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Abstract─A Graphics Processing Unit (GPU) 
accelerated simulation of Maxwell’s equations in 
the time domain is presented. The Discontinuous 
Galerkin Finite Element Method (DG-FEM) is 
used for discretization since the elementwise 
structure fits the parallelization design aspects of 
the GPU architecture and the NVIDIA Compute 
Unified Device Architecture (CUDA), a GPU 
programming model. The parallelization strategy 
for a multi-GPU setup using CUDA is focused. 
Several performance improvements are analyzed 
and investigated with the help of a realistic 3D 
electromagnetic scattering example. 
 
Index Terms─GPU-Computing, GPGPU, DG-
FEM, electromagnetics, CUDA, TESLA. 
 

I. INTRODUCTION 
 Numerical simulation of electromagnetic 

devices during the development and certification 
process can significantly reduce time, efforts and 
costs. Efficiency and costs of numerical 
simulations depend on hardware and software 
investments as well as on personnel expenses, 
which directly evolve from code performance and 
simulation time. The presented hardware 
accelerated approach is able to significantly reduce 
both, simulation time and hardware costs using 
consumer based GPUs instead of highly expensive 
large scale computing clusters. 

Hardware accelerated computation is not a 
new research domain, but recently gained attention 
due to the availability of high-level compute 
abstractions such as CUDA [1], BROOK+ [2] and 
OPENCL [3]. Furthermore, floating-point 
performance and device memory bandwidth of 
current consumer based GPUs exceed their CPU 
counterparts by more than one order of magnitude 
at approximately the same price per unit. 

The combination of these GPU based co-
processing units and the evolving programming 
models provide a significant potential for high-
performance related computations. 

This potential has been investigated for 
different volume based discretization methods, 
such as the Finite Difference Method [4, 5] and the 
Finite Integration Technique. Recently, the 
Discontinuous Galerkin Finite Element Method 
(DG-FEM) has gained attention in connection with 
GPU computations [6, 7]. 

In this paper, the parallelization model and 
several optimization techniques for DG-FEM 
computations on GPU-clusters will be 
investigated. The focus will be on the scalability 
of multi-GPU systems. 

The paper is organized as follows: In Section 
II, the model is defined stating both the governing 
differential equations for the electric and the 
magnetic field and the spatial discretization using 
DG-FEM. Subsequently, in Section III, the DG-
FEM discretization is investigated with respect to 
the suitability of a parallel implementation. In 
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Section IV, the parallelization model
different abstraction layers as well as th
in use is presented and Section V
numerical results for the different 
implementations with the use of a
example. 
 

II. DESCRIPTION OF THE M
A. Maxwell’s Equations 

Electromagnetic wave propagation 
medium can be described using Amp
together with Faraday’s law of induction
 
   

                          
 
                        .

         
Here, ܧ ሬሬሬԦand ܪሬሬԦ denote the ele

magnetic field strength, respectively, 
and μ identify the electric permittivit
magnetic permeability. The right-h
(RHS) of (1) and (2) describing t
dependencies can be discretized with h
Nodal Discontinuous Galerkin method. 
 
B. Discontinuous Galerkin Discretizat

DG-FEM was first introduced by 
Hill in 1973 [8] for neutron transport 
and during the last decade, this m
intensively investigated for solving 
equations. Relevant results have been
especially by Cockburn et. al. [9], Co
[10] and by Hesthaven and Warburton [

The DG method was chosen due
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(1) the treatment of complex geometr
unstructured tetrahedral meshes,  
(2) explicit time stepping schemes, 
multirate time stepping schemes,  
(3) the use of high order basis functions 
(4) a domain decomposition approach
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Here, M-1 is the inverse of a local m
S a local stiffness-matrix and F a 
matrix. The size of the matrices dep
number of nodes inside each element.
the symmetric matrices M and S is lis
1 for different polynomial orders. The
refers to a local differentiation in 
without the need for using a custom 
mass-matrix for every single element. 

