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Abstract −−−− Different mathematical formulas and 

analytical values of surge impedance of communication 

tower including high voltage transmission and 

distribution tower are presented. Those values and 

formulas have been utilized since 1934. Recently, the 

surge impedance of communication tower under the 

influence of direct and indirect lightning hit has drawn a 

lot of attention. Such value of lightning surge impedance 

and its associated parameters are becoming important 

factors for the protection system design in substation as 

well as low voltage communication equipments including 

home appliances.  

 

I. INTRODUCTION 

 

Several models have been proposed to estimate the 

surge impedance of vertical structures (tower), following 

either a transmission line [1-6], a numerical 

electromagnetic [7, 8], or an experimental approach [9-

12], though in some cases, more than one approach is 

used [13-16]. Jordan, in 1934, published one of the 

precursor works in this field [1]. Jordan’s formula to 

calculate the surge impedance of vertical conductors 

remained as the main reference to estimate the transient 

behavior of transmission towers subjected to lightning 

currents until the proposition of new theories in the 1960s 

(e.g.,[2,3]). It was later found that Jordan’s derivation 

contained a mistake and a correction was proposed [17]. 

Recently, the interaction of lightning with elevated 

strike objects has been attracting a lot of attention in the 

scientific community (e.g.,[18-24]). As a consequence, 

the development of simplified models to simulate 

transients in vertical metallic structures has gained 

importance. In this context, the equations and values of 

surge impedance derived theoretically or measured 

experimentally appear to be very promising, because they 

give insightful information for the designing and 

installing protection system against lightning surge.  

This paper presents investigation on surge impedance 

of an elevated structure with simple approximation to the 

shape of structure. Different expressions for the time-

domain surge impedance that are usually adopted for 

characterization of the transient behavior of towers are 

dependent on the excitation waveshape. This paper also 

summarizes the methods of excitation that have been 

considering in a lightning surge analysis by the technical 

community.  

 

II. JORDAN’S ORIGINAL FORMULA FOR 

TOWER SURGE IMPEDANCE 

 

The surge impedance of a tower can be approximated 

by considering the tower as a vertical cylinder having a 

length equal to the height above the ground plane of the 

actual tower, and a radius equal to the mean equivalent 

radius of the actual tower [1]. This equivalent cylinder 

should also be regarded as having its base located at the 

same elevation above the true ground plane as the 

ground-line base of the actual tower. In accordance with 

the theory of images, there should be conceived as 

associated with the equivalent cylinder an identical image 

cylinder located symmetrically with respect to the true 

ground plane. For such a system, it can be shown that the 

inductance of an element dy of the tower equivalent 

cylinder as shown in Fig. 1(b), at an elevation y above the 

true ground plane is, 
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where h = length of tower equivalent cylinder (height of 

tower above ground plane). 

           r = radius of tower equivalent cylinder (mean 

equivalent radius of tower). 

          a = depth of true ground plane below earth’s 

surface. 

Integrating equation (1) between the limits 

ahy +=  and ay = , dividing by h, multiplying by the 

speed of light to convert  from inductance to impedance 

(as , 1 /Z Lc c LC= Ω = = speed of light), and finally 

simplifying, the mean value of surge impedance over the 

cylinder equivalent to tower is, [1] 
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(a)                                            (b) 

 

Fig. 1.  Vertical conductor system. (a) Original system. 

(b) Equivalent representation. 

 

For the special case where the depth of true ground 

plane below the earth’s surface (e.g. a as in Fig. 1(b)) is 

close to zero, then equation (2) reduces to the 

comparatively simple expression, [1] 

 

.6090ln60

6090log2.138 10

Ω−+=

Ω−+=

h

r

r

h

h

r

r

h
Z s

             (3) 

 

The equivalent radius for a complex structure such as 

GSM tower, high voltage transmission tower etc. is 

difficult to compute precisely. At the outset, it is 

necessary to disregard the cross arms, and confine 

attention to the tower mast and hence, the expression, 

perimeter of section 2r π=  offers one method of 

approximating the equivalent radius [1]. Thus for square 

tower sections having a face width A, the equivalent 

radius would be 4 2 0.637r A Aπ= = ; for triangular 

sections with face width A, the equivalent radius would 

be 3 / 2 0.478r A Aπ= = ; and for rectangular sections 

with face widths A and B, the equivalent radius of the 

structure would be 2( ) 2 0.318( )r A B A Bπ= + = + . 

 

III. IEEE/CIGRE FORMULA OF TOWER SURGE 

IMPEDANCE 

 

A number of tower models have been proposed, but 

most of them are not general, i.e., a tower model shows a 

good agreement with a specific case explained in the 

paper where the model is proposed.   

The following IEEE/CIGRE formula of the tower 

surge impedance is well known and is widely adopted in 

a lightning surge simulation [25-26] (Fig. 2), 
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Fig. 2. Tower model proposed by IEEE/CIGRE. 

