – Different implementations of planar per-
fectly matched absorbers are studied under the unified
framework of the Finite-Volume Time-Domain (FVTD)
method. This comparative analysis allows to discuss the
similarities existing between the theoretical models and
explores the differences in their practical implementation
and numerical performance in the framework of the
FVTD method. Numerical experiments for performance
analysis of the different PML models are conducted
in terms of discretization and angle of incidence using
waveguide models. The results are compared to theoreti-
cally expected values and to the first-order Silver Müller
absorbing boundary condition.

I. INTRODUCTION

One of the biggest challenges in computational elec-
tromagnetics is to find domain truncation techniques
which can accurately simulate an infinite space in a
finite computational domain. The perfectly matched layer
(PML) technique was introduced in [1] and it improved
the accuracy of the numerical simulations by many orders
of magnitude compared to previously applied traditional
absorbing boundary conditions. Different implementa-
tions of the PML technique were reported in the liter-
ature giving rise to two general classes, namely non-
Maxwellian (split) and Maxwellian (unsplit) absorbers.
The implementation of the PML technique in conformal
methods were limited to the Finite-Element Frequency-
Domain or Time-Domain methods [2, 3]. A vertex-
centered Finite-Volume Time-Domain (FVTD) model
(variational approach) of the Bérenger PML (B-PML)
was reported in [4] for scattering problems. Recently the
authors introduced the cell-centered FVTD implementa-
tion of B-PML and modified Lorentz material-based PML
(M-PML) techniques in [5, 6]. The generalized theory
based perfectly matched layer (GT-PML) [7] and the
complex frequency shifted perfectly matched layer (CFS-
PML) [8, 9] were introduced for the FVTD method in
[10]. The present paper extends the discussion on the
unsplit perfectly matched layer (U-PML) model [11] and
provides a more thorough performance evaluation. The
theory of five different PML techniques, namely B-PML,
M-PML, U-PML, GT-PML and CFS-PML, is studied
under the unified FVTD framework and the numerical
performance of the different PMLs is compared. The

abbreviations are summarized in Table 1.
The paper is arranged as follows. In Sec. II some

fundamentals on the FVTD method are given in a notation
that will be used throughout this paper. Sec. III focuses
on both the split and unsplit PML models. Derivations of
the different PML models are summarized with respect
to the FVTD implementation and analytical relations
between the PML models are given. The computational
cost is compared in Sec. IV. Numerical experiments
are presented in Sec. V for the different PML models,
including an investigation of evanescent wave absorption.
The conclusion in Sec.VI summarizes the findings and
emphasizes the practical application range for the differ-
ent PML models.

Table 1. List of abbreviations of the different PML
models used in this publication.

Bérenger PML B-PML

Modified Lorentz Material-based PML M-PML

Unsplit anisotropic PML U-PML

Generalized Theory based PML GT-PML

Complex Frequency Shifted PML CFS-PML

II. FUNDAMENTALS OF THE FVTD METHOD

The FVTD method belongs to the general class
of conformal time-domain methods. For the spatial dis-
cretization, the FVTD method employs unstructured poly-
gons (typically tetrahedrons in 3D and triangles in 2D)
which can model complex geometries using highly in-
homogeneous meshes. Furthermore, curved boundaries
can be modeled with high accuracy because stair-casing
errors are avoided. Although this flexibility in spatial
discretization is common to all conformal methods, the
advantage of the FVTD method lies in the combination
of an unstructured spatial discretization with an explicit
time update. The method applied in this paper uses a
cell-centered approach, hence field values at cell centers
are updated by summing up the incoming and outgoing
fluxes through each cell face. The update equation can be
formulated as follows,

∂tU i = − 1
|Ai|

f∑
k=1

|Sk|α−1
i FU∗

k
· nk −Li (1)
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where U i denotes the cell-center field values at the ith
cell, |Ai| is the cell-volume, |Sk| the area of the kth face
and FU∗

k
· nk the sum of the incoming and outgoing

flux with the normal vector nk perpendicular to the face
[12]. The ‘*’ in the subscript indicates that the com-
puted flux-function across each face depends on the field
quantities at the edge-center. A second-order accurate
MUSCL algorithm is employed for spatial discretization.
The field values at the face-center are approximated with
the help of corresponding cell-center field values. For
more information on the FVTD method, the reader is
referred to [12]. Material properties of the cells are given
in the diagonal matrix αi and a loss term Li allows to
include material losses. The latter term will be used in
the present work to incorporate the PML models into the
FVTD method.

