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Abstract

This paper is devoted to the symbolic calculation of the
scattering coefficient in diffraction by a circular disk, by
the use of Mathematica. Three diffraction problems are
considered: scalar diffraction by an acoustically soft disk,
scalar diffraction by an acoustically hard disk, and elec-
tromagnetic diffraction by a perfectly conducting disk.
In the low-frequency approximation, the solutions of
these problems are in the form of expansions in powers
of ka, where a is the radius of the disk and % is the wave
number. The emphasis is on the low-frequency expan-
gion for the scattering coefficient, of which several terms
are determined exactly with the help of Mathematica.

1. Introduction

In recent years the symbolic programming lan-
guage Mathematica has become an important
tool in the analysis of mathematical problems
of which the solution involves extensive analyt-
ical calculations. In this paper we use Mathe-
matica to calculate the scattering coefficient for
low—frequency diffraction by a circular disk. It
is appropriate to refer to Hurd [10] for a pre-
vious symbolic calculation of the scattering co-
efficient, as early as 1971 and therefore now of
limited scope, by use of the programming lan-
guage FORMAC.

More specifically, we consider the diffraction
of a normally incident, plane wave by a circular
disk of radius a. A harmonic time dependence
of the form exp(—iwt), with frequency w, is as-
sumed and suppressed throughout. Three differ-
ent diffraction problems are distinguished here
and treated separately: Scalar diffraction by an
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‘acoustically soft disk in Section 2; Scalar diffrac-

tion by an acoustically hard disk in Section 3;
and Electromagnetic diffraction by a perfectly
conducting disk in Section 4. These diffrac-
tion problems have exact solutions in terms of
spheroidal wave functions. For a survey of re-
sults and solution methods, one can refer to [8,
Chapter 14].

In this paper we are especially interested in
the low—frequency approximations to the exact
solutions, which are valid when the disk radius
a is small compared to the wavelength. In the
low—frequency approximation the solution of the
diffraction problem is given by a power series
expansion, in powers of a := ka, where & is the
wave number. Corresponding low—frequency ex-
pansions (in powers of ) are obtainable for var-
ious field quantities such as the scattered field
on the disk, the scattered far field and the scat-
tering coefficient. Here, the scattering coeffi-
cient is defined as the ratio of the total energy
scattered to the energy incident on the disk.
According to the Levine and Schwinger cross-
section theorem, the scattering coefficient is re-
lated to the far—field amplitude of the scattered
wave in the direction of incidence; see Jones [11,
§68.19, 9.4]. The first few terms of these low-
frequency expansions can easily be determined
and are known from the literature. Evaluation
of the higher—order terms involves a considerable
amount of work and soon becomes prohibitive
with increasing order. However, the calculations
are completely systematic and straightforward,
and are therefore well suited to be carried out by
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a computer algebra system. To demonstrate this
by an example, we will use Mathematica to cal-
culate the low—frequency expansion of the scat-
tering coefficient for the three diffraction prob-
lems mentioned. In principle, the expansion can
be evaluated up to arbitrary order; in practice,
the order is limited by the available computer
capacity.

Each of the three diffraction problems is solved
by two independent methods, both of which are
well suited for obtaining a low—frequency ap-
proximation to the solution. In the first method,
due to Bazer and Brown [2], and Boersma [3],
the scattered field is represented by suitable in-
tegrals which contain unknown auxiliary func-
tions. The integral representations are designed
to satisfy all conditions of the diffraction prob-
lem except for the boundary conditions on the
circular disk. Imposing the latter conditions
leads to Fredholm integral equations of the sec-
ond kind for the auxiliary functions. The kernel
of the integral equations is small (it is the same
kernel) of order a, thus permitting a solution of
the integral equations by Picard iteration. The
solution obtained is inserted into the expression
for the scattering coeflicient, yielding the desired
low—frequency expansion.