 

where hhrhrhrR /)( 23211 ++=  is the equivalent radius of 

the tower represented by a truncated cone, h= h1+h2, and 

r1,r2,r3  tower top, midsection and base radii [m], 

h1 height from the midsection to top [m], 

h2 height from base to midsection [m]. 

When the tower is not a cone but a cylinder, then the 

above equation is rewritten by,  
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
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r

h
Z t ln60 ,                (5) 

 

where  r is the radius of a cylinder representing a tower. 
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          IV. JORDAN’S REVISED FORMULA 

 

In [1], Jordan introduced the expression given by 

equation (3) to represent the surge impedance of a 

vertical conductor. Although the derivation of equation 

(3) is not entirely available in [1], one can suppose that 

Jordan applied the magnetic vector potential to calculate 

the inductance of a vertical cylinder. The system of     

Fig. 1(a) was equivalently represented as that in Fig. 1(b), 

where i is the current in the real conductor, i
’
 is the 

current in the image conductor, and P0 is a generic point 

with coordinates (x0, y0) where one wish to calculate 

magnetic vector potential A
��

. The parameter a is defined 

by Jordan [1] as the depth of true ground below the 

earth’s surface, which is assumed to be, as in [5], 

conceptually equivalent to the complex skin depth p 

introduced by Deri et al. [27] to represent losses due to 

finite ground conductivity. 

According to the method of images, i and i
’
 must 

have the same direction and sign, as illustrated in        

Fig. 1(b) [28]. Consequently, 
ir AAA += , where 

rA  is the 

magnetic vector potential associated with the real 

conductor, and 
iA  is the magnetic vector potential 

associated with the image conductor. Nevertheless, in the 

derivation of equation (3), Jordan considered the opposite 

sign for the current in the image conductor, and therefore, 

its contribution to the total magnetic vector potential 

became subtractive and not additive, as it should be. 

Consequently, the surge impedance given by equation (3) 

is underestimated. To evaluate the correct value of surge 

impedance of a vertical conductor following Jordan’s 

approach, a new expression is then required. 

Based on the system of coordinates of Fig. 1(b) and 

disregarding propagation effects, one can write the total 

magnetic vector potential at the generic point P0 as, 
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where the first integral in the right-hand side term 

corresponds to 
rA , the second integral corresponds to 

iA , and ŷ is the unit vector in the y-axis direction. After 

solving the integrals in equation (6) and knowing that 

idyAdL /= , one can write, 
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where dL is the differential inductance element. Note that 

if 
r i

A A A= −
�� ��� ���

 is incorrectly assumed, equation (7) becomes 

equal to the expression obtained by Jordan to represent 

dL [1].  

To calculate the external inductance L per unit length 

of the vertical conductor, it is necessary to integrate 

equation (7) in the interval haya +≤≤ 0
 , at rx =0

, 

and then to divide the result by h. To simplify, as in [1], 

an infinite ground conductivity is now assumed, making 

0=a  in equation (7). As a result, 
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Equation (8) can be further simplified if rh >> . 

Also if losses are neglected and a transverse 

electromagnetic (TEM) field structure is assumed, the 

surge impedance Zs of the vertical conductor can be 

obtained by multiplying equation (8) by the speed of 

light, resulting in, 

Ω−= 60
4

ln60
r

h
Z s

                   (9) 

which is the same expression obtained by Takahashi [17] 

but in a slightly different derivation. The theoretical 

formula of surge impedance with vertical wave incidence 

derived from Takahashi [17] and validated by Goni et al. 

[29] is,  
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And with horizontal wave incidence,  
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which is very close to the empirical formula of Hara et al. 

[9], 
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Also, equation (9) is similar to the expression 

independently derived by Wagner and Hileman [2] to 

calculate the average surge impedance of a vertical 

cylinder that was later modified by Sargent and 

Darveniza [3], reaching the final form, 
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In the derivation of Wagner and Hileman [2], a step 

or rectangular current was assumed to be injected at the 

top of vertical cylinder, and as a consequence, only the 

first term in the right-hand side of the above equation was 

obtained. 

 

V. APPROXIMATION OF LATTICE TOWER 

 

As an alternative to the frequently used cylindrical 

approximation of a steel tower, a conical representation 

has also been used. The use of a cone as a simplification 

of the tower element is not an unrealistic approximation 

as is shown in Fig. 3, where the cylindrical and conical 

representations are compared with the actual tower 

structure. Analyses of the response of these structures 

were performed using field theory concepts and will be 

mentioned in the succeeding sections.   

 

VI. ANALYSIS OF THE SURGE RESPONSE OF A 

CYLINDRICAL TOWER TO A RECTANGULAR 

WAVE OF CURRENT 

 

If Ei is the electric field due to currents at a point at 

any instant, and s is the distance along a curve through 

the point, then, 

∫ ∫ ⋅
∂
∂

−=⋅ ds
t

A
dsE i  

where A is the vector magnetic potential at the point. 

