
Accelerating Multi GPU Based Discontinuous Galerkin FEM
Computations for Electromagnetic Radio Frequency Problems

Nico Gödel 1, Nigel Nunn, Tim Warburton 2, and Markus Clemens 3

1 Faculty of Electrical Engineering

Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg,
P.O. Box 700822, D-22008 Hamburg, Germany

Nico.Goedel@hsu-hh.de

2 Computational and Applied Mathematics
Rice University, 6100 Main Street MS-134, Houston, TX, USA

3 Bergische Universität Wuppertal, FB E, Chair for Electromagnetic Theory

Rainer-Gruenter-Str. 21, D-42119 Wuppertal, Germany

Abstract─A Graphics Processing Unit (GPU)
accelerated simulation of Maxwell’s equations in
the time domain is presented. The Discontinuous
Galerkin Finite Element Method (DG-FEM) is
used for discretization since the elementwise
structure fits the parallelization design aspects of
the GPU architecture and the NVIDIA Compute
Unified Device Architecture (CUDA), a GPU
programming model. The parallelization strategy
for a multi-GPU setup using CUDA is focused.
Several performance improvements are analyzed
and investigated with the help of a realistic 3D
electromagnetic scattering example.

Index Terms─GPU-Computing, GPGPU, DG-
FEM, electromagnetics, CUDA, TESLA.

I. INTRODUCTION
 Numerical simulation of electromagnetic

devices during the development and certification
process can significantly reduce time, efforts and
costs. Efficiency and costs of numerical
simulations depend on hardware and software
investments as well as on personnel expenses,
which directly evolve from code performance and
simulation time. The presented hardware
accelerated approach is able to significantly reduce
both, simulation time and hardware costs using
consumer based GPUs instead of highly expensive
large scale computing clusters.

Hardware accelerated computation is not a
new research domain, but recently gained attention
due to the availability of high-level compute
abstractions such as CUDA [1], BROOK+ [2] and
OPENCL [3]. Furthermore, floating-point
performance and device memory bandwidth of
current consumer based GPUs exceed their CPU
counterparts by more than one order of magnitude
at approximately the same price per unit.

The combination of these GPU based co-
processing units and the evolving programming
models provide a significant potential for high-
performance related computations.

This potential has been investigated for
different volume based discretization methods,
such as the Finite Difference Method [4, 5] and the
Finite Integration Technique. Recently, the
Discontinuous Galerkin Finite Element Method
(DG-FEM) has gained attention in connection with
GPU computations [6, 7].

In this paper, the parallelization model and
several optimization techniques for DG-FEM
computations on GPU-clusters will be
investigated. The focus will be on the scalability
of multi-GPU systems.

The paper is organized as follows: In Section
II, the model is defined stating both the governing
differential equations for the electric and the
magnetic field and the spatial discretization using
DG-FEM. Subsequently, in Section III, the DG-
FEM discretization is investigated with respect to
the suitability of a parallel implementation. In

331

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

Section IV, the parallelization model
different abstraction layers as well as th
in use is presented and Section V
numerical results for the different
implementations with the use of a
example.

II. DESCRIPTION OF THE M
A. Maxwell’s Equations

Electromagnetic wave propagation
medium can be described using Amp
together with Faraday’s law of induction

 .

Here, ܧ ሬሬሬԦand ܪሬሬԦ denote the ele

magnetic field strength, respectively,
and μ identify the electric permittivit
magnetic permeability. The right-h
(RHS) of (1) and (2) describing t
dependencies can be discretized with h
Nodal Discontinuous Galerkin method.

