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Abstract : A new treatment is proposed to the hybrid method
of Finite Differences and Charge Simulation for the
computation os electric fields, entirely applicable to the
similar hybrid method of Finite Element- and Charge
Simulation. The resuiting system of linear equations is solved
by using the fixed point theory, the QR
decomposition and the Conjugate Gradients Squared method
with a preconditioning technique. New procedwres are
suggested for the discretization of the boundary conditions,
which lead to results with higher precision Case studies are
included.
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1. INTRODUCTION

The Finite Difference Method (FDM), the Finite
Element Method (FEM) and the Charge Simulation Method
(CSM) are very commonly used for field analysis of high
voltage insulation systems. The CSM is suitable for
unbounded problems, but becomes complicated for problems
including dielectrics. On the other hand,the FDM and FEM
are suitable for multi-dielectric cases, but require truncation
of the domain for unbounded problems. Thus, a hybrid
method may be a promising tool for unbounded problems
including dielectrics, where the FDM or the FEM is applied
inside a limited arbitrary region, and the CSM is applied to
the unbounded exterior. Along the coupling surface continuity
conditions are imposed.

Early research work [1,2,3] presented practical
examples of this hybrid method, pointing out its advantages
and disadvantages. Either the hybrid FDM & CSM or the
FEM & CSM require the solution of a system of linear
equations, whose matrix of coefficients (square in principle)
is composed by full submatrices (resulting from the CSM)
and sparse submatrices (resulting from the FDM or FEM).
The present work deals with the formulation of
adequate procedures for the solution of this linear system,
which results in a significant smaller computer storage,
smaller CPU computer time and results with higher precision
if compared to [1,2,3]. In addition, the convergence of the

iterative method is. not dependent on the arbitrary
initial conditions as [1] does.

The application of the CSM to the unlimited exterior
region as it was previously considered by {1,2,3], leads to full
square submatrices and demands an excessive amount of
computer memory. It is shown in section 3 that it is possible
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to significantly reduce the required computer memory, by
choosing a number of simulated charges which is smaller than
the number of contour points. This leads to a least squares
problem, which is solved by means of the QR decomposition
[4.5] of the resulting full rectangular submatrix, using the
Modified Gram-Schmidt method. This procedure only
demands from 30% to 50% of the computer memory initiaily
required by the original problem, without loss of precision.

The application of the FDM or the FEM to the limited
region leads to a sparse linear system of the Ax=Db type. It is
possible to use the Conjugate Gradients method (CG) [4], a
Erylov Subspace method (KS) [6] or the Conjugate Gradients
Squared method (CGS) [7] for the solution of this linear
system. These methods have advantages over the traditional
Gauss-Seidel, SOR and others (used by [1,2,3]), since they
reach the exact solution in a number of steps at most equal to
the matrix dimension. The CGS with a preconditioning
technique is suggested for the solution of the problem,

since it demands less CPU computer time and less
computer memory than other methods (see section 4).

The hybrid method requires a discretization for the
normal component of the electric flux density vector D (i e.
n*D) all over the arbitrary rectangular surface of discontinuity
on the electrical permittivity ¢ (coupling boundary). This
leads to a discretization of the normal derivative of the scalar
electric potential function (since D = - ¢ V& }. The eror of
such discretization as computed by [1.2,3] for rectangular
surfaces is of the order of h{ie. O(h) ), where h is the grid
step (distance betwoen two consecutive nodes). It is shown
(section 5.1) by the use of the Taylor series expansion, that it
is possible to obtain a simple discretization with an error of
O(h¥). A discretization for curvilinear surfaces is also
presented (section 5.2), being of interest when a discontinuity
on ¢ exists. These methodologies for the discretization of
-V lead to results of higher precision if compared to those
used by [1,2,3].