The flux-matrix F refers to the
over every triangular face of each tetra
size of the flux matrix F depends on th
nodes inside the element and the num
on all surfaces of the element. The f
and fH in eqn. (3) and (4) refer to 
terms of adjacent face values on each f
 

III. PARALLEL STRUCTURE
MODEL 

To allow for efficient parallelizati
as well as on CPUs, the computatio
split up into small pieces of work. I
piece of work has a completely indep
structure, thus requires no memory
with other parts. However, treating
problems, it seems clear that there
communication, at least for neighborin
to resolve the propagation of elec
waves. The idea of the DG-FEM and t
implementation is to minimize and en
dependencies and to efficient
communication with help of special GP
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operation of the RHS, referring t
computation on Maxwell’s equation, 
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RHS has to be treated more carefully. 
term evaluations, the jumps in the el
magnetic fields are integrated over th
faces. The integration itself, being n
expensive, is computed for each
separately. The jump computation how
data from adjacent elements. This comp
to be treated in a special way 
elementwise, highly parallel implement
will be presented in Section IV.C. 

 
IV. HARDWARE, PROGRAM
MODEL AND PARALLELIZA

STRATEGY 
A. TESLA S1070 GPU Server 

For the GPU computations, a NVIDI
S1070 with four GPUs and 4 GB GDD
each is used. Each GPUs consis
Multiprocessors (MP) with 8 Streaming
(SP) each. The GPU server is attached 
server using two PCIe x16 Gen2 connec

 
B. Coarse Grained Parallelism 

Regarding GPU-cluster computa
most coarse grained parallelization can 
using a METIS [13] domain decomposi
computational domain as presented in Fi

 

 
Fig. 1. Domain decomposition using ME
partitioning. 
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pictured in Fig. 2, highlighting the
strategy of implementing DG simu
CUDA. Instead of conventional vec
implementations, branching is possible 
Single Instruction Multiple Thread
architecture. CUDA BLOCKS 
communicate with each other du
execution. One BLOCK is executed 
where it profits from the high-speed, l
shared memory space within each M
memory fetches have to be executed in a
way, avoiding multiple read operations 
address. In the case that coalesced reads
ensured, read conflicts are serialized
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the fields. However, when calculatin
operator in the RHS, spatial derivati
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and the use of texture buffered mem
provides higher performance as pre
section V. 
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Regarding flux computations,
evaluation of field differences of th
faces, each field value at the faces w
more than one time, leading to seriali
fetches. This read conflict is less sev
one earlier presented since the num
conflicts depends on the maximum 
elements, a vertex is connected to. Ho
in this case, the use of texture 
preferable. 

Figure 2 highlights that the GRID
decomposition within the CUDA 
reflecting the geometric discretizati
METIS subdomain with help of fini
here tetrahedral elements. The id
proposed approach is to map every fi
to a CUDA BLOCK. 

 
D. Fine Grained GPU Thread Based
Parallelism 

The lowest level of abstraction
parallelization strategy is formed by 
managed by each MP for the computa
BLOCK. Each MP is able to man
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SP. The instruction unit of each MP 
one instruction every 4 cycles. There

EM discretization and CUDA data management.  
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32 CUDA THREADS form a WARP, the smallest 
scheduling unit. 

Since the solution in each DG element will be 
approximated with nodal basis functions, the 
nodes inside each element reflect the degrees of 
freedom for each field component. Fig. 2 
highlights the proposed strategy, which maps the 
nodes, i.e. the degrees of freedom inside each 
element to the CUDA THREADS. The number of 
nodes Np depends on the order N of the 
polynomial basis functions with Np = 
(N+1)(N+2)(N+3)/6 (see Table 1). Since the 
number of nodes does not match a multiple of a 
single WARP, some THREADS do not contribute 
to the computation. A strategy for improving the 
efficiency using these “padding” threads can be 
found in [6], where several element are grouped 
together for a low polynomial order N. 

 
Table 1: Polynomial order and number of nodes. 

N Np 
1 4 
2 10 
3 20 
4 35 
5 56 
6 84 
7 120 
8 165 

 
In the code presented in this work, the number 

of threads per CUDA BLOCK is defined as the 
number of nodes in one element. 

 
V. NUMERICAL INVESTIGATIONS 
In this section, the effects of several CUDA 

related optimization techniques are investigated. 
The accuracy of the presented approach is 
presented in [7]. In this work, more challenging 
geometries are considered. As application, an 
electromagnetic scattering object as presented in 
Figs. 1 and 2 is used.  

 

 
Fig. 3. Ey surface field component of a scatterer 
hit by a TEM wave. 
 