B. Discontinuous Galerkin Discretizat

DG-FEM was first introduced by
Hill in 1973 [8] for neutron transport
and during the last decade, this m
intensively investigated for solving
equations. Relevant results have been
especially by Cockburn et. al. [9], Co
[10] and by Hesthaven and Warburton [

The DG method was chosen due
important characteristics, i.e.
(1) the treatment of complex geometr
unstructured tetrahedral meshes,
(2) explicit time stepping schemes,
multirate time stepping schemes,
(3) the use of high order basis functions
(4) a domain decomposition approach
intrinsically included in the DG formula

Along with these features, the c
restricted to geometry-dependent time st
overhead in degrees of freedom at th
faces compared to continuous FEM as w
providing a strictly conservative model
charges.

l for three
he hardware
V provides

types of
a complex

ODEL

in lossless
père’s law
n

(1)

 (2)

ectric and
whereas ε

ty and the
hand sides
the spatial
help of the

tion
Reed and
simulation

method was
Maxwell’s

n published
ohen et. al.
11, 12].
e to some

ry through

especially

and
h, which is
ation.
caveats are
teps and an
he element
well as not
 of electric

A Nodal DG discretization of eqn
is derived in [12] using Lagrange pol
basis functions. The main characteri
FEM is that it allows for an
computation of the elements, i.e. each
computed separately. The semi-discr
still continuous in time, for each eleme

Here, M-1 is the inverse of a local m
S a local stiffness-matrix and F a
matrix. The size of the matrices dep
number of nodes inside each element.
the symmetric matrices M and S is lis
1 for different polynomial orders. The
refers to a local differentiation in
without the need for using a custom
mass-matrix for every single element.

The flux-matrix F refers to the
over every triangular face of each tetra
size of the flux matrix F depends on th
nodes inside the element and the num
on all surfaces of the element. The f
and fH in eqn. (3) and (4) refer to
terms of adjacent face values on each f

III. PARALLEL STRUCTURE
MODEL

To allow for efficient parallelizati
as well as on CPUs, the computatio
split up into small pieces of work. I
piece of work has a completely indep
structure, thus requires no memory
with other parts. However, treating
problems, it seems clear that there
communication, at least for neighborin
to resolve the propagation of elec
waves. The idea of the DG-FEM and t
implementation is to minimize and en
dependencies and to efficient
communication with help of special GP

As described in section II.B
operation of the RHS, referring t
computation on Maxwell’s equation,
inside each element. Here, every elem
computed completely independent
other, providing the opportunity o
parallel implementation. The second

n. (1) and (2)
lynomials as
istic of DG-
elementwise
h element is
rete scheme,
ent reads

(3)

. (4)

mass-matrix,
local flux-

pends on the
. The size of
sted in Table
e term M-1 S
the element
elementwise

e integration
ahedron. The
he number of

mber of nodes
flux terms fE
flux density

face.

 OF THE

ion on GPUs
on has to be
Ideally, each
pendent data
y interaction
g hyperbolic
e has to be
ng elements,
ctromagnetic
the proposed

ncapsulate all
tly handle
PU features.
., the first
to the curl
is computed
ment can be

from each
of a highly

term in the

332 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

RHS has to be treated more carefully.
term evaluations, the jumps in the el
magnetic fields are integrated over th
faces. The integration itself, being n
expensive, is computed for each
separately. The jump computation how
data from adjacent elements. This comp
to be treated in a special way
elementwise, highly parallel implement
will be presented in Section IV.C.

IV. HARDWARE, PROGRAM
MODEL AND PARALLELIZA

STRATEGY
A. TESLA S1070 GPU Server

For the GPU computations, a NVIDI
S1070 with four GPUs and 4 GB GDD
each is used. Each GPUs consis
Multiprocessors (MP) with 8 Streaming
(SP) each. The GPU server is attached
server using two PCIe x16 Gen2 connec

B. Coarse Grained Parallelism

Regarding GPU-cluster computa
most coarse grained parallelization can
using a METIS [13] domain decomposi
computational domain as presented in Fi

Fig. 1. Domain decomposition using ME
partitioning.

 Each color maps the tetrahedral e
one GPU. The METIS domain decomp
be executed using two constraints: load
and minimization of communication b
subdomains. In [7], an algorithm using
was presented, providing good minimiza
surface, but not optimal load balancin

In the flux
lectric and
e elements

numerically
h element

wever needs
putation has

regarding
tations and

MING
ATION

IA TESLA
DR3 RAM
sts of 30
gprocessors
to the host

ctions.

ations, the
be realized
ition of the
ig. 1.