Finally, adequate procedures for the solution of the
combined system of linear equations that results from the
hybrid method are stated A direct sclution is not
recommended due to the irregular structure of the coefficient
matrix. Reference [1] proposes an iterative scheme which
depends on a good initial estimate. In addition, it may not
reach the solution for certain cases. The approach used here
(section 6) is based on the fixed point theory of linear systems
[4,5]. The utilization of an arbitrary but rather predictable
parameter (0) leads to convergence in a significantly greater
class of problems (if not all), not depending on the initial
estimates for the electric potentials. Some examples are
included and the results are analysed (section 7).
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Figure 1. General probiem treated with the DM & CSM

Considering the points above, it is supposed that the  where
present work may represent & new motivation for the
utilization of the hybrid FDM & CSM or FEM & CSMon the  a) The matriz equations P1 q - 1®1 =0 and P2 q = ®s result
computation of two-dimensional or three-dimensional with  from the CSM, and
axial symmetry electric fields, as frequently found in ~ high

voltage engineering. P1 = full matrix, dimension’ N x (K+L)
P2 = full matrix, dimension- V x (K+L})
2. DEFINITION OF THE COMBINED I = Identity matrix, dimension N x N
SYSTEM OF LINEAR EQUATIONS q = vector of simulated charges, dimension K+L
The hybrid FDM & CSM applied to the oo @1 = vector of electric potentials on 5Q: , dimension N
applied to the general s = vector of electric potentials on 8Qs, dimension V
dimensional problem of Figure 1 will be considered in the P: and Pz are the Maxwell electric potential coefficient
following sections. matrices

Suppose that it is needed to calculate the electric
potentlal distribution near clecﬂ‘odeA,sorrmmdedbya b) The matrix tion F q + Se P1+ 51 De= 0 results from
region () with electrical permittivity e2. An arbitrary tlzcconﬁnuitycmdiﬁonn';mmhﬂm;

rectangular boundary & involving A and (2 is defined, = A .

incide which a finite differeace grid with M nodes is placed. b, L mAI%, dimension B x (o)
T}xisal.sowﬂldgﬁneNnodacqaﬁl_denodesonaﬁ.A S: = sparse matri ’ di ot NxM

di on with V points is made an the boundan, @ = vector of electric potentials on (i , Q2 and Qa,
Qs of the external electtode B, and K+L charges are jimension M

simulated as indicated in Figure 1. F is the Maxwell electric field coefficient matrix

It was already shown by [1.2,3] that, for two-dimensional
or three-dimensional problems with axial symmetry, the . . _
application of the FDM & CSM (or the FEM & CSM) to 1 1° oarrls squatien S: 1 + D de = ¢ resulss from the
Figure 1 leads to a system of linear equations, which is S(- on o .Lap_xanh:pel;tor[,]),
represented here by the following equivalent system with D’ - sparse matrix, dimension Mx
submatrices - -sparse:namx,dl_menmm MxM ) _
¢ = sparse vector which depends on the given electric
potential vector da of the electrode A.

-1 0 (o] . .

P2 0 0 ol = | W ~ The form (1) is adequate for a problem with only one
F So St &0 0 dielectric. A small modification is suggested for the general
0 Sz D < problem of Figure 1 (with two or more dielectrics), since it is

more convenient to treat {1 and Ch separately, taking an
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additional vector @z for the electric potentials on 5.
Therefore, the problem can be formulated as follows:

On the region {1 and its boundaty:

AD=0 on i 2
Q= on
D=0 on Kk
oD =g ,ie, -u1dbion=g ondk
where A is the Laplacean operator
and g is an auxiliary function
On the region {2 and its boundaty:
AD=0 on {» (3
D=Da on 8Qa
Q=0 on &

D =-g ,ic,-u2dd®/dn=-g ondk

Joining (2) and (3) together, the following problem is
obtained,

a) Ad=90 on h u (4)
b) P=Da on Qa

¢) o= on n

d o=dn on o

e). 51 00/n + 200/n=0 onXh

The discretization of (4a) as given by {9] for two-
dimensional problems (see [10] for three-dimensional
problems with axjal symmetry) and applied to the general
‘node Po of Figure 2 is

P2

2 ¢(P1) ¢(P2)
qh h'4%(Po) @ plp+r}  qigvs)
h
L e 8(P3) . #(Pa) _
Tip+r)  slg+s!
sh 1 1
Pa (p—r + a—s) $(Po) =0

Figure 2. FDM disc¢retization

where h = grid step; 0<pgrss<10.

