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Abstract ─The full current thin dielectric sheet 
(TDS) approximation is considered for the 
problem of electromagnetic (EM) scattering by a 
three-dimensional (3-D) homogeneous thin chiral 
dielectric sheet. This approximation leads to 
surface integral equations (SIE) instead of the 
traditional volume integral equations (VIE). The 
surface of the thin dielectric region is modeled by 
triangle cells. Consequently, the number of 
unknowns is reduced by only surface meshes 
being utilized to discretize the dielectric geometry. 
Modified Rao-Wilson-Glisson (RWG) and pulse 
functions simultaneously for basis and testing 
functions are employed to approximate the 
tangential and normal currents in the dielectric 
layer. Then these SIEs are solved numerically 
using the conventional method of moments 
(MoM). The results by this approach show 
agreement with other methods while it greatly 
reduces the number of unknowns. 
  
Keywords ─ Electromagnetic (EM) scattering, 
method of moments (MoM), pulse basis functions, 
Rao-Wilson-Glisson (RWG) basis functions, 
surface integral equations (SIE), thin dielectric 
sheet (TDS), and volume integral equations (VIE). 
 

I. INTRODUCTION 
Over recent years, many works have been 

contributed in an effort to develop efficient 
numerical techniques to solve the electromagnetic 
(EM) problems related to three-dimensional (3-D) 
chiral materials [1-4]. In [1], the finite-difference 
time-domain (FDTD) method was extended for 
chiral bodies. In [2], the transition matrix (T-
matrix) method has been modified for chiral 
scatterer. However, each of these methods has 
certain limitations. In solving problems involving 
dispersive materials, time domain methods rely on 
the Z-transform of analytical expressions that 
describe dispersion properties of a material. The 
convergence problem restricts T-matrix’s 
application. Extensive literatures in this area show 
a continuous interest in the method of moments 
(MoM) technique for solving EM problems related 
to chiral bodies [3, 4]. The MoM based on surface 
integral equation (SIE) method has been applied to 
deal with chiral problems [3]. For complex bodies 
consisting of inhomogeneous chiral media, the 
generalizing volume integral equation (VIE) 
method involving MoM has been extended to 
solve the EM scattering [4]. As we all well know, 
volumetric formulations have been widely used in 
calculating the electromagnetic scattering from 
arbitrarily shaped, inhomogeneous, dielectric 
bodies, however, it is also well known that 
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burdened with the discretization of the object and 
the surrounding space, the number of unknowns of 
VIE rapidly grows with the size of the object, this 
results in larger memory requirement and longer 
solution time in solving the corresponding matrix 
equation, it limits the application of the simulation 
in the case of large and open radiation problems. 
The VIE is suitable for inhomogeneous dielectric 
structures. However, both VIE and general SIE 
only work well for relatively thick dielectric 
materials. They tend to suffer from unfavorable 
convergence problems when the dielectric is thin, 
especially less than one tenth of a wavelength in 
dielectric.  

By the way, more and more nonmetallic 
structures have replaced metallic ones to reduce 
the weight or the radar cross section (RCS), 
especially in the construction of radome, so that an 
investigation of a thin dielectric layer is very 
important. For a very thin dielectric, a method 
called impedance boundary condition (IBC) 
algorithm has been extensively applied to analyze 
the thin and lossy dielectric coating problems [5]. 
In this way, the geometry is modeled by surface 
meshes for the SIE instead of volume meshes for 
the VIE. The unknown quantity is then greatly 
reduced, and the resultant SIE based on the IBC is 
then solved by MoM using the popular RWG 
basis. The algorithm can greatly facilitate the 
solving of EM scattering problems involving thin 
dielectric. Although the IBC method has a high 
computational efficiency, there still have some 
constraints of the algorithm because of its plane 
wave approximation. Another method for solving 
thin dielectric sheet problems is the thin dielectric 
sheet (TDS) approximation [6]. In this 
approximation, the algorithm adopts the 
assumption that the induced volume current 
remains constant and very small in the normal 
direction because the thickness of the dielectric 
sheet is relatively small compared to the 
wavelength, then only the tangential field 
component is considered, that is the contribution 
from the normal polarization current was ignored. 
In order to improve the accuracy of the equivalent 
model of TDS, a modified TDS approximation 
referred as the full current TDS approximation [7, 
8] takes both tangential and normal currents into 
account, and the normal currents are described by 
the additional vector pulse basis functions in the 
algorithm. It can handle the EM scattering 

problem of TDS more efficiently. The full current 
TDS approximation is then extended to deal with 
the scattering problem for multilayer dielectric 
sheets and coating objects [9, 10].  

