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Abstract— We consider an L1 � periodic dielectric slab
which is characterized by the dielectric function ε � x �
L1 � z � 
 ε � x � z � as a 2D model for photonic crystals. We as-
sume that there is no variation in y � direction, with fields
varying time-harmonically according to exp � � jωt � . In
order to solve electromagnetic wave propagation in such
structures, we diagonalize the Maxwell’s equations with
respect to the z � coordinate. As demonstrated in this pa-
per, diagonalized forms greatly facilitate the implementa-
tion of the finite difference method. The L1 � periodicity
of the fields suggests expansions in terms of spatially har-
monic functions. However, contrary to the commonly-
used Bloch inhomogeneous plane waves, we utilize ex-
pansions of the form ψ � x � z � 
 ∑N � 1

n 
 0 ψn � z � exp � j � kn � K � x � .
For the determination of the coefficient functions ψn � z �
we employ a sophisticated, yet, easy-to-apply imple-
mentation of a finite difference discretization scheme
in the z � direction which permits virtually arbitrary
L1 � periodic ε � x � z � profile functions. It will be demon-
strated that the proposed hybridization of the plane-wave
decomposition and the finite difference method leads to a
robust and flexible method of analysis with a wide range
of applications. As an example, we consider TE-polarized
electromagnetic waves which propagate in the assumed
dielectric slab along the x � axis.

I. INTRODUCTION

We consider an L1 � periodic dielectric slab char-
acterized by the permittivity function ε � x � L1 � z � �
ε � x � z � as a 2D model for photonic crystals. We assume
that there is no variation in y � direction, with fields
varying time-harmonically according to exp � � jωt � .
We present a general scheme for the diagonalization
of Maxwell’s equations with respect to the z � coordi-
nate and consider TE-polarized electromagnetic waves
propagating in the assumed dielectric slab along the
x � axis. The L1 � periodicity of the fields suggests
expansions in terms of spatially harmonic functions.
However, contrary to the commonly-used Bloch in-
homogeneous plane waves, we utilize expansions of
the form ψ � x � z � � ∑N � 1

n � 0 ψn � z � exp � j � kn � K � x � . For
the determination of the coefficient functions ψn � z � we
employ a sophisticated, yet, easy-to-apply implemen-
tation of a finite difference discretization scheme in
z � direction which permits virtually arbitrary permit-

tivity profile functions ε � x � z � . It will be demonstrated
that the proposed hybridization of the plane-wave de-
composition and the finite difference method leads to
a robust and flexible method of analysis with a wide
range of applications.

Contrary to the standard finite difference implemen-
tations which include the entirety of the E � and H �
components, in our technique, we use an FD discretiza-
tion, which only involves an ‘‘optimized subset’’ of
the field components [1,2]. Stated more precisely, only
those field components are involved in our formalism,
which enter the interface- or boundary conditions on
z � const planes: It turns out that these ‘‘transver-
sal’’ field components are the only unknowns in our
problems; the remaining ‘‘normal’’ components can
be uniquely determined once the transversal fields have
been calculated.

This paper is organized as follows: In Section II. we
briefly comment on the diagonalization procedure. The
electromagnetic wave propagating in a photonic crys-
tal, as specified above, decouples into a TE- and a TM-
polarized mode. In this paper we focus on TE-modes.
In Section III. we discuss the discretization and approx-
imation of the fields. Section IV. is devoted to formulat-
ing appropriate boundary conditions for our problem.
Thereby, assuming free space below and above our
structure, we formulate discrete boundary conditions in
a matrix form. Section V. is devoted to the specifics of
our numerical calculations. We discuss tools and mea-
sures which we have developed to enhance the speed,
and at the same time, the accuracy of our computations.
In Section VI. we discuss a glimpse of the numerical re-
sults which we have obtained. We compare our results
with available data. Section VII. concludes our discus-
sion.

Notation: In the following we exploit the
L1 � periodicity property and assume that the real-
valued variable K (to be specified soon) varies in the
interval � � π � L1 � π � L1 � . Furthermore, we have defined

kn �
� !  " 2π

L1
n 0 # n # N

2

2π
L1 $ n � N % N

2 & n # N � 1 ' (1)
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II. DIAGONALIZATION

Consider the Maxwell’s curl equations under the fol-
lowing two assumptions: (i) no variation in y � direction
(∂y � 0), and (ii) isotropic materials specified by a
constant permeability µ , and an L1 � periodic inho-
mogeneous permittivity function ε � x � z � : ε � x � L1 � z � �
ε � x � z � . Assumptions (i) and (ii) imply the constitutive
equations in the forms B � µH and D � ε � x � z � E. Con-
sequently, Maxwell’s equations are:

� ∂x

�
1
0 � H3 � ∂z � H1

H2 � � � jωε � x � z � � E2

� E1 �
(2a)

� ∂x

�
1
0 � E3 � ∂z � E1

E2 � � jωµ � H2

� H1 � (2b)

∂xH2 � � jωε � x � z � E3 (2c)

∂xE2 � jωµH3 �
(2d)

