
 

  
Abstract − The detection of buried targets with ground-
penetrating radars (GPRs) has been an issue of 
considerable attention during the last decades. In this 
paper, an efficient three-dimensional (3-D) time-domain 
numerical method is proposed for the simulation of GPR 
on dispersive soils. The soil is considered as an M-th 
order Debye medium with additional static conductivity 
and an unsplit-field perfectly matched layer (PML) is also 
presented to terminate such media. The radar unit is 
modeled with two transmitters and one receiver in order 
to eliminate undesired signals. The impact of radar 
frequency, soil parameters and object depth upon the 
ability to detect buried targets is investigated through 
several finite-difference time-domain (FDTD) 
simulations. The detection of multiple dielectric and 
conducting buried objects in stratified and 
inhomogeneous soils can be feasible through the tracing 
of the received energy of B-scan measurements in 
perpendicular linear paths. 
 
Index Terms − Finite difference time domain (FDTD) 
method, ground-penetrating radar, dispersive media, 
perfectly matched layer.  

I. INTRODUCTION 

There is a growing interest in the propagation of 
transient electromagnetic signals through the earth and 
subsurface radar techniques for the detection and location 
of buried artifacts and structures within the upper regions 
of the earth’s surface [1]-[6]. Ground-penetrating radar 
(GPR) has a wide range of applications such as geological 
mapping, object detection, and various archeological, 
civil and electrical engineering applications. The 
algorithm uses transmitting and receiving antennas placed 
near the earth’s surface to probe the shallow subsurface. 
It is well known that at the GPR operating range (50-1000  
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MHz) soil is dispersive. More specifically, the dielectric 
constant and conductivity of the earth are functions of the 
excitation frequency. 

The finite-difference time-domain (FDTD) method [7], 
[8] is inarguably one of the most successful second-order 
accurate schemes for electromagnetic time-domain 
simulations. Although the applicability of the original 
FDTD scheme is restricted to nondispersive media, a 
number of researchers have extended the conventional 
Yee’s scheme to incorporate dispersive media. There are 
several techniques, like the recursive convolution (RC) 
[7], the auxiliary differential equation (ADE) scheme [8], 
the Z-transform (ZT) [9] and some alternative techniques 
[10]-[12] for handling dispersive media. An extensive 
survey of the FDTD methods for dispersive media is 
found in [13] and in the introduction of [4]. Among the 
previous techniques, we select a competent modification 
of the ADE approach [10] and introduce an unsplit-field 
perfectly matched layer (PML) which is used to terminate 
the computational domain. 

Since the FDTD technique is very easy to implement, 
versatile and can handle any number and type of 
scatterers and soils, it has been extensively used to 
simulate GPR problems [2]-[6]. Usually, in the FDTD 
simulations, the soil is modeled as a dielectric with 
constant permittivity. In contrast, this paper presents a 
complete FDTD simulation with a practical radar 
configuration and introduces a number of simple 
techniques for the detection of dielectric and/or 
conducting buried targets in various realistic ground 
models. 

II. FDTD/PML METHOD FOR THE DEBYE 
MODEL 

Although the determination of the dielectric properties 
of earth materials remains largely experimental there is 
always the need of soil modeling. Experimental data 
indicate that dielectric behavior of wet snow, rocks, soils 
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and even dry sand follows the Debye relaxation [1], [14]. 
This good fit to the Debye model with multiple poles is 
explained by the natural occurring of moisture in varying 
proportions everywhere in earth. The relative complex 
dielectric permittivity ( )rε ω  for the case of the M-th 

order Debye medium ( j te ω  time variation is assumed) is 
described by the following equation  
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where ,r spε , pτ  is the relative static permittivity and the 

relaxation time of the p pole, respectively, and ,rε ∞  is the 
infinite relative permittivity usually determined to fit 
experimental data. 

For the FDTD simulations we adopt the efficient 
technique of [10] and we propose a new PML formulation 
to terminate the simulation region. The modified 
Maxwell’s equations inside the PML are written as, 
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0j Tωµ∇× = − ⋅E H ,                           (3) 
where the terminated medium is assumed to be dispersive 
with relative permittivity ( )rε ω  and additional static 
conductivity σ  and diag{ /( )x y zT ζ ζ ζ= , /( ),y z xζ ζ ζ  

/( )}z x yζ ζ ζ  is the diagonal “material” tensor of the PML 
conductivities. The tilde denotes that the fields are in the 
frequency domain. The stretching factors sζ  are defined 
as 1/[ /( )]s s s jζ κ σ ω= + , , ,s x y z=  where sκ  and sσ  
are spatially polynomial variables. 

