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ABSTRACT. The transmission line matrix
(TLM} method is introduced and the specific
issue of computational efficiency is discussed.
The implementation of TLM on parallel
computers is studied leading to the creation of
a  highly efficient processor designed
specifically for TLM. Limitations introduced
by the connection strategies employed by most
parallel architectures are overcome through
the use of a novel data routing architecture.
The basic idea is extended to include stub
loaded and three-dimensional TLM. The
development of a prototype processor is
discussed and potential applications are given.

1 Introduction

Analytical solutions to Maxwell’s equations
are possible only in restricted cases. The
advent of the digital computer has given rise to
a number of numerical techniques for solving
Maxwell’s  equations and modelling
electromagnetic wave phenomena. Of these the
most common are the finite difference time
domain (FD-TD), finite element (FE), and
transmission line matrix (TLM) methods[1].
Finite difference and finite element methods
respectively  perform  differentiation  or
integration of the electric or magnetic field
over a defined region. In contrast, TLM is built
around an array of connected secondary
radiators, giving discretisation in both space
and time. Thus TLM bears a uniquely close
physical resemblance to the processes of
propagation. TLM in fact offers a solution to
the Telegraphers equation and has been
applied to both propagation and diffusion
modelling.

This paper is divided in to eight sections. After
this introduction, Section 2 gives a brief
introduction to the TLM method and
demonstrates the key factors leading to lengthy
run times. Section 3 looks at the
implementation of TLM through parallel and
distributed computing methods and analyses
the reasons for the worse than expected
performance increases shown by such methods.
Section 4 introduces a new scatter processor
designed specifically for the two dimensional
TLM method and discusses the implications of
working with the new design. A new strategy

for mapping a TLM array in to hardware is
introduced in section 5. The processes
developed in sections 4 and 5 are extended to
cover stub loaded and three dimensional TLM
arrays in section 6. Section 7 details a general
processor utilising reconfigurable logic to
optimise performance for each of the above
TLM schemes within a single architecture. The
design and testing of a prototype processor is
discussed in section 8. The conclusions in
section 9 look towards the future of the
processor and suggest potential applications.

2 Review of TLM

A basic introduction to the workings of TLM is
given here. Fuller, more rigorous derivations,
and discussion of the relationship between
TLM and other techniques are contained in
references [1,2,3,4,5,6,7]

The transmission line matrix (TLM) method,
first reported by Johns and Beurle[4] in the
early 1970s, offers a simple and
unconditionally stable method for realising
time domain solutions to propagation and
diffusion problems. The basic building block
for the two dimensional (2D) TLM method for
waves is the shunt node [5], formed by an
orthogonal junction between two ideal
transmission lines of length A/, (Figure 1)

Figure 1 - Transmission Line Junction
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This unit cell is repeated to fill the region
under consideration with a Cartesian mesh of
transmission lines.

An impulse travelling towards a node in the
mesh will see an impedance mismatch at the
junction and will be scattered according to (1).
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where V), are the voltage impulses in the
branches 1-4 and the suffixes { and r denote
incident and reflected impulses respectively.
(1) is more commonly expressed as
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It can be shown[5] that there exists a direct
relationship between the voltages and currents
on the transmission lines and the electric and
magnetic fields in the region modelled by the
mesh. Impulses traverse the transmission lines
with a fixed velocity, u, thus all impulses
scattered from a node will become incident
upon the neighbouring nodes after a time

Al
At =—
U

The implementation of TLM in software
follows an iterative process,

i) impulses are injected in to the mesh by
exciting the appropriate voltages or currents.

ii) Equation (1) is applied to the incident data
at each node using an instruction loop.

iii) A second loop passes the data scattered
from each node to the neighbouring nodes for
which it forms the incident impulses in the next
iteration.

The addition of another node to the mesh
requires one further application of the scatter
and connect loops, thus processing time
increases linearly with the model size.

It has been demonstrated [5] that the
propagation velocity of a wave through the
mesh is dependent upon the direction of travel
and the mesh discretisation, Al. Propagation at
45° to the axes is unperturbed, however axial
propagation is frequency dependent, giving
rise to dispersion. The plot of the dispersion

characteristic shows that at least 10 nodes are
required per wavelength at the highest
frequency under consideration to reduce
dispersion in the mesh to an acceptable level.
This restriction upon Al, along with the need
for fine meshes to accurately model detailed
geometries, can lead to very large meshes with
many nodes. This produces a correspondingly
large run time for TLM code on serial
computers.