If we have 0 <p,q1,s £ 1.0 when Po is adjacent to the
boundary, and p,q1,s = 1.0 in the interior region {which
means a grid with square elements in the interior), then the
above discretization has an error of O(h?). In any other case
the errorisof O(h) . [9).

Once the expression above is applied to every single
node of the FDM region, a sparse linear system of dimension
M is obtained. When Po is adiacent to 0L1 or &, the
correspanding equation includes some nodes from the vector
@1 or Oz respectively. Adjacent to &Xa , the equation for Po
includes some nodes from the given electric potential vector
®a Therefore, the final sparse linear system that results from
(4a), (4b), (4c) and (4d) have the following matrix form
(including Sz as the additional sparse matrix associated to the
new vector Oz )

S:D1+ DD + Sadn=¢ (5)
On the other hand, (4¢) is applicable to the W nodes of
X2, which requires the discretization of 0/&n at each one of
these nodes. Hence, a total of W equations can be wrilten,
including the electric potential vectors ®e and d2  (see
section 5.2). These equations have the following matrix form:

S¢De+ ED2 =0 (6)
Finally, (1) and the suggested forms (5) and (6) are
placed together in a single system, .
PP -1 0 O q 0
P2 0 O O [} = [ 3] (7
F So 5 0 [ 1]
0 Sz D Sa $2 c
0 0 S+ E 0

This system is equivalent to the more explicit form of
Figure 3.

The CSM equations and the FDM are treated separately
for the solution of (7), as described in the foliowing sections.

| SR N M w
.oo-1 q -|
N ' —_— fa]
P1 -
v _— ¢
N ®o o
d2
M L [
w o
Diagonal Full Sparse
*. submatrix submatrix submatrix

Figure 3. The complete system of linear equations

3. CSM WITH LEAST SQUARES

Suppose that the electric potentials are given on &h
(vector @) and inside {1 (vector ®c). Therefore, the vector
of charges q can be calculated by means of the CSM, solving
the following system obtained from (7)

Pz q = %8 (8)
FJ -(S0¢1+5:190)
which may be written in the condensed form C q=d.

Since (8) has V4N equations and K+L unknown charges
(and provided that V+N 2z K+L), the least squares method can
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be used to find the vector q. in this method, the caiculated
vector ¢ minimizes the Euclidean norm of the error vector
C q - d. One of the best ways of doing so is to utilize the
method of the QR decomposition [4,5], calculating QR = C,
where @ is a V+N x K+L matrix with orthonormal columns
and R is a K+L x K+L upper triangular matrix. It is possible
to show that the sparse linear system R q = QTd (where QT
means the transpose of () provides the exact vector solution
q for the least squares problem. This system is easily solved
by back-substitution since R is upper triangular.

Q and R may be computed by the modified Gram-
Schmidt method, whose mathematical description and
algorithm are found in [4,5). In a computer program, Q may
be stored over the space of memory of matrix C, and the lines
of R with only its non-zerc elements can be sequentially
stored as a vector.

The QR method does not require the computation of the
matrix product CTC, as the traditional least squares CSM.
This advantage may significantly reduce the propagation of
errors during the computations.

It will be shown (section 7) that a ratio of L/N (number
of simulated charges / number of contour points) from 30% to
50% is sufficient for practical purposes.

4. FDM WITH THE CONJUGATE
GRADIENTS SQUARED

Supposing that vector ®1 is known on i, vectors De
and <2 can be calculated with the FDM, solving the
following system obtained from (7)

D sa $o| = | ¢ ~ Sz
- e
This system can be written in the condensed form
A @ = b. The matrix A has only about 1% of non-Zero

elements, and can be stored in 2 very simple scheme by
means of the following vectors:

ILIN(k) -  stores the line number of matrix A, associated
to its k-th non-zexo element

JCOL({k)- stores the column number of matrix A,
associated to its k-th non-zero element

VAL(k) - stores the numeric value of A(TLIN(k},JCOL(k))

Having A stored this way, a matrix-vector product of the
type ¥ = A x can be easily computed with the following
algorithm

Fori = I NTOT
WILING)) = y(ILIN(D)) + VALi) * x(JCOLi)

end

where NTOT is the total number of non-zero elements of A .