In the second method, which is due to
Bouwkamp [5-7], the diffraction problems are
formulated in terms of integral equations of the
first kind or integro—differential equations for
the scattered field on the disk or, in the case
of electromagnetic diffraction, the currents in-
duced in the disk. Substitution of low-frequency
expansions for the scattered fields or currents,
and further expansion in powers of ik, leads
to a recursive system of integral equations or
integro—differential equations. This system is
solved by expansion in suitable Legendre poly-
nomials, whereby the expansion coefficients are
determined by a recurrence relation. These co-
efficients are inserted into the expression for the
scattering coeflicient, yielding the desired low—
frequency expansion.

The two methods of solution give rise to two
different schemes for the calculation of the low—
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frequency expansion of the scattering coefficient.
Mathematica implementations of these schemes
are listed in [1, Appendices A-E]. The Mathe-
matica programs were executed on a 486DX33
computer with 8 megabytes of internal mem-
ory using the Mathematica Enhanced Version
2.2 for Windows, and Microsoft Windows for
Workgroups Version 3.11. Results of the cal-
culations by Mathematica are presented at the
end of Sections 2, 3, and 4. For the successive
diffraction problems we have tabulated the ex-
act values of the first ten coefficients and the
numerical values (to six significant digits) of the
first twenty coefficients in the low—frequency ex-
pansion of the scattering coefficient. It is found
that the two different schemes do yield the same
results for the scattering coefficient. This pro-
vides an excellent check on the correctness of the
mathematical analysis and of the Mathematica—
programs. It is emphasized that the Mathemai-
ica results to be presented are exact. The under-
lying calculations are in terms of only rational
numbers and powers of the symbol 7, and in
Mathematica such calculations are carried out
in an exact manner.

In the following sections we present only the
key equations of the schemes for calculating the
scattering coefficient. For the details of the un-
derlying solutions of the diffraction problems the
reader is referred to the companion report [1]
which is available on request. Recalling that
a = ka, we state some further notations to be
used: Im denotes that the imaginary part is to
be taken; [z] is the largest integer < z; and T
denotes the gamma function.

2. Scalar diffraction by a soft circular disk

We consider the scalar diffraction of a normally
incident plane wave by an acoustically soft cir-
cular disk. The diffraction problem is solved
by two different methods. First, we employ the
method of Bazer and Brown [2] to find that the
solution may be expressed in terms of the aux-
iliary function g(z), which satisfies the integral



BogErsMA and ANTHONISSEN

equation

g(t) = cosh(at) + %l—z [jl sinh&afts— o) g(s) ds,
—1<t<l (21)

The scattering coefficient of the soft circular
disk, denoted by o3, is given by

8 1
gy = —— Im [/0 cosh{at) g(t) dt] , (2.2)
expressed in terms of g(t). The integral equation
(2.1) is solved by Picard iteration, whereby one
factor « is gained at each iteration step. The
solution obtained is inserted into (2.2), where-
upon the low—frequency expansion of oo follows
by a straightforward evaluation.

The second solution goes back to unpublished
work of Bouwkamp, referred to in [7, p.T71].
Bouwkamp’s solution of the diffraction problem,
as detailed in [1, Section 2.3}, is described by
expansions in Legendre polynomials with ex-
pansion coefficients a,,, where p = 0,1,2,.
n=0,1,...,p/2]. These coeflicients are deter-
mined by the recurrence relation

n—i—l ZFQ(%

g=1

Gpn = (~1)**! (20 + )r

1

ml»—l
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in which Jop = 16/7T2 and 6'2}0 = 1. By use of
Mathematica, the expansion (2.5) has been eval-
uated up to and including terms of order a'®.
In Table 2.1 we present the exact values of the
normalized coefficients Gz2n, = (72/16)02.2, for
n = 0(1)9. The Mathematica calculation has
been carried out in duplicate, based on either set
of key equations (2.1)—(2.2) or (2.3)-(2.4). Both
approaches were found to yield the same results
of Table 2.1, with calculation times of 230 and
938 seconds, respectively, for ten coefficients. It
is observed that &20,, n = 0(1)9, is a polyno-
mial in 72 of degree n, with rational coefficients
and leading term (—1)" 22" 7~=2"; these proper-
ties can be proved for general n by induction.
In Table 2.2 we present the numerical values,
to six significant digits, of the coefficients g an
for n = 0(1)19. The results of Tables 2.1 and
2.2 were also obtained (and extended) by Pro-
fessor D.S. Jones (Dundee) by an independent
Mathematica calculation. It has been found re-
cently [4] that the expansion (2.5), considered as
a power series in ¢, has a radius of convergence
3.39879, to five decimal places.