As a generalization work of the previous 
methods, the main contribution of this paper 
therefore is that the full current TDS 
approximation strategy is extended and applied to 
the scattering problems for thin chiral dielectric 
sheet. The rest of the paper is organized as 
follows. Section 2 gives a concise introduction to 
the full current TDS formulations derived from 
VIE equations to describe electromagnetic 
scattering involving thin chiral dielectric sheet. In 
section 3, The MoM solution procedure and matrix 
evaluation are described. Numerical examples are 
demonstrated and discussed in section 4. Last but 
not least, some concluding remarks are given in 
section 5. 

 
II. FORMULATION 

 
A. TDS surface integral formulation 

Let us consider a thin homogeneous bi-
isotropic sheet, as illustrated in Fig. 1. The 
geometry is assumed to be illuminated by a plane 
wave incident fields ,inc incE H . The expressions of 
electric and magnetic fields inside the bi-isotropic 
region are relatively complex due to the 
introduction of bi-isotropic constitutive relations, 
namely, 

  D E H                                  (1) 

  B H Ε ,                               (2) 

where  and  are the permittivity and 

permeability, respectively,  and are bi-isotropic 
parameters. E , H , D , and B are the complex-
valued phasors of the electric field, magnetic field, 
displacement vector, and magnetic induction 
intensity, respectively. And the D and B can be also 
written as, 

( )r ri  D E H                       (3) 

( )r ri     B H Ε ,                  (4) 

where r and r are chirality parameter and tellegen 
parameter, respectively. A bi-isotropic medium  
with 0r  and 0r  is an ordinary magneto-

dielectic  medium, the one with 0r   and 0r   
then is called chiral medium, while the one 
with 0r  and 0r   is named Tellegen medium. 
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In the paper, we only study the chiral problem as a 
special case. However, the method is applicable to 
any thin bi-isotropic media situation. 
 

 ,v vJ M

 0 0, 

 , , ,   

 
 

Fig. 1. Configuration of a thin chiral sheet. 
 

Then E , H can be expressed as,  

1 2  E D B                              (5)     

3 4  H D B ,                            (6) 

where the parameters ( 1, 2,3, 4)i i  are given by 
equations (26) to (29) in the appendix. 

The polarization volume electric/magnetic 
current density in the chiral dielectric are defined 
by, 

1 2v i i  J D B                           (7) 

      3 4v i i  M D B ,                        (8) 

where the parameters ( 1,2,3,4)i i  are given by 
equations (30) to (33) in the appendix.  

Inside the thin dielectric medium, the incident 
electric field, scattered electric field, and total 
electric field satisfy, 

    ,inc scat
die V   E r E E r r                 (9) 

where scat
dieE stands for the scattered electric field 

from the TDS, r denotes the field point. Similarly, 
by electric-magnetic duality in Maxwell theory, 
the relationships among the incident magnetic 
field, scattered magnetic field, and total magnetic 
field in the thin sheet can be expressed as,  

    ,inc scat
die V   H r H H r r              (10) 

where scat
dieH stands for the scattered magnetic field 

from the TDS. Scattering electric and magnetic 
fields from the dielectric region are written as, 

 

 

0

0

( , ) ( )

( , ) ( ) ( , ) ( )

scat
die vv

v vv v

i G dV

G dV G dV
i





   

       



 

Ε r r r' J r

r r' J r r r' M r

  (11) 
 

 

0

0

( , ) ( )

( , ) ( ) ( , ) ( )

scat
die vv

v vv v

i G dV

G dV G dV
i





   