Our goal is the diagonalization of (2) with respect to
the z � axis. In other words, we are aiming at an equa-
tion of the form: � � x � z � �ψ � ∂z �ψ . Equations (2a) and
(2b) can be written in the form:�		
 0 0 0 jωµ

0 0 � jωµ 0
0 � jωε � x � z � 0 0

jωε � x � z � 0 0 0

� 

� �		
 E1
E2
H1
H2

� 

�
�

�		
 ∂x 0
0 0
0 ∂x

0 0

� 

� � E3
H3 � � ∂z

�		
 E1
E2
H1
H2

� 

� � (3)

while (2c) and (2d) give:

� E3
H3 � �

�			
 0 0
0 ∂x

jωµ
0 0

� ∂x
jωε

�
x � z � 0

� 


�
T �		
 E1

E2
H1
H2

� 

� �
(4)

Substituting (4) into (3) we obtain the desired di-
agonalized form, which can be written in the form� � x � z � �ψ � ∂z �ψ . Note that the z � dependence in� � x � z � is due to the z � dependence in the ε � x � z � func-
tion. The differential � � x � z � � operator is devoid of
z � derivatives. The z � diagonalized form can be inter-
preted as follows: Evaluate � � x � z � at a certain point z,
say, z0, to obtain � � x � z0 � . Determine the expressions
for � � x � z0 � �ψ . This gives the rate of change of �ψ in the
z � direction at z � z0, i.e. ∂z �ψ at z � z0. In the present
case the system of equations � � x � z � �ψ � ∂z �ψ decouples
into the following subsets:

1) z � diagonalized transversal electric fields: It
is straightforward to show that the z � diagonalized
transversal electric fields satisfy equation (5),

� 0 � jωµ
� jωε � x � z � � 1

jωµ ∂ 2
x 0 � � E2

H1 �
� ∂z � E2

H1 � (5a)

H3 � 1
jωµ

∂xE2 �
(5b)

2) z � diagonalized transversal magnetic fields: The
z � diagonalized equation for the transversal magnetic
fields is

� 0 jωµ � ∂x
1

jωε
�
x � z � ∂x

jωε � x � z � 0 � � E1
H2 �

� ∂z � E1
H2 � (6a)

E3 � � 1
jωε � x � z � ∂xH2 �

(6b)

III. ANALYSIS OF TE-POLARIZED WAVES IN

PERIODIC DIELECTRICS

In this paper we will focus on the TE-polarized
waves, i.e. we consider (5), which we write in the form:

� � jωε � x � z � � 1
jωµ

∂ 2
x � E2 � ∂zH1 (7a)

� jωµH1 � ∂zE2 �
(7b)

A. Discretization of the Fields

As will be clear in the sequel we discretize the fields
in x � and z � directions differently. We exploit the
periodicity conditions in x � direction and decompose
the fields in spatial harmonics in this direction. How-
ever, we choose a finite difference discretization in
z � direction. The following sections are devoted to the
procedural details.

1) Treatment of the x � dependence: L1 � periodicity
suggests the following approximation for the fields:

E2 � x � z � �
N 	 1

∑
n 
 0

en � z � e j
�
kn � K � x (8a)

H1 � x � z � �
N 	 1

∑
n 
 0

hn � z � e j
�
kn � K � x

�
(8b)
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For z � z0 � const the finite sums at the RHS of (8) are
infinitely differentiable with respect to x. Substitute (8)
into (7). Define the linear functional Dm

Dm � f � � 1
L1

L1�
0

dx f � x � � � e � j
�
km � K � x (9)

for m � � 0 � N � 1 	 . Apply Dm to both sides of (7). Use
the fact that

δ � m � n 	 � 1
L1

� L1

0
dxe � j

�
km � kn � x � (10)

with δ � n 	 being the Kronecker symbol, and

εm � n � z � � 1
L1

� L1

0
dxε � x � z � e � j

�
km � kn � x � (11)

to obtain

j
ωµ

� km � K � 2 em � z � � jω
N � 1

∑
n � 0

en � z � εm � n � z � � ∂zhm � z �
(12a)

� jωµhm � z � � ∂zem � z �



(12b)

Consider the integral representation for εm � n � z � , Eq.
(11), with m � n � � 0 � N � 1 	 . Using km � kn � 2π

L1
� m � n �

we obtain,

εm � n � z � � 1
L1

L1�
0

dxε � x � z � e
� j 2π

L1

�
m � n � x



(13)

Observe that min � m � n � � 0 � � N � 1 � � � N � 1 and
max � m � n � � � N � 1 � � 0 � N � 1. Therefore, for ev-
ery fixed value of z we need to evaluate Fourier inte-
grals of the form

εl � z � � 1
L1

L1�
0

dxε � x � z � e
� j 2π

L1
lx

(14)

at 2N � 1 discrete ‘‘frequency’’ values in the range l� � � N � 1 � N � 1 	 . In our simulations we have evalu-
ated integrals (14) by utilizing Fast Fourier Transform
(FFT), and requiring 2N � 1 sampling points ε � xi � z0 � ;
i � � 1 � 2N � 1 	 of the function ε � x � z0 � for every fix value
z0 of z.