[(p—g)/2]

(—1)™ F(m+1 )

Y-am Tln + 1)

m=0

! (2.3)

.I‘(%q—m—-n-{—%) I(3¢+m—n+1)

valid for p=1,2,3,..., n=0,1,...,[p/2], and
initiated by agp = 1. The low—frequency ex-
pansion of the scattering coefficient o9 is given
by

)P azpr10 07, (2.4)

=1|oc>

which contains only the coefficients agpi10-

Obviously the low—frequency expansion of o3
is in even powers of «, and the leading term is
found to be 16/72. Therefore we set

oo
= Z T390 C Z 02271 2n,

n=0 n=0

(2.5)
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QOur expansion of the scattering coefficient
0y agrees with and extends the results of
Bouwkamp [7, formula (8.1)] and of Bazer and
Brown {2, formula (75)]. In both references
the coefficients &2, have been determined for
n = 0(1)3. According to [8, formula (14.50)],
the best result available so far is an expansion
up to and including terms of order &!°, due to
Hurd [9]. Later on, Hurd {10] determined two
additional terms of the expansion, with coeffi-
cients Gp12 and G214, by use of the symbolic
programming language FORMAC. The results
from [9, Table III} and [10] do agree with our
Table 2.1.



BorrsMa and ANTHONISSEN . Calculations in Mathematica on Diffraction by a Disk

Table 2.1 Table 2.2:
Exact values of the normalized coefficients Numerical values of the coefficients
oo = (72/16) 022, , n=0(1)9, ooon s n=0(1)19,
in the expansion {2.5) of &3. in the expansion (2.5) of os.
n 02.2n n T3 an
3 0 1.62114-10° 10 —1.25015-10~H
G20 = 1 1  6.34833.10~2 11 —8.26174.10-13
. 4 4 2 —1.21411.10°3 12 1.04976-10~13
g22 = ——+3 3 —4.21848-107% 13 4.75653.1071%
4 1.49251-10~5 14 —8.51679-.10"16
. 6 8 71 5 2.99261-107% 15 —2.40050-10727
924 = @ T 3727 675 6 —1.5309610~7 16  6.71043-10~18
7  —2.03550-10~% 17 8.81790.10~%°
brg = —ompam 32385 §  1.42562-10~° 18 —5.14921-10-%
w° 9wt 2025w 7 9 1.33048.10-10 19 4.29350.10~23
. _ 256 _640 304 43168 9523
928 = TF T Ga6 1579 17860572 @ 4465125
. _ _lo2¢ 1024 28288 = 80704 640204 329068
9210 = TUO0 T 38 T §7570 | 3572174 1330537572 | 1620840375
_ _ 4096 14336 485632 2208512 17011712 200408 28561418
9212 = T2 T gn10 ' 2025748 12757576 | 287043757% 2572762572 ' 1917454163625
. _ _le3s4 65536 _ 876544 104992768 53558528 9409312768
21 = 714 T 9ri2  B75x10 | 8030257® 956812576 & 72937816875 mt
5427789356576 24646112

5033317179515625 72 + 28761812454375

. _ 65536 _ 32768 1519616 219004928 1004324096 248401408
9218 = e 714 ' 295712 | 207675710 ' 2232562578 165391875 7

3275445271751792 5850372900928 4 2053662389
135899563846921875 7%  45299854615640625 72 = T4800474193829375

5 _ 262144 1310720 13795328 774815744 4345136128
218 = 718 9716 405712 ' 178605712 13395375710

624041153536 9417147043033088 + 322152102668096
43762690125 7%  2717991276938437575  81539738308153125 74

7973773660981292 200771738036
589124609276406328125 72 ° 135031100919862021875
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3. Scalar diffraction by a hard circular disk  valid for p = 2,3,4,..., n = 0,1,...,N,, and
initiated by bop = —2/7. The low-frequency
expansion of the scattering coefficient o; is given
by