Consider an isolated cylindrical tower of height h 

and radius r normal to a perfectly conducting horizontal 

earth plane as shown in Fig. 4. Consider a rectangular 

wave of current I impressed on the tower at x = 0 at time t 

= 0. Then the surface current density is, 

r

I
J s π2

=  . 

Consider an element dx of the tower as shown in Fig. 

4, then the vector magnetic potential at a point (d, r) is, 
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Note that the expression in brackets is of the form of 

a surge impedance, for rct >> . Thus, following 

Wagner and Hileman, the transient surge impedance, 
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Fig. 3. Comparison of conical and cylindrical 

approximations of steel lattice communication tower. 

 

β βd

 
Fig. 4. Cylindrical tower used in field theory analyses. 
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VII. ANALYSIS OF THE SURGE RESPONSE OF A 

CYLINDRICAL TOWER TO A RAMP WAVE OF 

CURRENT, I = KT 

 

Consider the cylindrical tower of Fig. 4, with a ramp 

current wave impressed at x = 0 at time t = 0. Then the 

time retarded, surface current density is, 







 ′

−−=





 ′

−
c

r

c

x
t

r

K

c

r
txJ s π2

, . 

 

Using the nomenclature defined in Fig. 4 the vector 

magnetic potential at a point (d, r) is, 
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Integrating the electric field due to currents over the 

height of the cylinder, and for rct >>  
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Again the term in brackets is of the form of a surge 

impedance. Hence the transient surge impedance of a 

cylindrical tower, derived by Sargent and Darveniza for a 

ramp current wave impressed, may be defined as, 
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VIII. ANALYSIS OF THE SURGE RESPONSE OF 

A CONICAL TOWER 

 

The conventional double-circuit steel lattice tower 

can be conveniently approximated by a right cone of 

appropriate half-angle. 

Consider a conical tower of height h and half-angle 

θ, as shown in Fig. 5. A rectangular wave of current is 

impressed at the tower top (x = 0) at time t = 0, and 

consider an element of the tower at x (measured in a 

vertical direction) from the tower top. It is necessary to 

determine the vector magnetic potential at a general point 

(d, r) on the cone. 

Consider the contribution δA to the vector 

magnetic potential at (d, r) of an element (du, dβ) as 

shown in Fig. 5. Then, 
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Therefore the vector magnetic potential at (d, r), in 

the direction of the unit vector û is, 
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Fig. 5. Conical tower used in field theory analyses. 

 

 

The expression in above braces is of the form of a 

surge impedance. Hence the transient surge impedance of 

a cone is defined as, 

 

                ( )./2ln60 SZ =                           (15) 

 

where S is the sine of the half-angle of the cone. This 

equation provides realistic estimates of the surge 

impedance of a steel lattice tower because it is in 

excellent agreement, both in magnitude and time-

invariance characteristics, with values measured 

experimentally using geometric model technique [3]. 
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IX. CONCLUSION 

 

Different equations to calculate the surge impedance 

of vertical conductors including lattice tower are analyzed 

starting with Jordan’s original formula. The performed 

analyses indicate that Jordan’s revised formula is more 

than adequate to simulate electromagnetic transients in 

vertical conductors than the Jordan’s original formula. 

Furthermore, the value of surge impedance depends on 

the shape of triggered lightning current pulse. The 

validity of the Jordan’s equation has been tested by the 

well-known recent experimental and other analytical 

results mentioned in Table 1. 

The investigation reported here several ways to evaluate 

and compare the surge impedance of complex structure 

which is of greater interests for practical applications and 

future developments for insulation coordination and 

protection system designing. 

 

Table 1. Comparison of analytical values of surge 

impedance of steel lattice communication tower. 
 

Source 

Technique 

or 

Equation 

Tower 

Representati

on 

Current 

Waveshape 

Surge 

Impedance 

Jordan 

 

equation 

(3) 

cylinder 

 

any 

 
125 

IEEE/CIGRE 
equation 

(5) 
cylinder ramp 179 

Revised 

Jordan’s 

Formula 

equation 
(9) 

 

cylinder 
step 
 

201 
 

Takahashi 

equation 
(10) 

 

cylinder 

 

step( vertical 

injection) 
148 

Takahashi 

equation 
(11) 

 

cylinder 

 

Step 
(horizontal 

injection) 

122 

Hara et al. 

equation 

(12) 
 

cylinder 

 

Step(horizont

al injection) 

121 

 

Wagner and 

Hileman 

equation 

(13) 
 

cylinder 

 
Step 240 

Sargent and 

Darveniza 

equation 

(14) 

 

cylinder 
 

ramp and 

double 

exponential 

180 

Sargent and 

Darveniza 

equation 
(15) 

cone any 130—150 
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