B. Discretization in z � direction

As pointed out earlier we use a finite difference dis-
cretization in z � direction. However, in contrast to
the standard techniques, our implementation of the fi-
nite difference technique involves Fourier coefficients
rather than the fields in real space. In what follows we

demonstrate the way how we discretize the z � depen-
dent part of the coefficients. To this end it is advanta-
geous to adopt the abbreviation f i

m � fm � i∆z � . Thereby,
f i
m means the mth Fourier coefficient of the function

f � x � z � sampled at z � i∆z. Using this notation we ob-
tain:

j∆z

ωµ
� km � K � 2 ei � 1

2
m � jω∆z

N � 1

∑
n � 0

ei � 1
2

n ε i � 1
2

m � n
� hi � 1

m

� hi
m (15a)

� jωµ∆zh
i
m � ei � 1

2
m � ei �

1
2

m 

(15b)

These equations in the matrix form read:

Ai � 1
2 ei � 1

2 � hi � 1 � hi (16a)

Bihi � ei � 1
2 � ei �

1
2



(16b)

The coefficient matrices A and B in (16) have the
following structure:

A � � j∆z � ωP � 1
ωµ

� Q � KI � 2 � (17)

with

P �

������������
ε0 ε � 1 ε � 2 
 
 


ε � N � 1
ε1 ε0 ε � 1 
 
 


ε � N � 2
ε2 ε1 ε0 
 
 
 



 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 
εN � 2 
 
 
 
 
 
εN � 1 εN � 2 
 
 
 


ε0

	 ����������� (18)

and

Q �

����������
k0 0 0


 
 

0

0 k1 0

 
 


0


 
 
 
 
 
 


 
 
 
 
 
 


 
 
 
 
 
 
0


 
 
 
 
 
0 0

 
 
 


kN � 1

	 ��������� (19)

and

B � � jωµ∆zI



(20)

C. Boundedness property of P∞

For analyzing the stability of the system of equa-
tions, which we will construct in the next section, it is
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imperative to investigate the properties of the involved
matrices. The finite dimensional matrix P � � PN � in
(18) is the truncated version (projection) of an infinite
dimensional matrix that we denote by P∞. It is rec-
ognized that we are concerned with Toeplitz matrices,
which considered as kernels, have rich analytical prop-
erties. It is easily seen that P∞ is uniquely determined
by a two-sided infinite sequence � εl �� l � 0 � � 1 � � 2 � � � � �
with P∞ � m � n � � εm � n � m � n � 0 � 1 � 2 � � � � � .

Furthermore, we understand that for any physically
realizable dielectric medium the function ε � x � zi � is in
L∞ � � π � 2 � π � 2 � , the space of all essentially bounded
functions f � x � defined on � � π � 2 � π � 2 � , which are finite
in the norm � � f � � ∞. Here � � f � � ∞ denotes the essential
supremum of � f � x � � , with x � � � π � 2 � π � 2 � .

In addition, we remember that we obtained εl as
Fourier coefficients of ε � x � z � (evaluated at a fixed point
z0) with respect to the functions el � x � � exp � j2π lx � ,

� l � 0 � � 1 � � 2 � � � � � . Using standard theorems in the
theory of Toeplitz matrices, we can show that based
on these properties P∞ � m � n � � εm � n, and thus PN are
bounded.

1) Creating the global system of equations: The
fields along the z � direction can be determined recur-
sively by using (16) which we write in the form:

Ai � 1
2 ei � 1

2 	 hi � 1 � hi � 0 (21a)

Bihi 	 ei � 1
2 � ei �

1
2 � 0



(21b)

We terminate our computational grid at two bound-
ing z � const levels: The lower bound being z � � ∆z � 2
and the upper bound being z � � nz 	 1 � 2 � ∆z. There-
fore, the simulation domain occupies the region z �

� 0 � nz � ∆z. As is evident from (21) the magnetic fields
are evaluated at even multiples of ∆z � 2 while the elec-
tric fields are evaluated at odd multiples of ∆z � 2. Con-
sequently, we need to calculate the electric fields at
z � � ∆z � 2 and z � � nz 	 1 � 2 � ∆z, i.e., exp � � ∆z � 2 � and
exp � � nz 	 1 � 2 � ∆z � . As will be shown in the next sec-
tion these electric field values will be calculated from
the field distributions in the adjacent media immedi-
ately below and above the corrugated slab. In view of
(21), and with i running through the interval � 0 � nz � , we
can assemble the desired global system. The interlaced
algorithm, which we have utilized for constructing the
global system, is sketched in Fig. 1.