ETIS graph

elements to
osition can

d balancing
etween the
g KMETIS
ation of the
ng for this

small amount of subdomains. In
PMETIS being more suitable for a sm
of subdomains is used. The resulting
improvements are presented in Section

Each METIS subdomain is comp
GPU. For the flux computation p
Section III, field data of neighborin
across METIS boundaries have to be
the corresponding GPU. Since this com
has to be carried out as a CPU task v
bus, the data exchange is suppose
potential bottleneck of the presented a
minimize the effects of the laten
bandwidth of the PCIe bus, two aspec
ensured:

1. Only the data which are needed
GPU should be transferred, and
specific device.

2. The data transfer should be hid
other computations with
asynchronous file transfer.

The second part is one of the
regarding highly scalable code on
systems. On NVIDIA TESLA GPU d
compute capability 1.1, the po
simultaneous execution of kernel fu
host-device/device-host memory
introduced. A kernel can be executed
to a data transfer to or from the h
applicable as long as the kernel does
on the transferred data. Regarding th
DG-FEM implementation, the kern
evaluating the curl operator inside e
can be executed while field data
METIS subdomain boundaries is trans
this feature, the scalability bottlen
expanded.

C. GPU Based Block Parallelism

On each GPU, one METIS su
computed. All data (fields, geo
operators) related to this subdomain a
the device memory and stays in
memory for the entire simulation. Usin
a programming model, the computatio
arranged in a CUDA GRID. This GR
of CUDA BLOCKS, each having the s
of computational work. This data mana

this work,
mall amount
performance

n V.
puted on one
presented in
ng elements
 provided to
mmunication
via the PCIe
ed to be a
approach. To
cy and the

cts should be

d by another
d only to this

dden behind
help of

key aspects
multi-GPU

devices with
ssibility of

unctions and
transfer is
concurrently

host. This is
s not depend
he presented
nel function
each element

of adjacent
sferred. With
eck can be

ubdomain is
ometry and
are stored in

the device
ng CUDA as
onal work is
RID consists
same amount
agement is

333GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM

pictured in Fig. 2, highlighting the
strategy of implementing DG simu
CUDA. Instead of conventional vec
implementations, branching is possible
Single Instruction Multiple Thread
architecture. CUDA BLOCKS
communicate with each other du
execution. One BLOCK is executed
where it profits from the high-speed, l
shared memory space within each M
memory fetches have to be executed in a
way, avoiding multiple read operations
address. In the case that coalesced reads
ensured, read conflicts are serialized
effect of several hundreds of cycles l
each conflict. In this case, the use
memory is beneficial, providing buffere
access at almost the same bandwidth as
global memory fetches.
As long as all operations are done loc
each element, coalesced reads can be e
the fields. However, when calculatin
operator in the RHS, spatial derivati
reference element have to be provided
elements. Here, coalesced reads cannot
and the use of texture buffered mem
provides higher performance as pre
section V.

Fig. 2. Correlation between DG-FE

e proposed
ulations in
ctor based
within this

d (SIMT)
cannot

uring their
on a MP,
ow-latency

MP. Global
a coalesced
on a single
s cannot be
d with the
latency for
of texture

ed memory
s coalesced

ally within
ensured for

ng the curl
ves in the
for all the
be ensured

mory access
esented in

Regarding flux computations,
evaluation of field differences of th
faces, each field value at the faces w
more than one time, leading to seriali
fetches. This read conflict is less sev
one earlier presented since the num
conflicts depends on the maximum
elements, a vertex is connected to. Ho
in this case, the use of texture
preferable.

Figure 2 highlights that the GRID
decomposition within the CUDA
reflecting the geometric discretizati
METIS subdomain with help of fini
here tetrahedral elements. The id
proposed approach is to map every fi
to a CUDA BLOCK.

D. Fine Grained GPU Thread Based
Parallelism

The lowest level of abstraction
parallelization strategy is formed by
managed by each MP for the computa
BLOCK. Each MP is able to man
hundreds of threads at the same time t
SP. The instruction unit of each MP
one instruction every 4 cycles. There

EM discretization and CUDA data management.