It is easy to see in this algorithm that no ordination is
necessary to the elements of A when generating the vectors
ILIN, JCOL and VAL. This property is speciaily suitable to
problems of the type which we intend to study.

Therefore, any method that doesn't require operations
more expensive than the product matrix-vector can be used
for the solution of (9), in principle. To this class of methods
belong the Conjugate Gradients and some derivations.
Besides this simple way of storage, these methods have the
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advantages of reaching the exact solution after a finite
number of steps (theoreticaily at most equal to the matrix
dimension), and for any initial estimate. The following was
considered:

a) Conjugate Gradients (traditional) (CG) [4,5], without
preconditioning and with a diagonal preconditioning,

b) Krylov Subspace method (KS) [6], without
preconditioning and with a tridiagonal preconditioning,

¢) Conjugate Gradients Squared (CGS) [7), without
preconditioning and with a tridiagonal preconditioning.

The CG requires A to be a symmetric and positive
definite matrix. Since this is not the general case, it only can
be applied to the modified normal system ATA @ = ATb
(since ATA is symmetric and positive definite).

The KS requires the calculation of a vector basis to the
Krylov subspace (which dimension is arbitrary). This vector
basis may demand a significant additional memory i the
computer.

Th CGS doesn't require the product ATA as the CG nor
the additional storage as the KS and, when used with a
preconditioning technique, it needs less CPU computer time
(see section 7). Therefore, the CGS is suggested for the
solution of (9). Appendix I inciudes some details as well as
the algorithm used for the CGS.

5. CONTINUITY CONDITIONS ON BOUNDARIES

An adequate application of the Maxwell equations gives
the necessary continuity conditions {1,2,3], ie., @ and n-D
are continuous across 6¢21 and & The condition n°D
demands a specific equation to be applied al any contour
node.

5.1 Discretization of n*ID on &1

Since ¢ is constant on both sides of 6Q, the continuity of
n-D is equivalent to the continuity of a*V&® . As already
shown by [2,3], the CSM applied to o-V® leads to the
expression

KL
n*ve (P} = —z f1) g5, 1=L...K
i=1

where fij are the Maxwell electric field coefficients.

References {2,3] use only one internal node of £ for the
application of the FDM (or the FEM) to the continuity of
-V , which result in an expression with an error of O(h)
only. A discretization with an error of O(k?) can be cbtained
using the Taylor series expansion as exposed in Appendix 0.
then

{10)

a-V3(F1} = ad(P) + BH(Pi1} + 7d{Pi-2) {11
where Pi Lieson &€t and Pi-1 and Pi-: are internal nodes
of Q.

The final coupling equation is a result of taking (10) =
(11), or
K+L
[‘ fij qy + [@®(P1) + B&(Pi-1) + ¥®(Pr-2)] = O . i=L...N
1=1



which has the equivalent matrix form F q + So1 + S1®0 =
0, also included in (7). It i3 easy to see that F is a full mairix,
So is 2 diagonal matrix and S: is a sparse matrix with only
two non-Zero elements per line.

5.2 Discretization of n°D on XX

It is seen from (4e) that this continuity condition requires
the discretization of 5@/én in two stages

a) et 5/On , using nodes of {1,
b) €2 &D/dn , using nodes of £

The method proposed by [8] uses the node on the
boundary and other three internal nodes, and is considered in

some details in Appendix II Using the proposed

discretization, (4¢) takes the form
2 3
eIJZ‘a”[NP‘)-@{P”)l + czj;azij])-o(pZJ)} =0 (123
where  Pi lies on 2Q2,
and  Pij and Pyj are internal nodes of O1,(2 respectively.