In order to simplify the investigation, the setup in
this paper relies on a formulation using a two-dimensional
(2D) transverse electric (TE) form of the Maxwell sys-
tem. The magnetic fields are assumed to be in the xy-plane
and the electric-field is directed along the z-axis transverse
with respect to the plane of propagation (xy-plane). Thus
the field vector U i and the material parameter αi inside
the ith cell become,

U i =

 Hxi

Hyi

Ezi

 and αi =

 µi 0 0
0 µi 0
0 0 εi

 . (2)

For the time discretization, a second-order accurate
explicit Lax-Wendroff scheme is employed which is based
on a Predictor-Corrector algorithm [12]. There are other
possibilities of time-stepping schemes such as the higher-
order Runge-Kutta that can be employed within the pre-
sented framework. Although a 2D formulation is used
here, the results can be generalized to 3D.

III. PERFECTLY MATCHED LAYERS

PMLs were first introduced for the Finite-Difference
Time-Domain (FDTD) method by Bérenger in [13] using
a non-Maxwellian split-field formulation. Later another
class of approaches using a Maxwellian unsplit formula-
tion was developed which includes M-PML [14], U-PML
[11], GT-PML [7] and CFS-PML [8]. All variations were
implemented in the FDTD method.

In the framework of the FVTD method the first-order
Silver-Müller absorbing boundary condition (SM-ABC) is
commonly used. However, the PML technique promises
improved performance for off-normal incidence on the
truncating boundary.

The theoretical discussions presented in this paper as-
sume (without loss of generality) that all PML models are
used to truncate the computational domain with a planar
absorber along the y-direction and to absorb uniaxially
along the x-axis (see Fig. 1). In future work these planar
PMLs will serve as basis for generalization to conformal
geometries such as cylinders [6] or spheres. Thus, corner
regions are not considered in this publication.

Hx ΓEz

δPMLPEC or PMC

PEC or PMC

Po
rt

PE
C

PM
LHy

z

y

x

Fig. 1. Configuration of the uniaxial PML models
in x-direction for the two-dimensional TE setup. The
boundaries along the x-direction depend on the numerical
experiment and are either PEC (rectangular waveguide) or
PMC (parallel-plate waveguide).

A. Split PML
The Bérenger PML (also called the split-field PML)

involves unphysical field splitting inside the PML domain
which results in an increased number of update equations.
For a complete theoretical treatment of the FVTD formu-
lation of B-PML, refer to [5]. Due to the field splitting,
an additional field component Ezy is introduced thus, ex-
panding the field vector to U i = [Hxi, Hyi, Ezi, Ezyi]T .

It is worth mentioning that in the above update
equations, the fourth field equation for Ezy constitutes
the non-hyperbolic part of the system and requires special
treatment for its update. By employing the Rankine-
Hugoniot jump relation discussed in [5], the field values
of Ezy can be updated in a stable manner using the
following flux term,

FEzy · nk =
ny
2

(Hxl +Hxr)−
n2
y

2
(crεrEzr − clεlEzl) .

(3)
The loss vector Li used in the FVTD update equa-

tions for perfectly matched absorption is written as,

Li =


0

(σx/εi)Hyi

(σx/εi)(Ezi − Ezyi)
0

 . (4)

B. Unsplit PML
In order to avoid the unphysical additional field

component, unsplit PML models have been developed
based on anisotropic material properties. Those models
still satisfy the Maxwell equations. For achieving uniaxial
absorption in x-direction, the permittivity and permeabil-
ity tensors are written as follows,

ε = ε [Λ], µ = µ [Λ] with [Λ] =

 1/a 0 0
0 a 0
0 0 a

 .