, for the
he triangular
will be read
ized memory
vere than the
mber of read

number of
owever, also
memory is

D – BLOCK
model is

ion of each
ite elements,
dea of the
inite element

d

n within the
the threads

ation of each
nage several
to feed the 8
can process

fore a set of

334 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

32 CUDA THREADS form a WARP, the smallest
scheduling unit.

Since the solution in each DG element will be
approximated with nodal basis functions, the
nodes inside each element reflect the degrees of
freedom for each field component. Fig. 2
highlights the proposed strategy, which maps the
nodes, i.e. the degrees of freedom inside each
element to the CUDA THREADS. The number of
nodes Np depends on the order N of the
polynomial basis functions with Np =
(N+1)(N+2)(N+3)/6 (see Table 1). Since the
number of nodes does not match a multiple of a
single WARP, some THREADS do not contribute
to the computation. A strategy for improving the
efficiency using these “padding” threads can be
found in [6], where several element are grouped
together for a low polynomial order N.

Table 1: Polynomial order and number of nodes.

N Np
1 4
2 10
3 20
4 35
5 56
6 84
7 120
8 165

In the code presented in this work, the number

of threads per CUDA BLOCK is defined as the
number of nodes in one element.

V. NUMERICAL INVESTIGATIONS
In this section, the effects of several CUDA

related optimization techniques are investigated.
The accuracy of the presented approach is
presented in [7]. In this work, more challenging
geometries are considered. As application, an
electromagnetic scattering object as presented in
Figs. 1 and 2 is used.

Fig. 3. Ey surface field component of a scatterer
hit by a TEM wave.

A TEM wave with 0.5 GHz is used as
excitation function. The electrical surface field
component in y-direction is presented in Fig. 3.
The object is treated as perfect electric conductor
and is surrounded by vacuum medium which is
enclosed by an absorbing layer. The domain is
discretized with 143 936 tetrahedra. Unless
otherwise noted, the simulations were carried out
using 6th order polynomials leading to 7.2·107
unknowns and 5362 timesteps using the Low
Storage Explicit Runge-Kutta (LSERK) scheme.
On a single GPU, 2.02 GB memory is needed for
this configuration.

A. Texture Buffered Memory Fetches

In this subsection, the effects of texture
buffered memory fetches are investigated. As
described in Section IV.C, the use of texture
memory can be beneficial whenever coalesced
reads cannot be ensured. The most drastic
performance increase has been encountered within
the curl computation of (3) and (4). Here, local
derivatives in the reference element have to be
provided for all elements / CUDA BLOCKS. The
presented approach uses texture memory to buffer
the operator and shared memory to buffer the field
data.

Within the flux computation, the evaluation of
the field differences at the faces cannot be realized
coalesced, however, the number of conflicts is
small. Here, the caching of field data through
texture memory is analyzed.

On a single GPU, using texture fetches for the
derivatives in the curl computation yields a
performance improvement of a factor of 2.69, as
presented in Table 2.

Table 2: Performance gain with help of texture
buffered memory fetches on a single GPU.
Implementation Performance

[GFlops]
Speedup

Without TEXTURE
usage

79.3 1.0

TEXTURE usage for
curl computation

213.2 2.69

TEXTURE usage for
flux computation

78.9 0.995

TEXTURE usage for
curl and flux
computation

209.3 2.64

335GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM

For the flux computation, the
performance improvement cannot be pr
contrast, texture buffered memory f
slightly less efficient than their globa
counterparts. In comparison to the fo
core, where performance increases of
encountered, NVIDIA seems to have im
global memory access. In [1], the con
using coalesced memory access are
compared to earlier documentations, w
be one reason for the observed changes i
architectures.

To summarize, the use of the textur
buffered memory access can spee
implementation whenever a multiplici
conflicts occur. In case that the numb
conflicts is small compared to the w
volume transferred, global memory f
profit from their larger bandwidth.

B. Performance and Scalability of M
Computations

In this subsection, performance and
of multi-GPU computations using the
of a TESLA S1070 server are investig
computations were carried out on four A
core Opteron CPUs with 2.3 GHz. Th
the S1070 is about 2900€ (academi
compared to 16.759€ of the latest H
DL785G CPU server.

In Fig. 4, a comparison of GPU
performance for different polynomial
presented.