This section deals with the scalar diffraction of a
normally incident plane wave by an acoustically
hard circular disk. Again, the diffraction prob-
lem is solved by two different methods. First, we
employ the method of Bazer and Brown [2] to
find that the solution may be expressed in terms

of the auxiliary function f(f), which satisfies the  which contains only the coefficients Baps3,0-
integral equation

mws

oo
Z 1)p b2p+3,0 C82p+4, (34)

The low—frequency expansion of o, is in even
! sinh[a(t — s)] powers of o, and the leading term is found to be

f(t) = sinh(at) + — f_ 1 t— s f(s) ds, (16/27n2)a*. Therefore we set
A<t B =3 ouma®

%Y o

n=2 n=2
The latter equation follows by simplification of (3 5)
[2, formula (49)]. The simplification is possible  in which 14 = 16/277%, and &14 = 1. By use of
since f(t) is an odd function of t [1, Sec. 3.2.1).  Mathematica, the expansion (3.5) has been eval-
The scattering coefficient of the hard circular  uated up to and including terms of order a2, In

16cx

disk, denoted by o3, is given by Table 3.1 we present the exact values of the nor-
8 . malized coefficients &;0, = (2772/16)012, for
g1=—1Im [ / sinh{az) f(t) dt} . (3.2) n=2(1)11. The Mathematica calculation has
o 0 been carried out in duplicate, based on either

expressed in terms of f(£). The integral equa-  set of key equations (3.1)~(3.2) or (3.3)-(3.4).
tion (3.1) is solved by Picard iteration, whereby ~ Both approaches were found to yield the same
even a factor o3 is gained at each iteration step,  results of Table 3.1, with calculation times of
since f(t) is an odd function of t. The solu- 73 and 327 seconds, respectively, for ten coefli-
tion obtained is inserted into (3.2), whereupon  cients. From the tabulated values and from ad-
the low—frequency expansion of o; follows in a  ditional calculated values of &y 25, not presented
straightforward manner. here, it appears that &1 2, is a polynomial in w2
of degree [(n — 2)/3], with rational coefficients.
In Table 3.2 we present the numerical values, to
six significant digits, of the coefficients ¢ 2, for
n = 2(1)21. It has been found recently [4] that
the expansion (3.5), considered as a power series
in o, has a radius of convergence 2.12548, to five
decimal places.

The second solution of the diffraction prob-
lem is taken from Bouwkamp [5]. As in Sec-
tion 2, Bouwkamp’s solution is described by ex-
pansions in Legendre polynomials with expan-
sion coefficients by, where p=0,1,2,..., and

= 0,1,...,N,, with N, = p/2 (p even) or
N, = (p — 3)/2 (p odd). These coefficients are
determined by the recurrence relation

n In+1) & Eqy Pl +3)
b = (1 (04 8) Foggy 2 De=8) TGers) X 1™ beam 1y
g= m=
1 1

(3.3)

'I‘(%q—m—n—%) I(3¢g+m—n+1) 'I‘(%q—m+n+1)I‘(§q+m+n+%)’
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Our expansion of the scattering coefficient
o, agrees with and extends the results of
Bouwkamp [5, formula (44)}, [7, formula (8.2)],
and of Bazer and Brown [2, formula {54)]; these
results are the best available so far, accord-
ing to [8, formula (14.104)]. In the references
mentioned the coefficients &y 2, have been de-
termined for » = 2(1)5, corresponding to an
expansion up to and including terms of order
a0,

~

Table 3.1

Table 3.2:

Calculations in Mathematica on Diffraction by a Disk

Exact values of the normalized coefficients
Gron = (2772 /16) 0130 , m=2(1)11,

in the expansion {3.5) of ;.