(5)
This form is derived under the condition of perfect

matching as described in [7, 11, 14]. The four unsplit
PML models presented in the following interpret this
anisotropy matrix in different ways. In the case of
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M-PML, the tensor describes a time-derivative Lorentz
material model. In the case of U-PML the parameters
are understood as physical material parameters which are
included by explicitly using the magnetic and/or electric
flux density. For GT-PML and CFS-PML, the matrix
is interpreted as a complex coordinate stretching in
frequency-domain which leads to integral or convolution
terms in time-domain. In the following, update equations
for the FVTD method are derived and compared
theoretically.

1) Modified Lorentz Material-based PML - (M-
PML): The idea of a modified Lorentz material-based
absorber was introduced for the FDTD method in [14].
The anisotropy parameter a in this case is defined as
a = 1 + χmω , with,

χmω =
ω2

0 [χα − j(ω/ω0)χβ ]
ω2

0 − ω2 − jΓω
. (6)

The parameters χα, χβ , Γ and ω0 are chosen so
that the material acts as a broadband absorber. The final
system of update equations for the M-PML model can be
written as,

∂tHx = − 1
µ
∂yEz + ζHx −Gx (7)

∂tHy =
1
µ
∂xEz − ζHy, (8)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ζEz, (9)

∂tGx = −ζGx + ζ2Hx, (10)

where ζ is the material loss-parameter inside the ab-
sorbing layer. The fourth equation (10) is an ordinary
differential equation in time and hence requires no spe-
cial flux computation. Also the inherent structure of the
Maxwellian system with three field components, namely
Hx, Hy and Ez is preserved and there is only an auxiliary
equation for the field component Gx which causes no
significant computational overhead, in contrast to the
B-PML model discussed in the previous section. The
above system of equations is expressed in the FVTD
method in notation (1) by defining the field vector as
U i = [Hxi, Hyi, Ezi, Gxi]T and the corresponding PML
loss vector Li as,

Li =


Gxi − ζHxi

ζHyi

ζEzi
ζGxi − ζ2Hxi

 . (11)

The FVTD implementation of the M-PML adapted
for unstructured grid is discussed in more detail in [6].

2) Unsplit anisotropic PML - (U-PML): Another
approach to model unsplit PML based on the anisotropic
material properties was introduced for the FDTD method
in [11]. Using this model the component a in equation

(5) is defined as

a = 1 +
σx
jωε

(12)

where σx represents the loss term and ε denotes the per-
mittivity. In order to include this lossy frequency-domain
parameter into the conformal time-domain update scheme,
the physical magnetic flux density B is introduced (and/or
the electric flux density D, depending on the propagation
mode). In the two-dimensional TE mode, the component
of B in the anisotropy direction takes the form,

Bx =
µ

1 + σx
jωε

Hx (13)

and needs to be explicitly included in the equation set
because of its nonlinear frequency-dependence.

Based on [11], the following update equations can be
derived,

∂tHx = − 1
µ
∂yEz +

σx
µε
Bx (14)

∂tHy =
1
µ
∂xEz −

σx
ε
Hy, (15)

∂tEz =
1
ε

(∂xHy − ∂yHx)− σx
ε
Ez, (16)

∂tBx = −∂yEz . (17)

In the FVTD formulation (1), the field vector U i =
[Hxi, Hyi, Ezi, Bxi]T is then used. This leads to the
following formulation for the FVTD method. The fourth
flux term for the Bx field is identical to the flux of the
Hx field (FBx = FHx ) and hence, the PML loss vector
becomes,

Li =


− σx
µiεi

Bzi
σx
εi
Hyi

σx
εi
Ezi
0

 . (18)

3) Generalized Theory based PML - (GT-PML):
As opposed to the two previous approaches where the
anisotropy tensor [Λ] described a material property, the
GT-PML model considers [Λ] as a geometrical stretching
operator ensuring perfect matching. In [7], the following
complex frequency-dependant stretching factor is defined,

a = 1 +
ω′′x
jω

(19)

where ω′′x describes the rate at which the field is attenuated
within the PML. In the two-dimensional TE case, this
leads to the usual lossy formulation for the electric field
and the y-component for the magnetic field. In frequency-
domain the x-component of the magnetic field becomes,

jωµHx = −∂yEz · a = −∂yEz −
ω′′x
jω
∂yEz . (20)