       



 

H r r r' M r

r r' M r r r' J r

, (12) 
where ( , )G r r' is the scalar Green's function in free 

space which is defined by
0

( , )=
4

ikeG






r r'

r r'
r r'

. The 

thickness of dielectric layer is quite limited 
compared to the wavelength, so the fields vary 
very little with respect to the normal direction. 
Volume integral can be replaced by the surface 
integral at the middle section, as, 

 
tdsv S

dV dS   .                     (13) 

Thus, the volume integrals degenerate to surface 
integrals and the number of unknowns is evidently 
reduced because only surface meshes are utilized 
to discretize the geometry. In addition, to 
transform the volume integrals in equations (11) 
and (12) to surface integrals, it is necessary to 
decompose the D and B into tangential and normal 
components within the TDS, that is, 

t n D D D                            (14) 

t n B B B .                          (15) 
According to [7],  
 

  , ( 1, 2)i i i i i              D D D D   (16) 
 

and take equations (7), (8), (13), and (16) into 
equations (11) and (12), the integrals in equations 
(11) and (12) then can be approximated as, 

   

 

2
0 1 1

0

2
0 2 2

0

3 4

tds
t n n

tds
t n n

tds tds

scat
die S

S S S

S
S S S

S S

G dS G dS

G dS G dS

i G dS i G dS

 

 

 

 

     

     

       

 

 

 

Ε r D n D

B n B

D B

    


    


 





                          
(17) 
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0
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tds
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tds
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 

 

     

     

       

 

 

 

H r D n D

B n B

D B

    


    


 





                         , (18) 
 

where nS  , nS   , tS  , tdsS  denote top, bottom, side, 
and middle surfaces, respectively, and n is the unit 
normal vector directing out of the TDS at the 
interfaces. Take equations (14) and (15) into 
equations (17) and (18), the formulas (34) and (35) 
for scat

dieE and scat
dieH can be further obtained. Then the 

TDS SIEs are obtained by taking equations (34) 
and (35) into equations (9) and (10). 
 

B. MoM solution 
Because the electric flux in equation (14) is 

decomposed into normal and tangential parts, it 
can be specified by two sets of basis functions 
numerically. It is the same to magnetic intensity in 
equation (15). As a result, to solve the TDS SIEs 
by the MoM, four sets of basis functions are 
employed. For TDS, the modified RWG basis [7] 
is used for the tangential current since charge is 
enforced to exist at the edges between air-
dielectric interfaces, and the pulse basis [7-8] is 
used for the normal current. The difference 
between the modified RWG basis and the 
conventional RWG basis [11] is that the former 
defines half basis functions at the edges. The 
electric flux and magnetic intensity are 
approximated by four sets of basis functions as 
follows, 

 

1

( )
dN

t d d
d

B


 Β f r                         (19) 

1

( )
N

n n n
n

B



 Β P r ,
                      

 (20) 

1

( )
dN

t d d
d

D


 D f r ,                        (21) 

1

( )
N

n n n
n

D



 D P r ,                        (22) 

 

where Nd is the number of total edges (including 
shared and boundary edges) and N is the total 
number of triangles nT of the TDS. ( )df r is the 
modified RWG basis defined as, 

2( )

0

d
d d

dd

l
T

A
otherwise

 


  
 

ρ r
f r               (23) 

where dl  is the length of the edge and dA  is the 

area of the corresponding triangle dT  . It should be 

noted that for half basis, only dA  is defined at the 

boundary edges of an open surface. ( )nP r is the 
vector pulse basis of triangles, defined as, 

( )
0

n n
n

n

T
T


  

n r
P r

r
                     (24)

 
where nn  is the unit normal vector of the triangle 

nT . 
To convert the TDS SIEs into matrix 

equations, by Galerkin’s testing procedure, we test 
the TDS SIEs with the modified RWG basis and 
pulse basis. The matrix equation     Z I V  can 

be written as, 
DD DD DB DB E
TT TN TT TN td
DD DD DB DB E
NT NN NT NN n n
BD BD BB BB H

dTT TN TT TN t
BD BD BB BB H

nNT NN NT NN n

Z Z Z Z VD
Z Z Z Z D V

BZ Z Z Z V
BZ Z Z Z V

       
                     
           

       (25) 

where the subscript TT denotes the interaction 
between tangential current, TN and NT denotes the 
interaction between tangential and normal current, 
NN denotes the interaction between normal 
current. The superscript alphabet D and B involves 
electric current and magnetic current, respectively. 