IV. BOUNDARY CONDITIONS

A. Open Boundary Problems

Assume free space for z � 0 and z � nz∆z. In free
space our diagonalized equations take a particularly
simple form: For the field expansion coefficients en � z �

H
0
 = Φ

l
E

−0.5
(∂

z
E)

0
 = A

0
H

0

E
−0.5

E
0.5

 = E
−0.5

 + ∆(∂
z
E)

0
(∂

z
H)

0.5
 = B

0.5
E

0.5

H
1
 = H

0
 + ∆(∂

z
H)

0.5
(∂

z
E)

1
 = A

1
H

1

H
N−1

 = H
N−2

 + ∆ (∂
z
H)

N−1.5
(∂

z
E)

N−1
 = A

N−1
H

N−1

E
N−0.5

 = E
N−1.5

 + ∆(∂
z
E)

N−1
(∂

z
H)

N−0.5
 = B

N−0.5
E

N−0.5

(∂
z
E)

N
 = A

N
H

N
H

N
 = H

N−1
 + ∆(∂

z
H)

N−0.5

H
N

 = Φ
u
E

N+0.5
E

N+0.5
 = E

N−0.5
 + ∆(∂

z
E)

N

Fig. 1. A representation of how electric and magnetic fi elds are de-
fin ed on interlaced layers . T he text at the L H S s hould d es cribe w here
and how the h � fi eld has been computed, while the text on the RHS
s hould provide the s am e inform ation f or the e � field. T he s lab is
confined to the layers 0 and N . The e � fi elds outs ide the s lab on the
outermost layers are used to formulate the boundary conditions in
terms of matrices Φu and Φl .

and hn � z � appearing in (8), we can use enexp � λnz � and
hnexp � λnz � , respectively. Thus we have:

E2 � x � z � �
N � 1

∑
n � 0

ene j


kn � K � xeλnz (22a)

H1 � x � z � �
N � 1

∑
n � 0

hne j


kn � K � xeλnz



(22b)

We next substitute (22) into (7), and apply the func-
tional Dm to the terms involved. Noting that ε is a
constant, we have εm � n � z � � δ � m � n � . Therefore, we
obtain:

j
ωµ

� kn 	 K � 2 en � jωεen � λnhn (23a)

� jωµhn � λnen



(23b)

Solving for hn from (23b), and substituting the result
into (23a) we arrive at

j
ωµ

� kn 	 K � 2 en � jωεen � � λ 2
n

jωµ
en



(24)

For nontrivial solutions we obtain � kn 	 K � 2 � ω2µε �
λ 2

n . Or, equivalently,

λn � �



� kn 	 K � 2 � ω2µε � � wn



(25)

As the next step we establish a relationship between
e � 1 � 2 and h0 to formulate the boundary condition we
are looking for. We use the fact that e0

n � e � 1 � 2
n eλn∆z � 2.

In free space Sommerfeld’s radiation condition permits
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only those fields which decay at infinity. This condition
is met by taking the branch λn � wn, as defined in (25).
Then, we obtain e0

n � e � 1 � 2
n ewn∆z � 2. From (23b) we ob-

tain: h0
n � � � wn � jωµ � e0

n. Using the last two equations
we arrive at

h0
n � wn

jωµ
e � 1

2
n ewn

1
2 ∆z � 0

�
(26)

This equation defines the desired ‘‘boundary’’ matrix
C � 1 � 2 which relates e � 1 � 2 to h0. Analogously we ob-
tain the ‘‘boundary’’ matrix Cnz � 1 � 2 which relates hnz

n

to enz � 1 � 2
n . Proceeding similarly we obtain

hnz
n � wn

jωµ
enz �

1
2

n e
1
2 ∆zwn � 0 � (27)

which yields the desired boundary condition. Note that
the resulting equality C � 1 � 2 � Cnz � 1 � 2 is an implica-
tion of ε � 1 � 2 � εnz � 1 � 2.

B. Inhomogeneous boundary problems

The scheme presented above is not restricted to ho-
mogeneous boundaries. Assume that the dielectric
function outside the slab satisfies the following two
conditions: for z 	 0 or z � hz (i) ∂zε � x � z � � 0, and
(ii) ε � x � L1 � � ε � x � , where L1 is the periodicity length
in the slab. For the fields we have the expansions:

E2 � x � z � � N � 1

∑
m 
 0

fm
N � 1

∑
n 
 0

em � ne j
�
kn � K � xeλmz (28a)

H1 � x � z � � N � 1

∑
m 
 0

fm
N � 1

∑
n 
 0

hm � ne j
�
kn � K � xeλmz

�
(28b)

The constituent terms in these equations are built
from the eigenvectors and the corresponding eigenval-
ues λm (the propagation constants in z � direction). In
order to compute the desired eigenpairs, we substitute

E2 � x � z � � N � 1

∑
n 
 0

ene j
�
kn � K � xeλ z (29a)

H1 � x � z � � N � 1

∑
n 
 0

hne j
�
kn � K � xeλ z (29b)

into (7) and process the LHS of the equation as de-
scribed in section III.A. This leads to an algebraic
eigenvalue equation of dimension 2N from which the
desired eigenvalues and vectors can be solved numeri-
cally. Only eigenvalues which lead to decaying fields
should be considered as explained above. This proce-
dure is a generalization of the homogeneous boundary.
In homogeneous case, the ‘‘boundary’’ matrices are
diagonal because each eigenvector has only one non-
zero element. In inhomogeneous case, the eigenvectors
have in general N non-zero elements and the resulting
boundary matrices are full.