Numerical values of the coefficients

d1.2n »

n=2(1)21,

in the expansion (3.5) of &;.

n 01i,2n n T .20
F14 = 1 2 6.00422-10"2 12 1.79404.10-%
3 1.92135.1072 13 2.11383.10~10
Ge = — 4 3.04867-1073 14 —8.12669-107%°
25 5  1.56882.10~° 15 —2.65462.10~10
311 6 —1.44386.10~% 16 —4.35129-10-1
G18 = o 7 —4.60949-1075 17 —6.52346-10"12
8 —7.39515.106 18 1.92722-10712
S = - 4 2612 9 —6.29012-10"8 19 6.36935.1013
’ 8172 = 496125 10 3.42594-1077 20  1.05513-10713
10-7 10718
. _ s oo 11 1.10625-10 21  1.91370-10
LIZT T9025#2 T 420217875
5 B 3872 4911008
L& = T4ge12572 ' 213050462625
5 B 16 2466752 10209259
L6 = B561a% 167442187572 9587270818125
5 3 64 10344876692 _ 555082444
LI8 = 328057%  4963823648437572 = 13853606332190625
5 B 158224 17900145896 207559549214
L2 = 200030625 7% 76262381507812572  165038012235386915625
5 _ 64 ST 218616645875024 115358087888
1,22 = TE31441 76 406384515625 7%  90886179427487578125 72 | 3465798256943125228125
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4. Electromagnetic diffraction by a
conducting circular disk

We consider the electromagnetic diffraction of
a normally incident plane wave by a perfectly
conducting circular disk. Two independent so-
lutions of the diffraction problem are proposed,
taken from Boersma [3, Sec. 3.3] and Bouwkamp
[6]. As detailed in [1, Sec. 4.2], Boersma's solu-
tion may be expressed in terms of three auxiliary
functions fo(t), go(t}, and g:(t), which satisfy the
integral equations

sinh(at) 1 /1 sinhie(t — s)]
o)) = ST [T R
—1<t<1,  (41)
1 1 sinhfa(t— s)] P
go{t) = cosh(at) + E.LTQO(S) s,
-1 <t<1, {(4.2)
a(t) = tsinZ(at) + 7_:; j_llsinh?_(i—s)]gl(s)ds’

Calculations in Mathematica on Diffraction by a Disk

Next, the constants Cp and C are determined

by
_a)
g0(1)’

_ fol1)
R+ 40+ Cogl)’

The scattering coefficient of the conducting cir-
cular disk, denoted by ¢, is found to be given

Cg =
(4.4)

C

by
a-ﬁhnw}+n/Emumnwﬂﬁ
- . o 4] ?
(4.5)
expressed in terms of C and fo(t). The inte-

gral equations (4.1)—(4.3) are solved by Picard
iteration, whereby a factor a or o is gained
at each iteration step. The solutions obtained
are inserted into (4.4) and (4.5), whereupon the
low—frequency expansion of ¢ follows.

Bouwkamp’s solution [6] of the diffraction
problem involves low—frequency expansions,
with expansion coefficients a, n—2y, bpn—2, and
Pn, wheren =1,2,3,..., andv =0,1,...,[(n+
1)/2]. These coeficients are determined succes-
sively by the system of equations

-1<t<1. (43)

7 1 [(r+1)/2] [{n+1)/2] )

; (TL _ T)‘ s Qrr—20 J(U, 0: n—r; P) = ,,;0 Pn-2v W 3 (46)
i 1 [(r+1)/2] [((n+1)/2] p2u

brr_oy yL,n—7;p) = n—2u ) 4.7
et X berlbrmds 2 mempThpene WP

(m413/2 (v + 1) 4aT(v + 3)
(7 1y+1 2 —2v "'lv_‘—Q— ,n—2r | 3 4.8
= 3 (U R e O T e (“9)
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valid for n = 1,2, 3,..., and initiated by p_; =
1, po = 0. Equation (4.8) stems from [6, formula
(49)] with the second factor I'(v + 1) corrected
into ['(v). The J-functions in (4.6) and {4.7) are
polynomials in p?, generally given by
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(___1)'n,+m F2(

p+DT(n+m+3)

Caleulations in Mathematica on Diffraction by a Disk

J VP =
(M3 0) = e e s Tm + DT —m+ DTG —n-m+ DTGt n—m+ D)