 
Ampere's law, equation (2), is written as 
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with 0 ,sp r spε ε ε= . We also introduce variables T= ⋅R E  
and equation (4) takes the following form 
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We next transform equations (5) and (6) into the time 
domain and get 
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Equations (7) and (8) are approximated using finite 
differences and the update equations for the variables pQ  
and R  are 
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where t∆  is the time step of the FDTD method and the 
coefficients ec  and mc  are given by 
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The x-component of the variable R  is 
/( )x x y z xR Eζ ζ ζ=  and the update equation for xE  is 

obtained following the methodology of [15]. The 
FDTD/PML equations for the other electric and magnetic 
components can be extracted in the same fashion. 

Since all explicit finite-difference schemes are 
conditionally stable, there is the need for the stability 
condition of the proposed formulation. The fields are 
expressed as [16] 
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where 0F  is a complex amplitude, indexes , ,I J K  denote 
the positions of the nodes in the FDTD grid, 

, ( , , )x y zβ β∆ =  are the sizes of the FDTD cells, 

, ( , , )k x y zβ β =  is the numerical wavenumber in the β -
direction and Z  is a complex variable. Such solutions are 
substituted into the difference equations and the 
characteristic polynomial is yielded (for the case of the 
one-pole Debye medium is a third-order polynomial). The 
condition for stability can be written as 1iZ ≤ , where iZ  
are the roots of the characteristic polynomial in Z . Since 
the characteristic polynomial is generally dependent on 
the Debye parameters, the maximum value of the time 
step t∆  cannot be independently specified as it is with 
nondispersive media. Given the parameters of the 
medium and β∆ , the selection of t∆  is tested by 
numerically finding the roots of the characteristic 
polynomial. For the case of the one-pole Debye medium, 
the stability criterion of the proposed scheme can be 
expressed as 
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where 1/c µε∞ ∞= on condition that sε ε∞≥ . 

III. SOIL PARAMETERS AND RADAR UNIT 

In this paper, the radar unit consists of two identical 
transmitters ( 1T  and 2T ) and one receiver ( R ), called 
transmitter-receiver-transmitter (TRT) configuration [5], 
illustrated in Fig. 1. The two alike transmitters, modeled 
as small electric dipoles aligned at z-axis, are fed 180  
out of phase and the receiver is located equidistantly 
between them. The receiver is implemented as a small 
dipole which samples and stores the z-component of the 
electric field at a specific Yee cell. Due to this 
configuration, the two direct signals 1D  and 2D  are 
mutually cancelled at the receiver R . Similarly, the two 
reflected signals 1G  and 2G  are subtracted at the same 
symmetry plane and they do not contribute to the signal 
received by the receiver. Finally, the signal collected by 
the receiver is solely due to the scatterers buried in the 
ground. Using this configuration, we separate the desired 
scattered signal 1 2S S+ , which is generally weak, from the 
direct and the reflected from the ground signal, rendering 
thus, the buried-object detection procedure possible. 

An A-scan is performed when the radar unit is 

stationary and the receiver collects data for a time period. 
When the radar unit travels along a linear path performing 
repeated A-scan measurements at discrete points above 
the ground, this is called B-scan [5]. For our simulations 
the radar unit moves in a linear path performing B-scan 

simulations. The fields are excited using hard sources at 
the points of the two transmitters. The time variation of 
the source is given by 

2[( ) ]( ) cos(2 )a n b t
cf n e f n tπ− − ∆= ∆ , 

where 512b = , 216 /( )a tβ= ∆ , cf  the excitation 
frequency and n  denotes the time step. 

IV. NUMERICAL RESULTS 

In our FDTD simulations, the Yee cell sizes are 
selected to be 5cmx y z∆ = ∆ = ∆ = ∆ =  and the time 
step 38.516psect∆ = , in order to ensure the stability. The 
size of the computational domain is 60 60 30× ×  Yee 
cells and is truncated with an 8-cell PML described in 
previous section. The transmitting and receiving antennas 
are arranged as shown in Fig. 1 and are separated by two 
cells (10 cm). The radar unit is moving in straight lines 
and is located 10 cm above the ground surface. We 
assume three Puerto Rico clay loams modeled with Debye 
dispersion with parameters listed in Table I [4]. The soil 
occupies the first 20 cells of the vertical height of the 
simulation region. 

We assume two cubic scatterers: a perfectly electric 
conductor (PEC) and a dielectric one with permittivity 

08ε . The PEC and the dielectric targets of sizes 
5 5 5∆ × ∆ × ∆  and 4 4 4∆ × ∆ × ∆  are buried 4 ∆  and 5∆  
under the ground-air interface, respectively and are 
separated by 6∆ . In Fig. 2 the electric field at the 
receiver is depicted when one scatterer, both scatterers 
and no scatterers are present. The scatterers are buried in 
2.5 % moisture soil with parameters taken from Table I. It 
is obvious, as expected, that the received signal is solely 
due to buried objects. 