The basic scatter process of (1) may be
adapted to model propagation  in
inhomogenous and lossy media through the
addition respectively of capacitive or
absorptive stubs of length Al/2 to the node.
Some of the energy at the node is scattered in
to the stub and then, in the case of capacitive
stubs, returned to the node in the next iteration.
This changes the form of the scattering
equation to

VZ={% DVt VoVs = Ve 3)
m=1

Where v = 4 + yo + & , Yo and g are the
normalised capacitive and lossy  stub
impedances respectively. Because the stub
energy is not passed to neighbouring nodes the
connection process remains unchanged.

The most common scheme for three
dimensional (3D) modelling is the symmetrical
condensed node (SCN) [6] shown in fig. 2. The
scattering matrix of the SCN is a sparse 12 x
12 matrix which has discrete solutions of a
form similar to (2). As with 2D modelling,
scattered data are passed to the neighbouring
nodes.
4
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Figure 2 - The Symmetrical Condensed Node
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3D modelling of inhomogenous media is
possible through the addition of stubs to the
SCN as with the 2D shunt node. However,
recent developments have produced more
computationally efficient 3D node schemes[7]
such as the symmetrical super condensed node
(SSCN). These schemes remove the need for
some or all of the stubs, reducing the data
storage requirements for each node and
producing more efficient scattering algorithms
with simple, discrete solutions.

The introduction of more complex arrays for
inhomogenous media and 3D meshes add
further to the run times for TLM. 3D modelling
generally requires considerably larger arrays
with more nodes than 2D modelling. The
addition of stubs to the array complicates the
scattering process and increases the number of
operations required to perform each scattering
operation, thus increasing the time taken for
each loop of the scatter process.

3  Review of Parallel Implementations

The scatter and connect processes in TLM are
explicit operations. To perform the operation at
each node requires only data from that node.
This means that the processes may be applied
simultaneously to each node without conflict.
This inherent parallelism has been exploited in
the past by implementing TLM through
parallel computing[8,9,10,11,12,13]. A variety
of processing elements and connection
strategies have been used. However a number
of features are common to most or all of the
implementations.

i) There is a direct physical mapping of the
mesh to the parallel processor, i.e. each
processing element maps to one node in
the mesh. Interconnections are generally
simple near neighbour links.

ii) The simple nature of the TLM algorithm
leaves much of the processing power of
the parallel processors unused.

iii) Limited bandwidths and TLM’s low ratio
of computation to /O  cause
communication  bottlenecks, reducing
performance.

iv) The hardware requirements of each of
these methods place them beyond the
reach of most researchers.

Whilst it is clear from the literature that
implementing TLM on a parallel computer can
produce significant performance increases it is
also clear that modification of the nature of the
implementation  could produce further
performance improvements. There are 3 key
points that must be addressed.
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i} The direct mapping of one node in the
mesh to one processing element limits the
size of the model to the number of
processing elements available.

ii) The granularity of the processing elements
must match that of the problem for efficient
performance.

iii) The bandwidth provided must be sufficient
to prevent bottlenecks during the
connection phase.

The best way to ensure a granularity match is
to use a processing element designed
specifically for TLM. The use of application
specific processors to provide efficient
computing performance has grown rapidly in
recent years. There have been several
application specific TLM processors designed
in the past, these can be placed in to two
categories.

i) Single node coprocessors.
ii) Complete arrays.

The former approach, developed by Saleh[14],
uses a single node which is utilised as a
coprocessor by the software. Each time the
software encounters a scattering operation the
incident data is passed to the coprocessor and
the scattered data is returned to the host.
Scattering remains a serial process, each node
is treated individually, and the performance
increase comes from the efficiency of the
reduced instruction set (RISC) architecture of
the node processor. This approach has the
advantage that the array size is limited only by
memory availability.

The latter approach, as used by Gregory[15],
provides an array of RISC processors on to
which the TLM mesh is mapped. The host
system provides initial data and reads out
results from the array. Scatter and connect are
performed in parallel providing a significant
performance increase, however the main
advantage of the system is in the efficiency
with which each scatter computation is
performed. Each processing element has been
designed to perform only the TLM algorithm
and is therefore fully utilised the whole time.
The application specific approach, while more
efficient, has the disadvantage that the
processor may be limited to one type of TLM
calculation, e.g. stub loaded 2D.