Transforming this frequency-domain formulation into
time-domain yields an integral term for the Hx-
component and that results in the following GT-PML
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update equations,

∂tHx = − 1
µ
∂yEz −

ω′′x
µ

∫ t

0

(∂yEz)dt (21)

∂tHy =
1
µ
∂xEz − ω′′xHy, (22)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ω′′xEz . (23)

In the notation of equation (1), the field vector for
GT-PML is given as U i = [Hxi, Hyi, Ezi]T and the
corresponding lossy PML vector for the FVTD method
is,

Li =

 −ω
′′
x

µi

∫ t
0
(
∑f
k=1 |Sk|FH∗xk · nk)dt
ω′′xHyi

ω′′xEzi

 . (24)

4) Complex Frequency Shifted PML - (CFS-PML):
The theory of CFS-PML was first introduced in [8]
based on complex frequency shifted PML parameters.
This shifting is a more general form of the factor used in
the previous section, namely,

a = κx +
σx

αx + jωε
(25)

where κx represents the real geometrical stretching, αx is
used to control the absorption for evanescent waves and
σx is the physical loss.

This approach is of particular interest for damping
evanescent waves since all the conventional PML mod-
els described in the previous sections exhibit a perfor-
mance degradation in the evanescent regime. The complex
stretching factor described in [15] can be implemented in
two ways. The first approach is using an auxiliary differ-
ential equation method and the second approach involves
a time-domain convolution. For the present FVTD version
of CFS-PML, the second approach is utilized. As shown
in [9] this results in the following update equations,

∂tHx = − 1
µ
∂yEzκx + ΨHx (26)

∂tHy =
1
µ

∂xEz
κx
− σx
εκx

Hy + ΨHy , (27)

∂tEz =
1
µκx

(∂xHy)− σx
εκx

Ez + ΨEz . (28)

Apart from the standard Maxwellian fields (Hx, Hy

and Ez) and the material parameters (µ = µrµ0, ε = εrε0
and σx), two new factors, namely αx and κx are intro-
duced. These factors give additional degrees of freedom in
controlling the perfectly matched damping behavior inside
the PML. The terms ΨHx , ΨHy and ΨEz in equations
(26) to (28) represent the convolution operation in time
for each field value and they can be written for the FVTD

method as,

ΨHxi = − σx
µiεi

e
−αxεi ·t ∗

f∑
k=1

(FH∗
xk
· nk)|Sk| (29)

ΨHyi =
αxσx
κxε2i

e
−αxεi ·t ∗Hyi, (30)

ΨEzi =
αxσx
κxε2i

e
−αxεi ·t ∗ Ezi . (31)

This describes the continuous-time formulation of
the convolutions which would be highly inefficient to
implement in a discrete-time scheme since a sum over
all time needs to be calculated at each time step. Thus,
the iterative method proposed in [9] can be applied to
simplify the convolution to one addition per time step.

This formulation eventually allows to express a loss
term using the field vector U i = [Hxi, Hyi, Ezi]T in
equation (1) as,

Li =

 −ΨHxi
σx
εiκx

Hyi −ΨHyi
σx
εiκx

Ezi −ΨEzi

 . (32)

These convolution operations eventually make the
CFS-PML highly efficient for the absorption of evanes-
cent waves, however, at the cost of a somewhat increased
computational effort.

Guidelines to choose the parameters are given in [16],
where derivations show that the PML mainly absorbs
propagating modes if the term σx

αx+jωε
in equation (25)

is mainly complex. In contrast, evanescent waves are best
absorbed if the fraction is mainly real. Thus in the case
of a waveguide the value for αx has to be chosen so that
the switching frequency,

fα =
αx
2πε

(33)

corresponds to the cutoff frequency. The factor κx
stretches the coordinate system, which in practice affects
the accuracy of the simulation. In the presented work κx
is fixed at κx = 1 in order to avoid stretched coordinate
discretization errors.