In the following, we show two FDTD snapshots of the 
x-component of the electric field for the TRT radar model 
above earth modeled with two different Debye media for 
the aforementioned scenario of the two scatterers. The 
central frequency of excitation is 200 MHz. In Fig. 3 (a) 
the earth is modeled with the Debye model of 2.5 % 
moisture while in Fig. 3 (b) with the 5 % moisture. We 
can observe the wave propagation in free space and 
dispersive soil and the scattering from the two targets. 

Since the detection of buried targets is performed 

 

 
 
Fig. 1. The TRT configuration of the radar unit with the 

direct ( 1D  and 2D ), the reflected ( 1G  and 2G ), and 
the scattered ( 1S  and 2S ) signals depicted. 

  

Table I. Model parameters for Puerto Rico clay loams. 
 

Moisture 
(%) ,rε ∞  (mS/m)σ  1 (nsec)τ  2 ( sec)nτ  , 1r sε  , 2r sε  

2.5 3.20 0.397 2.71 0.108 3.95 3.50 
5.0 4.15 1.110 3.79 0.151 5.95 4.75 
10.0 6.00 2.000 3.98 0.251 8.75 6.75 
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through the received energy due to the presence of the 
scatterers, we estimate the scattered energy collected by 
the receiver in an A-scan, as 2| |n

n
E= ∑E , where nE  is 

the n-th time sample of the corresponding electric field at 
that A-scan location. 

 

A. Effect of Frequency 
In order to investigate the effect of excitation 

frequency upon the operation of the GPR, we assume the 
aforementioned scenario with the Puerto Rico clay loam 
of 2.5 % moisture. We perform two simulations: (a) with 

200 MHzcf = and (b) with 400 MHzcf =  whereas the 
corresponding energy of the excitation functions is 
calculated as 1 80.212t =E  and 2 80.212t =E  (the energies 
are almost equal due to the value of the parameter b ). 
Each A-scan is normalized with its own maximum and 
individually plotted in Figs 4 (a) and 4 (b) and form the 
B-scan plot which is a function of the position of the 
radar unit (vertical axis) and time (horizontal axis). In 
Figs 4 (a) and 4 (b), the energies of the A-scans 
waveforms are depicted as a function of the radar position 
(vertical axis). The maximum energy collected by the 
receiver is 1 85.281r =E  and 2 102.123r =E . The ratios of 
the received to the transmitted energy for the two 
frequencies are 1.063 and 1.273, respectively. So, the 
PEC target is better detected if excitation frequency is 

400 MHzcf = , although the position of the dielectric 
target is not very clear for this case. We also remark that 
the energy peak for the conducting target is greater than 
that of the dielectric as expected. 

 

B. Effect of Soil Parameters and Object Depth 
Usually, there is great difficulty in accurate prediction 

of the electromagnetic propagation behavior of the 
ground due to the variability of the material parameters 
and local geological conditions encountered in real life. 
We now perform another set of numerical simulations in 
which the parameters of the ground are that of the Puerto 
Rico clay loam with 5 % moisture (Table I) which 
describes a wet earth, to investigate the effect of soil 
parameters. Fig. 5 (a) shows the same scenario as in the 
previous subsection but in another soil background (with 
5 % moisture) for 400 MHzcf = . The ratio of the 
collected to the transmitted energy is now 1.045. In Fig. 5 
(b), the excitation frequency is 200 MHz, while the ratio 
is 0.996. We observe that using a higher frequency (400 
MHz) we get 1.05 times more energy (Figs 5 (a) and 5 
(b)) for the 5 % moisture model, whereas for the 2.5 % 
moisture model we obtain 1.2 (Figs 4 (a) and 4 (b)). This 
is due to the fact that the 5 % moisture soil model 

                                       (a) 

                                 (b) 
Fig. 3. Snapshots of the amplitude of the x-component of 

the electric field. The ground is modeled with 
Debye medium of (a) 2.5 % and (b) 5 % moisture.
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Fig. 2. The electric field at the receiver of a TRT radar as 

a function of time for different subsurface 
scenarios (A-scan). 
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containing more moisture than the 2.5 % causes greater 
attenuation to the scattered energy collected by the 
receiver. At a given frequency, wet materials exhibit 
higher dielectric losses than dry ones. 