4  Design of a Scattering Processor

When developing a new application specific
processor for TLM it is possible to consider
the scatter and connect processes separately.
The choice of architecture, i.e. coprocessor or
complete array is important. It appears that the
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array architecture provides higher throughput
as it performs some operations in parallel,
however this is offset by the higher bandwidth
and hardware requirements. The design of the
processing elements which perform the
scattering operations will go a long way
towards deciding which is the most efficient
architecture.

The design process begins with the
development of a suitable algorithm for
hardware implementation. Numerical devices
such as multipliers are difficult to implement in
logic and can lead to large, slow circuits where
as adders and subtractors are easily
constructed. Nodal schemes such as the shunt
node and the SCN require onmly additions,
subtractions and a divide by two, which may be
implemented by shifting in binary, therefore
for these schemes the most suitable algorithm
is the one which minimises the number of
addition and subtraction operations. The
modelling of variable media using either stub
loading or the SSCN requires multiplication.
Because the multiplier is the dominant
component, minimisation of the number of
multiply operations becomes the overriding
concern.

The optimised algorithm must be developed in
to a suitable hardware configuration. This
process is simplified through the use of
behavioural modelling and the VHDL
hardware description language. This allows a
circuit to be described in terms of its behaviour
(in this case the chosen TLM algorithm) and its
performance simulated. Tools are then
available to synthesise a gate level circuit
description from the behavioural VHDL. This
circuit may again be tested through simulation
before production takes place. A logical
starting point is the design of a simple two
dimensional TLM system.

The design of the scattering processor is a
trade off between a number of conflicting
requirements. Should the processor have a
RISC architecture or should the scatter process
be mapped directly to the hardware? The
former provides more flexibility but the latter
will be faster. Flexibility is a key issue;
although most of the mesh is homogenous,
boundaries, sources and targets all require
handling differently. Specialised nodes for
boundaries etc. are one solution, however these
would either be placed at fixed locations within
the mesh or would require a complex routing
procedure to allow arbitrary placement. A
more viable solution is a generalised processor

which can act as a simple scattering point, a
source, target or boundary node as required.

An early attempt by the authors to design a
TLM scatter processor is documented in [16].
This simple design was a direct mapping of the
2D scatter equation on to a field programmable
gate array (FPGA). Despite producing very
high throughput the design failed in a number
of key areas.

i) The processor would only perform a simple
scattering operation. Boundaries etc. were
untreated.

ii) The data parallel design requires a very
high bandwidth.

iii) There is no access to data within the array
of processors, only data reaching the edge
of the array can be read. Similarly there is
no access to the total incident energy data
commonly used to visualise propagation
within the mesh.

iv) The word length used is fixed by the width
of the logic.

v)

In order to overcome these problems a new

design has evolved which utilises a pipelined,

bit serial architecture. A block diagram of the

processor is shown in fig. 3.
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Figure 3 - Block Diagram of the TLM
Processing Element

T indicates a single bit wide full adder, Z-
indicates a single bit wide subtractor. The
operation of the processor is simple. The first
two levels add together the input data and the
result is divided by two by discarding the first
bit output from level 2. The sum is then routed
to four subtractors which produce the output
values. A single pin output provides access to
the total incident energy data. By varying the
timing of the control signals this processor is
capable of operating on data of any word
length. The bit serial design also reduces the
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required bandwidth considerably. The design
has one further advantage in that it is able to
perform simple boundaries (those with
reflection coefficients of p = 0, 1, -1). This is
done by incorporating the boundary in to the
scatter equation thus

N
|

N ,
r= 4_ .'~ i (4)
V.=ply2V.-V,

The data is preceded by a two bit code which is
used to define what type of boundary is
present. The code is added to all data words
allowing the arbitrary placement of boundaries
within the TLM mesh.

5  Mapping the Connect Process

The connect process is required to provide
near neighbour connection between the nodes
in the TLM mesh. Previous systems have either
performed this mapping in software or have
produced a large physical array with hardwired
interconnects between the processors on to
which the TLM mesh is mapped. The former
approach is slow whereas the latter requires a
large number of processors and limits the size
of the mesh which may be implemented. A
more flexible approach would be to have an
architecture which allows a mesh of arbitrary
size to be mapped on to a fixed number of
Processors.