P E (= ptntmtl, —tu—ntm; 2mt1; p?),

where F stands for the hypergeometric function.
It is easily verified that J(n,m, t; p) is a polyno-
mial in p? of degree n+1p (u even) or 3(u—1)—n
(1 odd); in the latter case, J(n,m,u;p) = 0 if
m-n > %(,u,—l). For fixedn =1,2,3,..., equa-
tions (4.6) and (4.7) are identities for polynomi-
als in p? of degree {(n + 1}/2]. By equating the
coefficients of p* (v = (0),1,2,....[(n+1)/2])
on the left and on the right of (4.7) and (4.8), we
are led to a system of linear algebraic equations
for the coefficients an n—ou, bnn-2v, Pn of the nth
approximation, expressed in terms of preced-
ing coefficients for the approximations of order
n—1,m—2,...,1. Here we also need the initial
valies p_; = 1,po = 0. Together with equation
(4.8), we now have a system of 2[(n+1)/2]+2 lin-
ear equations for the same number of unknown
coefficients aGnn—2v, bnn—2v, and p,. Thus the
system (4.6)-(4.8) suffices to determine succes-
sively all coefficients a, b, and p.

Finally, the low-frequency expansion of the
scattering coefficient ¢ is given by

(4.10)

3| oo

oC
oc==3 (-1)" aznon o,
n=1

which contains only the coefficients aop on.

The low-frequency expansion of ¢ is in even
powers of ¢, and the leading term is found to be
(128/27 n2)a*. Therefore we set

(4.11)
in which o4 = 128/277?%, and &4 = 1. By use
of Mathematica, the expansion (4.11) has been
evaluated up to and including terms of order
o?2,

(4.9)

In Table 4.1 we present the exact values of the
normalized coefficients &2, = (27 72/128)0,, for
n = 2(1)11. The Mathematica calculation has
been carried out in duplicate, based on either
set of key equations (4.1)—(4.5) or (4.6)—(4.10}.
Both approaches were found to yield the same
results of Table 4.1, with calculation times of
2225 and 10384 seconds, respectively, for ten co-
efficients. From the tabulated values and from
additional calculated values of &s,, not pre-
sented here, it appears that &., is a polynomial
in 72 of degree [(n — 2}/3], with rational coef-
ficients. In Table 4.2 we present the numerical
values, to six significant digits, of the coefficients
oon for n = 2(1) 21. It has been found recently
[4] that the expansion (4.11), considered as a
power series in ¢, has a radius of convergence
1.32335, to five decimal places.

Our expansion of the scattering coefficient o
agrees with and includes the three-term expan-
sion due to Bouwkamp [6, formula (63)], and the
five-term expansion due to Boersma {3, formula
(3.54)]. Boersma’s expansion up to and includ-
ing terms of order o2 is the best result available
so far, according to [8, formula (14.277)].
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Table 4.1

Table 4.2:

Calculations in Mathematica on Diffraction by a Disk

Exact values of the normalized coefficients

Numerical values of the coefficients

Fon = (2772 /128) 02, , mo=2(1)11,

in the expansion (4.11) of o.

in the expansion (4.11) of o.

T2n »

n=2(1)21,

n Ton n Ton
Fs = 1 2 4.80337-1071 12 2.44195.1073
3 4.22697-10°1 13 5.15600-10¢
5o = 2 4 191142107 14 ~—3.70006 10~
25 5  1.98536.10-2 15 —4.73979.10~%
i 7312 6 —4.58650-1072 16 —2.71167-10~*
78 = 713375 7 —4.43846-1072 17 —6.96125-10~°
8 —2.17365-1072 18  3.08721.10°%
. o4 60224 9 —3.49620-1073 19 4.82181.10°5
g0 = 3 ¥ 106155
8lx 1 10 4.19730-10-3 20  2.97929-10-%
.10-3 .10-6
L e 25048102 11 4.60964-10 21 8.90612-10
2T 790952 T 1260653625
5. o _dmmse 1074505984
14 = TU9e125x2 | 213050462625
5. . 4096 866102528 7165401088
16 = E5elnt 167442187572 9587270818125
5. _ 45056 10518751249408 3838104543232
18 = 3080577 49638236484375#2 = 41560818996571875
5. . 310123264 1623120103424 1594679901356032
20 = 500030625 7%  23100812578125x2 | 165038012235386915625
s - 2024 479139075584 1952093212715159552 600919849172992
22 = TE31441 76 © 406884515625 7%  90886179427487578125 72 | 693159651388625045625
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