We next consider that the dielectric scatterer is smaller 
(of size 2 2 2∆ × ∆ × ∆ ) and is buried 7∆  under the 
surface. The corresponding B-scan results are depicted in 
Fig. 5 (c). One may note that the dielectric scatterer is, 
now, invisible to the radar, since the collected energy is 
practically zero. Obviously, the scattered energy from the 
dielectric target is very weak due to the attenuation of the 
wet soil. It is to be stressed that in many practical 
applications, the GPR results are inconclusive because of 
the significant attenuation caused by the dispersive soil. 
Such problems can usually be solved with a proper 
frequency selection. Additionally, it is not plain to 
predict, before the FDTD simulation, which frequency is 
suitable, leads to less dielectric losses and to clear 
subsurface image. 

 

C. Multiple Target Detection in Stratified Soil 
One of the important goals of the GPR applications is 

to image metallic, dielectric scatterers and cavities in the 
near subsurface. We now assume a scenario with two 
perfectly conducting scatterers of sizes 3 3 3∆ × ∆ × ∆  
buried 4∆  under the ground. The earth model is assumed 
to be inhomogeneous and consists of a 25 cm thick layer 
of Puerto Rico clay loam with 5 % moisture near the 
surface and the rest of a 10 % moisture soil (with 

parameters listed in Table I). The locations of the targets 
are illustrated in Fig. 6. Two linear, perpendicular paths 
(linear paths A and B in Fig. 6) are regarded. We perform 
B-scans upon the prementioned linear paths and the 
results are demonstrated in Figs 7 (a) and 7 (b). The 
maxima in the plots correspond to the energy scattered by 
the two targets, while the energy magnitudes are 
generally functions of the sizes, locations, depths and 
constitutive properties of the scatterers. Since in the 
examined scenario, the targets are the same in size and 
dielectric properties and are buried in the same depth, the 
energy peaks just indicate their locations. The prescribed 
procedure serves as a simple algorithm for the detection 
of buried targets and if combined with other 
measurements or calculations can provide an accurate 
subsurface image. 

 

D. Target Detection in Inhomogeneous Soil 
We now assume a more realistic scenario of earth 

model considering 50 small dielectric scatterers with 
permittivity 08ε  of sizes and positions selected randomly 
embedded in a 2.5 % moisture soil background. The 
maximum size of the dielectric scatterers is 5 5 5∆ × ∆ × ∆  
and the excitation frequency is 200 MHz. A PEC target of 
size 5 5 5∆ × ∆ × ∆  is buried 4∆  deep as shown in Fig. 8 
(a). The maximum of the collected energy in Fig 8 (b) is 
due to PEC scatterer (this can be extracted by 
comparisons with previous B-scan simulations where the 
PEC scatterer was in the same position) although the 
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Fig. 4. Simulations results (B-scan and collected energy) of two scatterers (one PEC and one dielectric) buried 20 cm 
and 25 cm, respectively, under the ground and separated by 30 cm with excitation frequency (a) 200 MHzcf = , 
(b) 400 MHzcf = . The earth is a Puerto Rico clay loam with 2.5 % moisture. 
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presence of soil inhomogeneity complicates the detection. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

V.CONCLUSION 
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            (a)                        (b)                                      (c) 
 
Fig. 5. Simulations results (B-scan and collected energy) of two scatterers (one PEC and one dielectric) (a), (b) buried 

20 cm and 25 cm, respectively, under the ground and separated by 30 cm and (c) buried 20 cm and 35 cm, 
respectively, under the ground and separated by 40 cm with excitation frequency (a) 400 MHzcf = and (b), (c) 

200 MHzcf = . The earth is a Puerto Rico clay loam with 5.0 % moisture. 
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Fig. 7. Simulations results (B-scan and collected energy) 

of two perfectly electric conducting scatterers 
buried 4 cells under the ground: (a) linear path 
A and (b) linear path B. 
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Fig. 6. Subsurface model with two perfectly electric 

conducting scatterers. 
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V. CONCLUSIONS 

The application and importance of the realistic ground 
model in the 3-D FDTD simulations of GPR scenarios are 
presented. The earth is modeled as a Debye medium with 
two poles and static conductivity and an efficient FDTD 
scheme is used to simulate the wave propagation inside 
stratified and inhomogeneous dispersive soils. An unsplit-
field PML is also proposed for the termination of the 
computational domain and its effectiveness and accuracy 
is proved in numerous GPR problems with different (PEC 
or dielectric) targets and soil parameters. The effect of the 
excitation frequency upon the ability to detect buried 
objects is studied and the difficulty to recognize dielectric 
targets is discussed. The simulation results show that the 
detection of metal and dielectric buried objects is possible 
through the collected energy at the receiver and a simple 
and efficient algorithm is also introduced for the detection 
of multiple targets. The FDTD/PML technique presented 
in this paper provides a vigorous and effortless method 
for accurate GPR simulations and facilitate the analysis 
and design of GPR systems. 
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Fig. 8. (a) Inhomogeneous earth model (the PEC target 

and the dielectric scatterers are depicted) and (b) 
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