The localised nature of the connect process
means that any given node can communicate
only with the adjacent nodes in its own row of
the mesh or with the adjacent nodes in the rows
immediately above and below it. Thus only
three rows of data are active at any given time.
Scattered data will either be passed to a
neighbouring node or, if a boundary is present,
it will be returned to the node from which it
was scattered. This information has been
utilised to develop a hardware mapped connect
process. Three small blocks of memory, called
the active lines, are used, holding copies of
data from three adjacent rows in the array.
Data is scattered from the centre row of the
three and the output from the processors is sent
to a logic cell which reads the boundary flag
attached to each data word and routes the data
to either the correct adjacent node or back to
the scattering node as appropriate. If the
number of processors available are less than
the number of nodes in each row of the model
then another memory block is required to hoid
data scattered left and right from the edges of
the row of processors until it is required.
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From the scatter and connect processes
described above it is simple to produce a
complete system [17] for the solution of a two
dimensional TLM mesh. A large main memory
is required to store all the current data in the
array, that is the four incident values at each
node in the current iteration. Starting at one
corner of the mesh data from the first N nodes
{where N is the number of processors
available) are passed to the scatter processors.
These output the total energy incident upon the
nodes, which may be read out to a host system
or stored in a further memory, and the scattered
data values which are passed to the connection
logic and associated memory. At the end of
each row processing moves on to the start of
the next row and continues. Data held in the
third row of the connection memory is no
longer affected by the current scattering events
and can be written back to the main store
where it forms the incident data for the next
iteration. A block diagram of the system is
shown in fig. 4.

Figure 4 - Hierarchic Block Diagram of the
TLM System

This unique mapping of the connect process
allows a small number of processors to be
mapped to a mesh of arbitrary size. This
approach has the advantage of performing the
scatter and connect processes partially in
parallel, thereby increasing performance, but
the mapping of a large mesh on to a small array
of processors eliminates the restrictions on
model size imposed on most parallel TLM
applications.

6  Extending System Capabilities

The processor described above is capable of
performing only basic 2D TLM on a
homogeneous mesh, however the techniques it
introduces may be developed to produce
similar systems capable of more complex
operations. An extension of the basic method
to allow for stub loaded 2D modelling is
straightforward and oniy requires modification
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of the scatter processors. The stub loaded
scatter processor is similar to that of the basic
processor except for the addition of a
multiplier which is preloaded with the value of
yo for the next node while processing takes
place on the current data. In addition to this
modification a small amount of memory is
required to hold both the energy in the stub at
each node and the node parameters y and Yo.
This data is not connected to neighbouring
nodes, therefore the connect process remains
unchanged.

The techniques used in two dimensional
modelling may be extended to three
dimensional modelling. The connect process in
three dimensions can be seen as identical to the
two dimensional connect process with
additional data passed to nodes in the planes
above and below the scattering node. This can
be accomplished using the memory
architecture shown in fig. 5.

The active lines and main store are identical to
the active lines and main store in the 2D
system. Data from the active lines is used to
update the main store along with the data
scattered in to the last plane from the scattering
Processors.

The scattering processor requires some
modification. Three dimensional nodes are 12
port devices thus the processors require 12
input data words as opposed to 4 for the 2D
node. The architecture of an SCN scatter
processor is identical in its operation to the
basic 2D scatter processor using pipelined
layers of adders and subtractors to produce the
output data. A further output

Main Store

‘ =>|  Prev. Plane
r

K—‘ Active Lines

Connect 23

,D———‘ Next Plane
b
rd

Figure 5 - 3D Connection Memory
Architecture

provides access to one of the field components,
selected before processing begins, for
visualisation purposes. The SSCN, used for
isotropic, inhomogeneous three dimensional
media, requires the storage of two impedance
values for each node. These can be treated in a
similar way to the stub data for the 2D stub
loaded processor, being held in a separate
memory. As with the 2D stub loaded
processor, preloading of the multipliers with
the impedance values improves performance.