Fig. 4. Performance of GPU a
computations for different polynomial o

All computations were carried out
IEEE-754 single precision floating poin

expected
roduced. In
fetches are
al memory
ormer G92
f 6% were

mproved the
straints for
weakened

which might
in different

re units for
d up the
ity of read
ber of read
whole data
fetches can

Multi-GPU

d scalability
four GPUs

gated. CPU
AMD quad-
he price for
ic pricing)

HP Proliant

and CPU
l orders is

and CPU

orders.

t using the
nt standard.

GPU performance is about ten times
the corresponding CPU implementatio

In Fig. 5, the scalability of
computations is presented using diffe
distributions. Furthermore, the
asynchronous file transfer is highligh
scalability evaluation, a polynomial or
been chosen. With help of the pe
balanced PMETIS distribution and a
file transfer, a strong scalability of
achieved. Due to the asynchronous
almost the complete communicatio
could be hidden behind the arith
computation which needed 15ms time
in contrast to the communication wh
3ms in average. Except for a numer
packaging of the transferred data, th
solution incorporated zero com
overhead. The difference in
communication and curl computation
potential for further parallelization
GPUs at the same high degree of scala

Fig. 5. Scalability of multi-
computations.

Strong scalability in this case me
global problem size does not ch
increasing the number of GPUs
according to [6], a minimum
approximatively 10000 elements per
be provided to get the full flo
performance. With the 143 936 elem
scattering example, the problem
distributed on more GPUs without los
the efficiency.

The METIS distributions are prese
6 highlighting the difference in load b
the four subdomains.

higher than
on.

multi-GPU
erent METIS

effect of
hted. For the
rder of 5 has
erfectly load
asynchronous
f 98.8 % is
file transfer,

on overhead
hmetic curl
e in average

hich required
rically cheap
he presented
mmunication
n parallel
n time yields

with eight
ability.

-GPU DG

eans that the
hange when
. However,

work of
GPU should

oating point
ments of the

could be
sing much of

ented in Fig.
balancing for

336 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

The PMETIS distribution is perfectl
whereas the KMETIS distribution
unbalanced workload, where thread num
to do more work than the other threads.

Fig. 6. Partitioning of PMETIS and
algorithms for four subdomains.

VI. CONCLUSION
A CUDA based GPU impleme

Maxwell’s equations in the time do
presented. The matching modeling pr
DG-FEM and CUDA regarding
implementation were highlighted an
optimization techniques have been in
As key point to high performing implem
detailed memory access concept is ne
profit from the high floating point perfo
the GPUs.

Almost perfect scalability up to f
was presented using the asynchronous f
feature to hide all inter-GPU comm
behind the curl kernel execution which
depend on the data.

Further work will include scalabilit
up to 8 GPUs, as well as hybrid
implementations and porting to
architectures like GT300 and new
abstractions like OpenCL.

ACKNOWLEDGMENTS

T. Warburton is partly supported b
FA9550-05-1-0473, NSF CNS-0514002
DMS-0512673. N. Gödel is partly sup
DFG travel grant CL 143/8-1.

The authors would like to thank
Klöckner and Jeff Bridge for discus
support related to DG implementation on

ly balanced
leads to

mber 2 has

d KMETIS

entation of
omain was
rinciples of
g parallel
nd several
nvestigated.
mentation, a
ecessary to
ormance of

four GPUs
file transfer
munication
h does not

ty tests for
CPU/GPU
upcoming

w compute

S
by AFOSR
2 and NSF
pported by

k Andreas
ssions and
n GPUs.

REFERENCES
[1] Nvidia Corporation. “NVIDIA

Compute Unified Device
Programming Guide”, USA, 2009.

[2] Advanced Micro Devices, Inc., “
Computing”, Sunnyvale, USA, 200

[3] KHRONOS GROUP, “The
Specification Version 1.0”, 2008.

[4] S. Krakiwsky, L. Turner, and M.
“Acceleration of Finite-Differe
Domain (FDTD) Using Graphic
Units(GPU)”, IEEE MTT-S I
Microwave Symposium, pp. 1033-1

[5] M. J. Inman, A. Z. Elsherbeni, J.
and B. N. Baker, “Practical Implem
a CPML Absorbing Boundary
Accelerated FDTD Techniqu
Journal, vol. 23, 2008.