C. Relationships between PML models

1) Unsplit PML models: Comparing the formula-
tions of M-PML, U-PML and GT-PML suggests a close
similarity even though the approaches differ in their
physical interpretations. M-PML and U-PML both use
one additional field term and GT-PML incorporates an ad-
ditional integral term. When rewriting the set of equations
for M-PML (7) to (10) by inserting the additional field
term Gx = Kx+ζHx into equation (7), the following set

187 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



emerges,

∂tHx = − 1
µ
∂yEz −Kx (34)

∂tHy =
1
µ
∂xEz − ζHy, (35)

∂tEz =
1
ε

(∂xHy − ∂yHx)− ζEz, (36)

∂tKx =
ζ

µ
∂yEz, (37)

where Kx represents the magnetic polarization current.
Comparing the rewritten system in equations (34) to (37)
of M-PML with that of U-PML in equations (14) to
(17), their mathematical equivalence becomes apparent,
although different physical quantities are considered (Kx

and Bx).
Applying a similar reformulation of GT-PML, the

integral term can be written as a separate update equation
identical to the one of U-PML. This rewriting is re-
quired anyhow before numerical implementation to allow
for the iterative integration. In the present formulation,
the Lax-Wendroff time stepping is applied. This allows
for sophisticated integration methods. In this case the
Simpson rule is used because it fits perfectly into the
two step updating scheme. Therefore the final numerical
FVTD implementations of the three PML models differ
slightly, albeit they are analytically equivalent. Hence, for
the numerical implementation of the scheme only minor
differences in the range of the numerical precision are
expected.

The relationship between the absorption parameters
used in the different formulations can be expressed as
follows,

ζ = ω′′x =
σx
ε
. (38)

2) Split vs. Unsplit PML: Considering further the
relation between split and unsplit models, a close con-
nection can be found between B-PML and U-PML, as
pointed out in [11, 17]. Splitting the U-PML formulation,
the formulation for B-PML can be retrieved, or vice-versa.
Hence, numerically identical results are expected here as
well.

3) CFS-PML to GT-PML: Finally it has to be
pointed out that, as CFS-PML is a generalization of GT-
PML, the convolutions of equations (29) to (31) should
reduce to the integral term of GT-PML if αx → 0 and
κx = 1. In fact it can be verified that,

lim
αx→0,κx=1

ΨHxi = − σx
µiεi

∗
f∑
k=1

(FH∗
xk
· nk)|Sk| (39)

lim
αx→0,κx=1

ΨHyi = 0, (40)

lim
αx→0,κx=1

ΨEzi = 0 . (41)

The convolution in equation (39) is a simple integra-
tion over time, and thus yields exactly the same term as
in GT-PML. This also applies to the discrete formulation
obtained by the method of [9]. Figure 2 summarizes the
relationship between all the investigated PML models.

B−PML

split PML

CFS−PML

M−PML U−PML

GT−PML

unsplit PML

α→ 0 κ = 1

(u
n)

sp
lit

tin
g

Fig. 2. Analytical relationship between the investigated
PML models.

IV. CONSIDERATIONS ON COMPUTATIONAL
EFFORT

It is shown in the previous section that the analytical
formulations of B-PML, M-PML, U-PML and GT-PML
are analytically equivalent. Nevertheless, the discrete
models vary because of the different required operations.
The numerical implementations include an additional flux
term for B-PML, additional update equations for M-PML
and U-PML and an integral term for GT-PML.

Table 2 shows the number of variables necessary for
the investigated PML models in 2D. In free space only
three field variables are updated using three flux terms.
In the case of B-PML, the fourth split field requires the
calculation of an additional flux term at each time step.
This is not necessary for M-PML. Due to the nature of
the fourth differential equation, no flux needs to be cal-
culated, but one additional update equation is necessary.
The fourth field in U-PML requires calculation of an
additional flux. But since this flux is identical to the flux
of the Hx field, that does not increase the computational
cost. The formulation of GT-PML requires no additional
update equation, and thus has only three field variables.
In the numerical implementation however, the update
formulation of the integral term leads to an additional
variable, hence making the formulation identical to U-
PML. Nevertheless the computational effort for GT-PML
might increase depending on the sophistication of the

Table 2. Computational effort for two-dimensional
models. K is the number of field update variables, M the
number of flux variables and N the number of additional
update variables.