7 A General, Reconfigurable Processor

Consider the architecture of the processor
required to perform 3D TLM using the SSCN,
fig. 6(a). By utilising only the required
components from this architecture we arrive at
the processor architectures for the three other
classes of TLM processor, basic (SCN) 3D,
stub loaded 2D and basic 2D, fig. 6(b-d). This
illustrates not only the close physical similarity
between all TLM schemes, but also the fact
that one architecture, with a little modification,
should be capable of performing any of the
four key TLM schemes. There are two ways of
allowing the necessary modifications to the

scatter and connect hardware,
reprogrammability or reconfigurability. A
reprogrammable processor decodes

instructions and performs the operations
dictated by its program. This approach is
slower than the hardware mapped systems
developed above as it requires instruction
fetching and decoding cycles. This approach
would also, naturally, introduce some
redundancy as not all features are implemented
in each scheme. A more suitable option is to
use reconfigurable logic such as a field
programmable gate array (FPGA)[18], which is
configured at start up but may be given a
different configuration each time it is used. The
authors use Xilinx FPGAs as the granularity of
the configurable logic blocks (CLBs) is well
suited to the problem, reducing redundancy in
the design. The system requires three
reconfigurable components, scatter, connect
and control. Using the architecture of figure
6(a) the most suitable processor configuration
can be chosen for each particular problem,
optimising performance. The operation of each
processor is identical as far as the user is
concerned, each processing scheme requires
the same set of control signals. The
configuration for each FPGA can be stored on
EPROM or as a file on a host system, therefore
it is possible to build up a library of common
configurations which may be combined as
necessary depending upon the given problem.
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Figure 6b - SCN System

Figure 6a - SSCN System Top Level
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Figure 6d - Shunt Node System

Figure 6¢ - Stub Loaded Shunt Node System
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8  Testing and Results

Modeiling of the system using the VHDL
hardware description language has allowed for
extensive testing. Synthesis of several
processor configurations realised using both
behavioural and structural synthesis has
allowed optimisation of each component in the
system. The scattering processors have been
tested on a Xilinx XC4013 and have
demonstrated correct operation. A prototype
system limited to performing basic 2D TLM is
under construction. This will allow more
rigorous testing of the system to be carried out
and will provide useful performance measures.
The prototype has taken the form of a PCI card
which may be hosted on a personal computer.
Initialisation data is fed in to the system which
then runs in the background, allowing the host
to perform other tasks. Output data may be
read from the system either after every iteration
or at the end of the processing run and access
is provided to data from individual nodes in the
model with little communication overhead.
Predictions of current operating rates suggest
that a scattering component with 8 processors
will be capable of performing up to 8 million
scattering events per second on 32 bit data.
This compares favourably with 6x10°
scattering events per second achieved using
serial code on a 200Mhz Pentium Pro
equipped PC. This may be improved by
partitioning the model between two or more
boards and allowing them to operate
concurrently. As with software
implementations there is a linear relationship
between run time and model size. This
relationship is inversely proportional to the
number of scattering processors available,
hence increasing the number of scatter
processors can have a pronounced effect on
throughput. While the current prototype
contains only 8 scatter processors a working
system may contain several thousand.

9 Conclusions

The system has two potential areas of
application, those where large arrays must be
processed and those where smaller arrays must
be processed quickly. Possible applications in
the first group include EMC studies and
ultrasonics/acoustics. The second type of
application includes time critical operations
such as medical imaging, real time remote
sensing etc.

The unique nature of the connect process
described above allows the system to operate

on any algorithm which requires a simple near
neighbour data transfer. The scatter processor
is replaced with a processor capable of
performing the new algorithm. These inciude
diffusion modelling using a link line TLM
scheme and non TLM applications such as FD-
TD and cellular automata. Through the use of
hardware description languages and logic
synthesis the development of scatter processors
for these other techniques is relatively simple.
Indeed in some cases existing software routines
may be transferred in to VHDL and thus
directly in to hardware.

10 Summary

A complete application specific processor for
the solution of the transmission line matrix
(TLM) method has been presented which
offers a considerable reduction in run times
while overcoming the limitations imposed
through conventional parallel architectures. A
unique mapping of the TLM connect process to
hardware allows a small number of scattering
processors to process a mesh of any size.
Through the use of reconfigurable logic the
processor may be optimised to perform any of
the four main TLM schemes, 2D basic, 2D
stub loaded, 3D SCN, 3D SSCN without
requiring any user reprogramming.

It is interesting to note that a processor
developed entirely from the TLM equations
may, through the use of reconfigurable
computing, be applied to many other numerical
modelling techniques.

A prototype system is under construction
which is expected to provide throughput an
order of magnitude greater than current
software implementations while future, large
scale systems may offer performance far
beyond this point. Realisation of the system as
a PCI card for a personal computer makes it an
accessible, low cost alternative to traditional
parallel computing.
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