The matrix form (6) is obtained applying (12) to i=1.. w,
where E is a diagonal matrix and S is a sparse matrix with 6
non-zero elements per line.

6. SOLUTION OF THE COMBINED
SYSTEM OF LINEAR EQUATIONS

It was already shown that the system of linear equations
that represents the hybrid FDM & CSM has the matrix form
(7). In order to facilitate our analysis, this system is written as

P1 -] 0 q I}
Pz 0 0O | = ¢8| , where {13)

F Se¢ 21 -4 0

c 2z A z
_ |D S8af. _ [®o]. _ e g2
A= [Sl E]’q‘_ [Qz]'z" [0]'.2!=[51 0] ; Z2 = i_O]

Since (13} is composed by different kind of submatrices
that came from distinct problems (i.c. the full rectangular
. submatrices from the CSM and a sparse square submatrix
from the FDM), it is suggested to solve this system using an
iterative method. Doing so, each part of (13) can be treated
separately in an optimized way.

Notice that once the vector of charges q is known, the
whole problem is soived. Therefore, an iterative method can
be derived by using the general expression of the fixed point
theory [4]

n

q‘1=an+u (14}
where T is a matrix of dimension K+L x K+L,

u is a vector of dimension K+L, and

n is the iteration number.

According to the fixed point theory applied to linear
systems [4], (14) converges whenever o(T) < 1, where o(T) is
the spectral radius (the largest absolute value in the set of
eigenvalues) of T, for any initial estimate ¢° . T is also
known as the "iteration matrix".

It is possible to show (Appendix IV} that an iterative
method can be derived so that an expresston for T results in

0
T = 8l + (1-8R7Q" P (15)
ZIA'Zz - So
where Q and R come from the decomposition [;2] = OR
and 0 is a parameter to be chosen for every problem in

order to make o{T) < 1, and so allowing (14) to
converge. It holds in general that 0 <8<1.

Obviousty o(T) and T do not need to be explicitly
calculated. Figure 4 includes a flowchart for the iterative
method which generates T precisely as expression (13).

Il) Estimate ¢f I

[2) calculate q° with CSM|
)
—J3) Solve with CGS: A @ = 2z - Z26i

[4) Determine f" = So#l + ZlQn|

. |Pe n _ L2
5) Solve by QR: [F] ro= [_fn]

9} Solution:
g",9%,¢"

1

lT) Determine q"''= @q”+ (l-e)rhl

——-‘i) Calculate ¢7"! =

Figure 4. Iterative method for the solution of (13)

Observations:

a) The iterative method (14) is not dependent on the initial
estimate g° . However, it is possible to obtain a good initial
estimate for ¢ by choosing ®: (step 1 in Figure 4) and
solving once with the QR decomposition (step 2) the
following least squares problem, taken from (7)

B -one- i) - xet [

b) The given electrode potentials are included in vectors ®s
and z, which do not appear in expression (15). So the
convergence to the solution (which according to the fixed
point theory depends on the eigenvalues of T) does not
depend on the given electrode potentials.
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¢) In view of the complexity of {15), the parameter © can only
be estimated by experience. For most of the tested problems
we hadconvergence with8 = 0.6 10 0.9,

d) The iterative method proposed by {1] corresponds
somewhat to the particular case of @ = 0, which doesn' mean
that (14) will always converge. The possibility of a choice for
6 = 0 permits the solution of a greater class of problems.

7. APPLICATIONS

We used the hybrid FDM & CSM for the calculation of
the electric potential distribution close to the surface of an
infinite cylinder above earth, since this case has an exact
{analytical} sofution. Details are reported in [11)], and indicate
that for this case the electric potentials calculated with the
hybrid FDM & CSM have an error of less than 1% .

In a more general case, we used the hybrid FDM & CSM
for the calculation of the electric potential distribution in the
two-dimensional, tnbounded and multi-dielectric problem as
indicated in Figure 3.

CSM region

3.5 .