A TEM wave with 0.5 GHz is used as 
excitation function. The electrical surface field 
component in y-direction is presented in Fig. 3. 
The object is treated as perfect electric conductor 
and is surrounded by vacuum medium which is 
enclosed by an absorbing layer. The domain is 
discretized with 143    936 tetrahedra. Unless 
otherwise noted, the simulations were carried out 
using 6th order polynomials leading to 7.2·107 
unknowns and 5362 timesteps using the Low 
Storage Explicit Runge-Kutta (LSERK) scheme. 
On a single GPU, 2.02 GB memory is needed for 
this configuration.  

 
A. Texture Buffered Memory Fetches 

In this subsection, the effects of texture 
buffered memory fetches are investigated. As 
described in Section IV.C, the use of texture 
memory can be beneficial whenever coalesced 
reads cannot be ensured. The most drastic 
performance increase has been encountered within 
the curl computation of (3) and (4). Here, local 
derivatives in the reference element have to be 
provided for all elements / CUDA BLOCKS. The 
presented approach uses texture memory to buffer 
the operator and shared memory to buffer the field 
data. 

Within the flux computation, the evaluation of 
the field differences at the faces cannot be realized 
coalesced, however, the number of conflicts is 
small. Here, the caching of field data through 
texture memory is analyzed. 

On a single GPU, using texture fetches for the 
derivatives in the curl computation yields a 
performance improvement of a factor of 2.69, as 
presented in Table 2. 
 
Table 2: Performance gain with help of texture 
buffered memory fetches on a single GPU. 
Implementation Performance 

[GFlops] 
Speedup 

Without TEXTURE 
usage 

79.3 1.0 

TEXTURE usage for 
curl computation 

213.2 2.69 

TEXTURE usage for 
flux computation 

78.9 0.995 

TEXTURE usage for 
curl and flux 
computation 

209.3 2.64 
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For the flux computation, the 
performance improvement cannot be pr
contrast, texture buffered memory f
slightly less efficient than their globa
counterparts. In comparison to the fo
core, where performance increases of
encountered, NVIDIA seems to have im
global memory access. In [1], the con
using coalesced memory access are 
compared to earlier documentations, w
be one reason for the observed changes i
architectures. 

To summarize, the use of the textur
buffered memory access can spee
implementation whenever a multiplici
conflicts occur. In case that the numb
conflicts is small compared to the w
volume transferred, global memory f
profit from their larger bandwidth. 
 
B. Performance and Scalability of M
Computations 

In this subsection, performance and
of multi-GPU computations using the 
of a TESLA S1070 server are investig
computations were carried out on four A
core Opteron CPUs with 2.3 GHz. Th
the S1070 is about 2900€ (academi
compared to 16.759€ of the latest H
DL785G CPU server. 

In Fig. 4, a comparison of GPU 
performance for different polynomial
presented.  

Fig. 4. Performance of GPU a
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file transfer, a strong scalability of
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computation which needed 15ms time
in contrast to the communication wh
3ms in average. Except for a numer
packaging of the transferred data, th
solution incorporated zero com
overhead. The difference in
communication and curl computation
potential for further parallelization 
GPUs at the same high degree of scala
 

Fig. 5. Scalability of multi-
computations. 
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increasing the number of GPUs
according to [6], a minimum 
approximatively 10000 elements per 
be provided to get the full flo
performance. With the 143    936  elem
scattering example, the problem 
distributed on more GPUs without los
the efficiency. 
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The PMETIS distribution is perfectl
whereas the KMETIS distribution 
unbalanced workload, where thread num
to do more work than the other threads. 
 

Fig. 6. Partitioning of PMETIS and
algorithms for four subdomains. 
 

VI. CONCLUSION 
A CUDA based GPU impleme

Maxwell’s equations in the time do
presented. The matching modeling pr
DG-FEM and CUDA regarding
implementation were highlighted an
optimization techniques have been in
As key point to high performing implem
detailed memory access concept is ne
profit from the high floating point perfo
the GPUs.  

Almost perfect scalability up to f
was presented using the asynchronous f
feature to hide all inter-GPU comm
behind the curl kernel execution which
depend on the data. 

Further work will include scalabilit
up to 8 GPUs, as well as hybrid 
implementations and porting to 
architectures like GT300 and new
abstractions like OpenCL. 
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