V. SOLVING LINEAR SYSTEMS OF THE EQUATIONS

In the preceding sections we explained the theoret-
ical basis o f our method. In the following  we will de-
scribe how this theory can be applied to eigenmode and
excitation problems. In addition we will explain how to
solve the involved equation systems efficiently using it-
erative solvers.

A. Excitation problems

In this section we consider an elementary excitation
problem, which can be formulated in terms of the fol-
lowing interface condition for the magnetic field:

lim
δ � 0

h1 � z0 � δ
2 � � h1 � z0 � δ

2 � � ρ2 � z0 �
�

(30)

Here h1 � z � denotes the x � directional magnetic field
component and ρ2 represents a y � directional elemen-
tary current element.

In order to discretize (30), consider a three-point
central difference scheme:

h1 � k∆ � � ∆ � ∂h1

∂ z
� ���� z 
 � k � 1

2 � ∆
� h1 � � k � 1 � ∆ �

�
(31)

Next add one point to the system, at position
� � k � 1 � ∆ � δ � where δ is an infinitesimally small but
finite number, and insert the dipole source ρ2 at loca-

tion
�

� k � 1 � ∆ � δ
2 � . In view of (30) we can write (31)

as

h1 � k∆ � � ∆ � ∂h1

∂ z
� ���� z 
 � k � 1

2 � ∆
� ρ2 � h1 � � k � 1 � ∆ �

�
(32)

As a generalization, we can substitute the x-
directional Fourier expansion in place of the scalar vari-
ables above. Evaluating the derivative as in (12a) and
writing the terms using the notation of (21) we obtain

hk � hk � 1 � B �
k � 1

2
e

k � 1
2

� � ρ
k � 1

2 �
(33)

Obviously the mere difference between this equation
and (21b) is the excitation term at the RHS. In (33) the
excitation has been indexed by 
 k � 1

2 � due to the finite
resolution in our discretized system: We cannot specify
the position of the dipole source more precisely than
stating that it is located somewhere between the layers
k and � k � 1 � .

From the above discussion it can be concluded that
for solving excitation problems we merely need to re-
place the zero vector at the RHS of (21b) by the Fourier
transform of the current distribution. A similar proce-
dure can be conducted mutatis mutandis for the deter-
mination of electric fields due to magnetic currents.
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The discretized inhomogeneous system of equations
describing the present excitation problem has the form

A � ω � K � x � b � ω � K � (34)

where x represents the unknown coefficient vector and
b is the excitation vector. The solution to this problem
can be obtained by using standard techniques, e.g. LU-
decomposition or Gauss elimination, unless matrix A is
singular, in which case we recommend to resort to one
of the techniques described below.

Once the solution to (34) has been obtained, we use
(8) to construct the fields in real domain. As pointed out
earlier, the expansions of the fields are simply Fourier
transforms with respect to x on various layers z � i∆.
Therefore, we can synthesis the fields from the coef-
ficients merely by applying the inverse Fourier trans-
form.

B. Eigenstate problems

1) Theorem: A homogeneous linear system

Ax � 0 (35)

always has the trivial solution x � 0. Nontrivial solu-
tion exist if and only if rank � A � � n. If rank � A � � r �
n, these solutions, together with x � 0, form a vector
space of dimension n � r.

One way to determine the rank of a matrix is to count
all its eigenvalues which are equal to zero. The cor-
responding eigenvectors expand the null space of A
among which we can construct all the solutions.

This information can also be obtained through singu-
lar value decomposition. If n singular values are zero,
then the null space of A has dimension n and the equa-
tion system has a solution of degeneracy n.

A more efficient way to investigate the singularity of
a matrix is to perform an LU-decomposition and cal-
culate its determinant by multiplying the diagonal el-
ements of the upper diagonal matrix. The determinant
itself is generally inappropriate for determining the sin-
gularity of a matrix due to the lack of a uniform scale:
The determinant can be very large even if the matrix is
nearly singular or vice versa. In our case it does not
really matter much since we are aiming at ratios. We
construct the system matrix for consecutive ω values
and compare the associated determinants. For ω’s near
a singularity, the value of the determinant drops sharply
and we can iterate towards the resonant frequency. In
the next session we address the details of the iterative
scheme used.

C. Iterative solver

For large problems, iterative rather than direct
solvers should be considered since they often signifi-
cantly speed up the computations. Our choice for it-

erative solver has been the Transpose Free Quasi Min-
imal Residual method (TFQMR), which is a Krylov-
subspace method for non-Hermitian matrices [3]. It is
efficient, tolerant against breakdowns, and handles sin-
gular matrices well.

TFQMR (as many other iterative solvers) only re-
quires products by the matrix to be solved and, thus,
the matrix never actually has to be constructed. All is
needed is a routine that returns the product of the ma-
trix by a given trial vector.