[6] A. Kloeckner, T.Warburton, J. Br
Hesthaven, “Nodal discontinuou
methods on graphics processors,"
Computational Physics, vol. 228,
7882, 2009.

[7] N. Gödel, T. Warburton, M. Clem
Accelerated Discontinuous Galerk
Electromagnetic Radio Frequency
IEEE APS Conference Charleston,

[8] W. Reed and T. Hill, “Trian
methods for the neutron transpor
Los Alamos Scientific Laboratory
Report, no. LAUR-73-479, 1973.

[9] B. Cockburn, G. Karniadakis, and
“Discontinuous Galerkin Metho
Computation and Applications”
2000.

[10] G. Cohen, X. Ferrieres and S.
spatial high-order hexahedral d
Galerkin method to solve Maxwel
in time domain”, Journal of Co
Physics, vol. 217, pp. 340-363, 200

[11] J. S. Hesthaven and T.
“Discontinuous Galerkin metho
time-domain Maxwell’s equatio
Journal, vol. 19, pp. 10–29, 2004.

[12] J. S. Hesthaven and T. Warbu
Discontinuous Galerkin Methods.
2008.

[13] G. Karypis and V. Kumar, “A f
quality multilevel scheme for
irregular graphs." Conference
Processing, pp. 113-122, 1995.

CUDA 2.2
Architecture
.
“ATI Stream
09.
 OpenCL

Okoniewski,
ence Time-
cs Processor
International
1036, 2004.
G. Maloney

mentation of
y for GPU
ue”, ACES

ridge, and J.
us Galerkin
" Journal of
, pp. 7863 –

mens, “GPU
kin FEM for
y Problems”,
, 2009.

ngular mesh
rt equation,”
y, vol. Tech.

d C.-W. Shu,
ods: Theory,
”, Springer,

Pernet, “A
discontinuous
ll's equations
omputational
06.

Warburton,
ods for the
ons,” ACES

urton, Nodal
Springer,

fast and high
partitioning
on Parallel

337GÖDEL, NUNN, WARBURTON, CLEMENS: ACCELERATING MULTI GPU BASED DISCONTINUOUS GALERKIN FEM

Nico Gödel, born 1978 in
Minden, Germany, received
his diploma in Electrical
Engineering from the Helmut-
Schmidt University, University
of the Federal Armed Forces in
Hamburg in 2006. From 2007
till 2010, he worked as a
Research Engineer at the Chair

for Theory in Electrical Engineering and
Computational Electromagnetics at the Helmut-
Schmidt-University, University of the Federal
Armed Forces Hamburg.

Tim Warburton received a
PhD in Applied Mathematics
from Brown University in
1999. He is currently an
Associate Professor of
Computational and Applied
Mathematics, at Rice
University, Houston, Tx.
He co-authored the first major
text on discontinuous Galerkin

methods, published by Springer in 2008.

Markus Clemens, born 1968
in Wittlich, received his
diploma in Mathematical
Engineering ("Diplom
Technomathematik") with
a minor in Mechanical
Engineering from the
University of Kaiserslautern
in 1995. In 1998 he finished

his Phd at the Institute for Theory
of Electromagnetic Fields at the Technische
Universität Darmstadt in the field of
Computational Electromagnetics. Working as
postdoc at the same institute he became team
leader of an interdisziplinary team of
phd and postdoc researchers. In December 2003
he received his venia legendi in "Electromagnetic
Theory" and "Scientific Computing". From 2004
to 2009 he was working as head of the Chair for
Theory in Electrical Engineering and
Computational Electromagnetics at the Helmut-
Schmidt University, University of the Federal
Armed Forces Hamburg. In October 2009 he took
on the position as head of the Chair of
Electromagnetic Theory at the Bergische
Universität Wuppertal, Germany. His teaching
activities involve courses in Electromagnetic
Theory, Advanced Engineering Mathematics, and
Computational Electromagnetics. His research
activities are in the field of Computational
Engineering and Mathematical Engineering. His
research specifically involves the development and
application of numerical simulation methods
for Computational Electromagnetics and
Computational Multiphysics.

338 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