Model K M N Auxiliary operation

free space 3 3 0 -

B-PML 4 4 0 flux

M-PML 4 3 0 ODE

U-PML 4 3 0 PDE

GT-PML 3 3 1 integral

CFS-PML 3 3 3 convolutions
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integration method. Finally, CFS-PML adds a convolution
operation to each field term, thus adding three additional
operations and variables per cell in the two-dimensional
TE case.

To summarize the computational effort necessary for
all PML models, B-PML is slightly more costly than
the basic unsplit PML models due to the calculation
of the additional flux. CFS-PML significantly increases
the computational costs as it requires one additional
convolution operation for each field variable. In this case
increased absorption for evanescent waves is achieved at
the cost of increased memory and computation time.

V. NUMERICAL PERFORMANCE
COMPARISON

To validate the theoretical findings of the previous
section, numerical measurements are performed using first
a plane wave problem and second a waveguide problem.
These particular setups were chosen to measure the in-
fluence of discretization and to investigate the reflection
at off-normal angles of incidence. As the implementation
of U-PML and GT-PML are identical in FVTD, U-PML
results are not displayed explicitly.

A. Plane Wave at Normal Incidence

At normal incidence the broadband performance of
all the PML models is compared to that of the first-order
SM-ABC. Broadband analysis provides information on
the influence of the spatial discretization and the thickness
of the absorbing layer in terms of the wavelength. A plane
wave is simulated using a parallel-plate waveguide setup
in Fig. 1 (with PMC boundaries). The scattering parameter
extraction as discussed in [18] is used to retrieve the
reflection coefficient S11 of the PML models. The results
are shown in Fig. 3 with the PML parameters set to
achieve a theoretical reflection [13] of R = −80 dB. The
model is fed with a sine-modulated Gaussian broadband
pulse with effective bandwidth stretching from 1 GHz to
50 GHz. It is observed that the PML performance over
the whole bandwidth remains close to the theoretically
expected value, with a degradation at higher frequencies
due to coarse spatial discretization. In the investigated
problem, the overall performance of the SM-ABC is infe-
rior to that of the PML models over most of the frequency
range. At low frequencies (fine spatial discretization) the
influence of discretization errors diminishes. It is noticed
that the performance of SM-ABC at normal incidence
numerically converges towards perfect absorption.

It is observed that all the investigated PML models
perform identically, as expected from the discussion in
the previous sections. In particular in the present config-
uration CFS-PML becomes numerically and theoretically
identical to GT-PML. This is due to the fact that the paral-
lel plate waveguide exhibits a cutoff frequency fc = 0 and
thus, according to equation (33) αx = 0. Consequently the
CFS-PML model becomes identical to GT-PML.

Fig. 3. Numerical results at normal incidence. The spatial
discretization is shown in the upper scale.

B. Off-Normal Incidence and Evanescent Waves

In the second example, a waveguide model (Fig. 1
with PEC boundaries) excited with a TE10 mode is used
to compute the reflection coefficient of the investigated
PML models at a range of incident angles. In addition this
model permits evaluation of absorption below the cutoff
frequency of the waveguide, i.e., for evanescent waves. To
measure the reflection of evanescent waves, the technique
introduced by Gwarek et al. in [19, 20] is applied here
to extract the S11-parameter. This technique uses the
tangential fields (Ez and Hy) and gives information on
the physical reflection of the fields, even for evanescent
waves. This stands in contrast to the traditional definition
of scattering parameters based on the energy flow, where
evanescent waves are understood to be totally reflected.