1) Generating matrix products: The operator in (7a)
has two parts: the spatial derivatives and a multipli-
cation by a function ε in the spatial domain. Deriva-
tives are trivially simple to compute in the Fourier
domain as they reduce to algebraic multiplication by
the respective Fourier expansion term. On the other
hand, multiplication by ε leads to a convolution - or
- in discretized version, to a multiplication by a con-
volution matrix (18). It is known from the theory
of Fourier transforms that convolution in Fourier do-
main corresponds to a multiplication in real domain
and vice versa. Therefore, the convolution can be eval-
uated by inverse Fourier transforming the coefficient
matrix, multiplying by ε in the real domain, and finally
Fourier transforming back. This approach is justifiable
because multiplication by the (full) convolution matrix
is an O � N3 � operation for N coefficients, but in real do-
main, we multiply spatial fields with the corresponding
ε , requiring only O � N � operations. Dominating factor,
O � N ln � N � � , comes from the FFT.

This approach can not be used in constructing the
system matrix A, it is only amenable to evaluating ma-
trix vector products.

2) Preconditioning: The convergence rate of itera-
tive methods decisively depends on the matrix they are
applied to. Occasionally, they may completely fail to
converge. However, instead of solving Ax � b we can
solve the equivalent form

M � 1
1 AM � 1

2 � M2x � � M � 1
1 b (36)

for the new unknown vector y � M2x and the RHS
c � M � 1

1 b. Our expectation is that the solver may con-
verge faster for the new matrix M � 1

1 AM � 1
2 . The pri-

mary objective is then to find suitable preconditioner
matrices M1 and M2 such that their inverse can be
computed with a reasonable effort, and that they would
transform the matrix into a nearly diagonal one. To
this end various standard techniques have been devel-
oped, e.g. partial LU-decomposition, but we decided
to use a problem-specific strategy in which relevant in-
formation from A is used. In our case we use only
one sided preconditioning and set M1 � I. The right
preconditioner matrix M2 is constructed from three di-
agonals of A. In effect, M2 corresponds to a system
matrix of a modified problem in which ∂xε � x � z � � 0.
The discretized dielectric function for the ‘‘reduced’’
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problem can be obtained by averaging the original di-
electric function on each z � layer, εk � ave � εk � , over
one period.

We do not invert M2 explicitly. Instead, we solve
M2z � ŷ � z � M � 1

2 ŷ, where ŷ is a trial vector given
by TFQMR. After this, z is multiplied by A as ex-
plained above and the result is returned TFQMR. The
linear system concerning M2 can be solved efficiently
using Gauss elimination because there are non-zero el-
ements only on three diagonals. The elements of M2
are computed once for each different A and then reused
in the subsequent iterations.

3) Iterative solution of Solving eigenstates: Eigen-
states can also be solved iteratively as will be demon-
strated in section VI. This technique does not involve
matrix factorization directly nor the computation of its
determinant. Consider the following system

A � ω � K � x � y (37)

where y is some non-zero vector, while the remain-
ing terms are defined as before. This is an inhomo-
geneous system and can be solved using the iterative
technique described above. If A � ω � K � approaches a
singular point, then x approaches an eigenvector of
A � ω � K � corresponding to an eigenvalue 0, nearly inde-
pendently of y. Furthermore, the norm of the solution
x approaches infinity. The proof of this statement and
limitations on the choice of y are provided in [4]. This
property can be used as a measure for matrix singular-
ity in place of, e.g. the determinant.

In many instances iterative solutions are preferred
since they require less computer resources than the di-
rect factorization of the matrix, and, at the same time,
give the field solution.

VI. NUMERICAL RESULTS

We solve dispersion diagrams for two problems and
compare results with those obtained by a planewave
method (PWM) [5]. In addition, we present field solu-
tions for a third problem, which consists of a slab with
Gaussian dielectric profile function. We use TFQMR to
find the field solution due to a single dipole excitation.
Our objective is to find the singular points of the system
matrix where the solution norm approaches infinity.
Because it is easier to search zeros rather than infini-
ties we use an ‘‘inverted’’ form instead. Then our ob-
jective function becomes F � ω � � �

�
� A � 1 � ω � b ��

2 � � 1 � 2

where A � ω � is the system matrix and b is the excitation
vector. The minimization takes place in two steps: first
we bracket the minimum between two points and then
we decrease the interval to the desired accuracy. When
bracketing the minimum, we fit a second order poly-
nomial to three points of F � ω � in order to estimate the
location of a fourth point. This allows us to adapt the
step size according to the derivative and absolute value

ε=10.5P

ε=1P

z

x

ε=1P ε=13

Fig. 2. One unit cell of the test structure 1. The structure is periodic
in x � direction w ith period P . A bove and b elow the s lab, as w ell as the
space between the corrugation is free space.

of F � ω � and therefore take great leaps away from the
minimum and small steps in its vicinity. When the min-
imum has been bracketed, we switch to golden section
search in order to decrease the bracketed interval.