0

Figure 5. Two-dimensional example

Submatrices P1, P2 and F of (7) include the Maxwell
coefficients, calculated as indicated by [1.2,3]. In the FDM
region, a rectangular grid with equally spaced nodes of h =
0.75 was placed, defining M = 15x31 =465, N=9 and W =
72. It was also chosen K=V =4,

‘Table 1 shows the maxiraum percentile deviation of the
electric potentials calculated on & (vector &), considered
as a function of the relation between the mumber of simulated
charges inside the FDM regian (L) and the number of contour
points on #1 (N). The values were obtained by comparison
with results computed with L/N = 0.75 (this relation is
assumed to give insignificant error for @1). As a result it may
be suggested that L/N = 30% to 50% is a good choice.

Table 1 Table 2
Error on &1 CPU time (s)
L/N 7 Method 1 2
0.50 0.01 cG 113.5] 56.9
0.40Q 0.05 KS 453.7| 17.8
0.30 0.16 CGS 36.7] 9.6
Q.20 1.33 1 - without precond.
0.10| £ 20.0 2 - with precond.

Table 2 shows the CPU time for the methods
CG, KS and CGS (with L/N = 33%)on an IBM 3090-3008
computer. The CGS with a tridiagonal preconditioning was
shown to be the fastest.

As an illustration, Figure 6 shows the computed
equipotential lines mside the FDM region, considering
£2=20 and e3=50.

Figure 6. Equipotential lines

Figure 7 shows the electric potential distribution along
the direction 1 of Figure 5, as a fimction of 2 and & . It
illustrates the effect of materijals with different
permittivities on the electric potential distribution.

* potential

a0 |

™o

80

50

8. -4 4] 4. 8 2 "®.

Figure 7. Electric potential as a function of ¢
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Additional comments:

a) The charges simulated mside the FDM region must be
located at least approximately 1.0 to 2.0 times the grid step
{h) distant from 91 . Charges located very close to #(h1 lead
to a severe loss of precision in the results (as also reported by
[2]), due to the singularities of the expressions for the
Maxwell coefficients.

b) When a simulated charge is located very close to another,
the matrix Q approximates of a rank deficient matrix (see
[4,5]), which may cause some difficulties in the convergence
of (i4). This corresponds to the case of nearly singular
matrices in the traditional CSM.

c) It was considered an absolute error of 10° for the
convergence of the CG, KS and CGS, and an error of 0.1%
for the elements of the simulated charges vector q of (14) (22
iterations was necessary).

d) Tt is easy to see that all the mathematical approach exposed
in this work applies to three-dimensional problems with axial
symmetry as well (which in fact becomes reduced to a two-
dimensional problem). This is feasible once the corresponding
Maxwell coefficients for submatrices Pi, P2 and F (see
[1,2,3]) and the i discretization for the
Laplacean operator of equation (4) (see [10]) are considered.
Thus, problems like the electric potentiai distribution across
an insulator chain, or across ap insulating column of a high-
voltage equipment can be solved Three-dimensional
problems without any symmetry are also possible in principle.

8. CONCLUSION

New developments on the combined application of the
Carge Simulation method with the Finite Difference or Finite
Element method were shown.

The application of the Charge Simulation method as a
least squares problem with the QR decomposition results in
saving more than half of the original amount of computer
memory, without loss of precision.

The use of the CGS method with a tridiagonal
preconditioning for the solution of the discretised problem
results in a significant reduction of the CPU computer time,
with the consequence of costs reduction and reduced error
propagation in the computer.

New procedures for the discretization of the boundary
conditions were suggested leading to results of higher
precision.

An iterative method for the solution of the combined

problem was presented, by making use of the fixed point theory

of linear systems, which allows convergence for a greater
class of electrostatic problems. Another feature of this new
iterative method is the non-dependence on the initial estimate
for electric potentials.