The investigated model has a cutoff frequency of
6.56 GHz for its fundamental TE10 mode and is fed
with a modulated Gaussian broadband pulse with band-
width stretching from 4 GHz to 20 GHz which spans
both the evanescent and propagation regions. The spatial
discretization employed for the model corresponds to a
range of λ/20 to λ/100 (free-space wavelength) at the
highest and lowest frequency components of the input
signal, respectively. Simulated PML models are B-PML,
M-PML, GT-PML and CFS-PML which are compared to
the performance of the SM-ABC.

The results obtained are plotted in Fig. 4 with a theo-
retical reflection coefficient set to R = −80 dB at normal
incidence. Depending on the frequency, evanescent waves
naturally decay inside the finite thickness of the PML.
This influence is included in the depicted theoretical
absorption below cutoff. Because the field pattern within
a waveguide can be understood as a superposition of two
plane waves travelling with a certain off-normal angle,
the influence of the angle of incidence is also addressed
in this experiment. The cutoff frequency corresponds to
grazing incidence and at higher frequencies, the angle of
incidence converges towards normal incidence. This angle
is also given in the upper scale of Fig. 4 for illustration.
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Fig. 4. Numerical results for off-normal incidence and
evanescent waves in a waveguide model with thickness
a = 22.86 mm. The upper scale shows the spatial
discretization and the angle of incidence.

It is clearly noticed that above cutoff, all PML models
perform very close to the theoretically expected value.
Additionally it should be noted that the B-PML, M-
PML and GT-PML models perform identically, as it was
expected from their theoretical identity. Below cutoff, all
ABCs except CFS-PML do not absorb and therefore only
the natural decay is measured. In contrast, in the case
of CFS-PML, the coordinate system stretching elongates
the layer and hence the decay of evanescent waves is
increased. This leads to an additional absorption of up
to 30 dB in this case.

VI. CONCLUSION

In the present study different PML techniques were
modeled in the unified framework of the FVTD method.
The theoretical equivalence of M-PML, U-PML and GT-
PML was discussed. Conditions were given that simplify
CFS-PML to GT-PML. Numerical performances of all
the PML models were found to be nearly identical for
propagating modes. As expected, the performance of the
CFS-PML was substantially better in the evanescent wave
region compared to other PML models.

The improvement for CFS-PML compared to the
other PML models arises for the absorption of evanescent
waves and is achieved at the cost of an increased computa-
tional load. Therefore a practical application for the more
costly model is only reasonable when strong evanescent
waves have to be absorbed close to a source. Nevertheless
the more efficient unsplit maxwellian PML models, such
as the U-PML, are sufficient for most applications in
conformal time-domain methods.

Although the results presented here were obtained
employing planar perfectly matched layers, this study
represents a first step towards the extension of PML
techniques for non-planar surfaces in the FVTD method.
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[8] M. Kuzuoğlu and R. Mittra, “Frequency dependence
of the constitutive parameters of causal perfectly
matched absorbers,” IEEE Microwave Guided Wave
Letters, vol. 6, pp. 447–449, December 1996.

[9] A. Roden and S. Gedney, “Convolution PML
(CPML): an efficient FDTD implementation of the
CFS-PML for arbitrary media,” Microwave and Op-
tical Technology Letters, vol. 27, no. 5, pp. 334–339,
2000.

[10] K. Sankaran, T. Kaufmann, C. Fumeaux, and
R. Vahldieck, “Different perfectly matched absorbers
for conformal time-domain method: A finite-volume
time-domain perspective,” in 23rd Annual Review of
Progress in Applied Computational Electromagnet-
ics (ACES), Verona, Italy, March 2007.

190KAUFMANN, SANKARAN, FUMEAUX, VAHLDIECK: REVIEW OF PERFECTLY MATCH ABSORBERS FOR FVTD



[11] S. Gedney, “An anisotropic perfectly matched layer-
absorbing medium for the truncation of FDTD lat-
tices,” IEEE Transactions on Antennas and Propa-
gation, vol. 44, no. 12, pp. 1630–1639, December
1996.

[12] P. Bonnet, X. Ferrieres, B. Michielsen, P. Klotz, and
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