In the planewave method, the problem is assumed
to be periodic in all directions. Therefore, in order to
apply this technique, we need to periodize the struc-
ture artificially by adding sufficiently large free space
in the z � direction. The resulting enlarged unit cell,
i.e. a supercell, is then periodized. This approach is
justifiable if the modes are confined around the slab
in z � direction, such that immediate neighboring su-
percells have negligible interaction. This can be veri-
fied by repetitively solving the problem with larger and
larger supercell until the results converge.

A. A slab with rectangular corrugation

Our first test case is a slab with a periodic and rect-
angular corrugation. The period is L1 � P, the height
of the slab h � P and the pitch-to-mark ratio is 0

�
5

(l � 0
�
5P). The relative dielectric constant of the slab is

ε � 13. Above and below the slab, as well as, the space
between the corrugation is free space. A schematic pic-
ture of the structure is presented in Fig. 2.

In order to apply the planewave method we have
used a supercell with dimensions L1 � P and Lz � 12P.
The computed dispersion diagram is shown in Fig. 3.
Red curves with circular markers  are obtained u sing
our method, while blue lines with cross markers  have
been computed using the planewave method. The thick
black line indicates the lightline, above which modes
are radiating. Note that due to the artificial periodiza-
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Fig. 3. Dispersion diagram for a slab with rectangular corrugation.
Red lines with circular m arkers are com puted us ing our m ethod, while
blue lines w ith cr os s m ar kers h ave b een com puted us ing p lanewave
method. In our method we used 64 planewaves in x � direction and 64
fin ite diff er ences in z � direction. For the planewave m ethod we us ed
64 planewaves in a unitcell; i. e. 64x(12x64) planewaves all together.

tion in the planewave method, even unbounded modes
appear guided.

This is an artifact, which is avoided in our method:
For weakly or nonguided modes the interaction be-
tween consecutive supercells is no longer negligible
and, therefore, they appear guided.

B. A slab with cylindrical corrugation

Our second test case is a similar slab but this time
with a cylindrical corrugation. The slab dimensions,
material, period length and discretization scheme are
as above. However, the corrugation is formed of
y � directional air cylinders (voids) with r � 0

�
4P. The

structure is shown in Fig. 4.
Because the discretization is rectangular in both

methods, we have averaged ε in the boundary cells in
order to bring the average closer to its true value. The
computed dispersion diagram is shown in Fig. 5.

C. Field solution in a slab with Gaussian dielectric
profile

Our third test case is a slab with thickness hz � 1 and
x � directional periodicity L1 � P � 1. The dielectric
function in the fundamental unit cell of the slab is

ε � x � z � � 1 � 9e � � 0 � 5 � x
0 � 2 � 2

e � � 0 � 5 � z
0 � 2 � 2

�
(38)

Above and below the slab is free space. The dispersion
diagram, which shows that this slab supports two TE-
polarized modes, is presented in Fig. 6.

We solved the fields resulting from one y-directional
dipole located at � x � z � � � 0

�
30 � 0

�
27 � for � K � ω � �

� 0
�
4 � 0

�
2816 � . As can be seen from the dispersion di-

agram, this point corresponds to an eigenfrequency of
the system and, therefore, the system matrix is (nearly)

z

x
P ε=1

P

ε=1

ε=1

ε=13

0.8P

ε=1

Fig. 4. One unit cell of the test structure 2. The structure is periodic
in x � direction with period L1

� P. Above and below the slab in
z � direction, we assume free space.
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Fig. 5. Dispersion diagram for a slab with circular corrugation.
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Fig. 6. Dispersion diagram for a slab with a Gaussian dielectric func-
tion as computed by our method.
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Fig. 7. Real part of eigenmode fi elds for a slab with Gaussian dielec-
tric function, computed for

�
K � ω � �

�
0 � 4 � 0 � 2816 � .
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Fig. 8. Fields in a slab with Gaussian dielectric function, computed
for

�
K � ω � �

�
0 � 5 � 0 � 2816 � .
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singular. Field distributions e2 and h1 presented in Fig.
7 are the transversal field components obtained directly
by solving (34). Whereas the orthogonal field com-
ponent h3 is computed a posteriori using (5b). In the
field patterns there is no trace of the dipole excitation.
This can be understood as follows: A dipole excitation
pumps energy into a resonating system and, therefore,
the energy grows without bounds, until the excitation is
negligible compared with the field strength. Mathemat-
ically speaking, the system matrix A has an eigenvalue
0 and, therefore, the solution of (34) is in the space
which is spanned by eigenvectors corresponding to an
eigenvalue 0. A more formal proof is given in [4].

Fields in response to an excitation in the same loca-
tion but obtained for � K � ω � � � 0

�
5 � 0

�
2816 � are shown

in Fig. 8. Now the dipole excitation is clearly visible in
the field patterns. Moreover, the ratio of field peak val-
ues at eigen frequency and this frequency, as returned
by the iterative solver, is of order 108.