Finally, case studies show that the suggested innovations
are effective in the mathematical formulation of the FDM &
CSM or FEM & CSM, and they may represent a new
motivation for the application of these hybrid methods on the
computation of electric fields for unbounded problems.
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APPENDIX 1

CGS algorithm with jti
Consider the CGS method with tridiagonal
preconditioning for the solution of the system of Lmear
equations A x = b . For the application of the preconditioning
technique, this system is modified as
(LUY'(Ax) = (LU)'b
where L, U = matrices resulting from the LU decomposition of
the tridiagonal part of A {4,5] .
In this case, the algorithm for the CGS is the following
[7:
estimate xo
solve (LU} ro
q,= P_,= 0
if(rn ¢ tolerance) end

(b - A x0)
=1 ; n=0
1

13}

T
ro rn ; Bn
rn + Bn gn

pn = pn/pa-1

un

prn = un + Bn (gn + fn pn-1)
solve {LU) va = (A pn)

T
Cn = I'0 Vn ; &n = pn/Cn
gn+1 = Un - &n Vn

vo = an {(un + qnvl)
¥n+1 = Xn + ¥n '
solve (LU) rn+t
ge to 1O

= (b - A Xnel) ; n=n+l
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APPENDIX 11
Discretization for n- V&

A simple discretization for n-VO(Pi) is obtained using
the Taylor series expansion, assuming existence of nodes
arranged on & line with the same direction of n (Figure 8).

h2 hi ;!

- & P—,

Pi-2 Pi-1 P1

Figure 8. Discretization for 8%/9n at P1

Then
8(P1-1) = $(P1) - e’ (P1) + hi“(P1}/2 + O(h®)
B(P1-2) = B(P1)-h1+h2)d” (PU+{hu+h2)26¥ (P1)/2+0(h")
Taking (hi+h2)®- (16) - hi-(IM),
neTO(P) = & (P1) = aB(PI+BE(PI-1)+78(Fi-2} + O(h%)
where ¢ = 1/h1 + 1/(hi+hz)

{1e)
{17}

B = —(1/h1 + I/h2)
7 = 1/hz2 = is{ht+hz)
h = max {hi,hz}

So the approximation n-7¢{F1) =
has an error of O(h?).

APPENDIX IT

General discretization for n- V@

A general discretization for n- VO(Pi) on 80 is obtained,
not requiring the existence of nodes arranged as those of
Appendix II (Figure 9).

n As described by [8] and
IP] according to Figure 9,
a discretization for

V \_, g&sén at Pi may be
o o Pi(x),¥3) written as
3
¥S-n % = a) [&(P1)-&(P)}]

I=1

where P1 € 3Q
and Py e

Figure 9. Discretization
for 9%/8n at P

The coefficients a; are determined using the geodesic
normal coordinates, what results in the solution of the simple
system of equations (see [8] for details)

¥1 ¥z ya3 a1 1
x1{1+y1-K) xz(l+y2-K) x3(l+y3-K} az| = |0
xt - yi x% - y3 x5 - ¥§ a3 0

where K is the curvature of 3Q at Pi

110

aB{P1}+BP(Pi-1)+5d(P1-2)

APPENDIX IV
Proposed iterative method
Suppose that g° of (14) is known. The CSM gives
#f = P q".

§1:3]

Thus, vector ®* can be calculated from the application
of the CGS methed to the FDM problem. Theoretically, from
(13),

2" = A"z - Z2¢D) (19)

Determine the auxiliary vector f2 , by using (19)

e Soth + 7" = (S0 - Z1IATZ2RY + ZATz (20)

A new vector of charges r® can be derived from the
CSM with least squares and the QR decomposition, obtained
from (13)

P[0 - e

Using (18) and (20) on the last expression, we obtain

= RQT 0 L S (21)
Zia7'Zz - So ~ZiA" 2z .

Taking the combination q*!= 8 q®+ (1-8) r®, where 0
is an arbitrary parameter, and by using (21), the expression
(15) for T is ummediately obtained. This combination assures
that at the end of the iterative caiculations (when 2 = ¢°),
we will have q™!=¢®=r", for any chosen value of 6 .

The flowchart of Figure 4 resumes the above procedure.
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