VII. DISCUSSION OF THE NUMERICAL RESULTS

AND CONCLUSIONS

A. Searching for the minimum

The computational effort needed to solve the eigen-
modes depends on how efficiently the system equation
can be solved and how many times it has to be done.
We have already addressed how accelerate the solver,
here we discuss how minimize F � ω � efficiently for a
given K. Currently we fit a second order polynomial
to three previously computed points in order to esti-
mate the location of the fourth one. When the curve
approaches a minimum we decrease the step size try-
ing to avoid overshooting the minimum. Practice has
shown that it is good to aim at a point that changes the
norm by 10% compared to the previous value. It is
tempting to use bigger steps but then we risk jumping
over a minimum without noticing its occurrence. This
is especially crucial for closely spaced modes. Smaller
steps on the other hand are more secure but then we end
up solving the fields in unnecessarily many ω points. A
typical search pattern is shown in Fig. 9.

When the minimum is bracketed, we switch to
golden section search to iterate the minimum to the de-
sired accuracy. The advantage of this procedure is that
golden section search converges at a predetermided rate
and it does not suffer from lock ups. The disadvan-
tage is that the convergence rate is predetermined even
though we could perform better since we have a good
idea of the curve behavior. Most of the standard min-
imization techniques are not applicable because they
assume parabolic behavior near the minimum. Instead,
we could fit polynomials to both sides of the minimum
and increase the degree as more points are solved. The
crossing of the two polynomials would then be the next
search point. However, this method is prone to lock ups
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Fig. 9. Field energy function F
�
ω � for the test case with cylindrical

corrugation. The phasing factor is chosen to be K � 0 � 5 (in Brillouin
zone units). The behavior is very regular allowing effi cient optimiza-
tion techniques in the quest for minima.
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Fig. 10. Search pattern in the vicinity of the minimum for the third
order mode with K � 0 � 5 (in Brillouin zone units) of the slab with
cylindrical corrucation.

and has not been experimented so far. A typical search
pattern in the vicinity of a minimum is shown in Fig.
10.

B. Convergence

1) Convergence of the iterative solver: It is difficult
to make precise statements for the convergence behav-
ior of the iterative solver because it strongly depends
on a variety of parameters. With our preconditioner,
the number of iterations needed usually varies between
2 and 20. Key factors are the dielectric function and the
condition number of the matrix. In addition, the initial
guess has an influence, even though a minor one.

Typically problems with ∂ε � x � z � � ∂x being small
converge fairly quickly. This is because large variations
of ε in x � direction create large off-diagonal terms in
the system equation. The three-diagonal preconditioner
is capable of directly solving a matrix with only three
diagonals but all off-diagonal terms are left for the it-
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erative solver. Therefore, the bigger the off-diagonal
terms are, the worse is the condition number of the pre-
conditioned matrix and the more iterations are needed
by the iterative solver. It is worth mentioning that if
∂ε � x � z � � ∂x � 0, there are no elements outside the three
diagonals in the system matrix and only one applica-
tion of the preconditioner solves the problem. No iter-
ations are needed. It should also be pointed out that be-
cause of the finite difference approach in z � direction,
∂ε � x � z � � ∂ z has no effect on convergence. All varia-
tions with respect to z are eliminated by the precondi-
tioner.

It appears that the condition number of the matrix is
also a factor in the iterative solver convergence. This
is unfortunate since the eigenmodes of the system are
found exactly in the singular points of the system ma-
trix. The effect is not dramatic; the number of the iter-
ations required for convergence is maybe four fold as
compared to a well behaved point, all other factors be-
ing held equal. Again, it is rather difficult to make pre-
cise statements because other factors often have a more
significant effect. As an example, in the cylindrical-
void slab problem with nx � nz � 64, convergence at
K � 0

�
5, ω � 0

�
1 requires three iterations (TFQMR re-

quires two matrix products for each iteration) and at the
lowest order eigenmode - K � 0

�
5, ω � 0

�
195719 - 12

iterations are needed.

The number of discretizations, on the other hand,
does not have a direct effect on convergence. Solving
the above mentioned problem with nx � nz � 384, re-
quires three and eleven iterations, respectively.

2) Convergence of eigenfrequencies: Our method
gives precise results with a small number of discretiza-
tion steps. As an example, we analyze the slab prob-
lem with cylindrical corrugation. We have solved the
lowest order eigenfrequency for K � 0

�
5 with both,

our method, and the planewave method, increasing dis-
cretization until the results converged. The conver-
gence behavior is shown in Fig. 11.

In conclusion we summarize the distinct properties
of our method: The difference between converged fre-
quencies for n � 16 and n � 384 is only 0

�
024%. The

relative difference between converged frequencies as
solved with our method and the planewave method for
n � 384 is 0

�
00204%.
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Fig. 11. Shows the lowest order eigenfrequency of K � 0 � 5 point
for the slab with cylindrical corrugation as a function of the num-
ber of discretization points. Red curve with circular markings is the
frequency as solved by our method, and blue with cross markings
obtained by the planewave method. x � axis represents the number
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in z � direction is 12nz compensating the size of the supercell. There-
fore both methods have equally many discretization points within the
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