E
tV and H

tV denote the excitation from incident 
tangential electric and magnetic fields, and 

E
nV and H

nV denote the excitation from incident 

normal electric and magnetic fields. dB  and 

dD are 1dN   unknown matrices, and nD  and nB  

are 1N   unknown matrices. The elements of  Z  

are given in the appendix.  
 

III. NUMERICAL RESULTS 
In this section, three examples are investigated. 

Only chiral problems are considered as a special 
case, so 0r   in the following examples. The 
first example is a dielectric sphere shell under the 
illumination of a plane wave incident from the 
direction where    , 0 ,0     at 0.2 GHz. The 

sphere is with inner radius 1.0 m, outer radius 
1.05m, and 2.6r  , 1r  , 0r  . It is modeled 
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by 1866 triangles. Figure 2 (a) and (b) show the 
total RCS at 0 and 90  . The circle lines by 
our proposed TDS SIE agree well with the solid 
lines by the Mie series. 
 In the second example, we consider a thin 
chiral plate as an example. In order to demonstrate 
the validity and advantages of our method, the 
results calculated by VIE are also given for 
comparison. The dimension of the chiral plate is 
1 0.5 0.05m m m   (in x, y, and z dimensions, 
respectively), and the constitutive parameters 
are 2.6 r , 1 r , and 0r  , 0.1 , 0.3 , 0.5 , 0.7 . 
The structure is illuminated by a plane wave 
incident from the direction where    , 180 ,0   . 

It is modeled by 400 triangles for the TDS SIE and 
1369 tetrahedrons for VIE. Figure 3 shows the 
normalized co-polarized and cross-polarized 
bistatic RCS ( 2

0  and 2
0  ) for scattering 

angle 0 calculated by our code and VIE. In 
order to show more clearly, the curves calculated 
by VIE are plotted only when 0.5r  . From Fig. 
3, we can conclude that they are in good 
agreements. Small discrepancy exists due to the 
approximation of TDS formulations. We also can 
see that there are big differences among  with 

different r . The cross-polarized RCS   of the 

TDS with 0r   is very small and can be ignored 

when compared with those with 0r  . With the 

increase of r , the cross-polarized RCS is 
gradually increasing up covering the observed 
angles ranges from 120o to 180o. It confirms that 
the truth of one distinct manifestation of 
"chirality" is the existence of a cross-polarization 
component in the field scattered by a chiral object 
[12]. 

Finally, the TDS approximation is applied to 
calculate 2

0   and 2
0   of a thin chiral 

circular cylinder shell with radius 0.6 m, thickness 
0.05 m, and height 0.2 m. The constitutive 
parameters are 2.6 r , 1 r , and 0.0r  , 0.2 , 

0.4 , 0.6 . The structure is illuminated by a plane 
wave incident from the direction 
where    , 0 ,0    . Figure 4 (a) and (b) show 

the normalized co-polarized and cross-polarized 
bistatic RCS ( 2

0  and 2
0  ) for scattering 

angle 0 , respectively. It is modeled by 480 

triangles for the TDS SIE and 1038 tetrahedrons 
for VIE. The results when 0.2r   calculated by 
VIE (solid lines) are plotted for comparison. We 
can see from Fig. 4, the RCS results calculated by 
our code are in good agreements with those by 
VIE. It further confirms that the cross-polarization 
component in the field scattered by a chiral object 
is existing. It shows the superiority of the method 
used in the paper over VIE on the treatment of 
TDS. 
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Fig. 2. Normalized total scattering cross section of 
a dielectric sphere shell in free space characterized 
by 2.6r  , 1r  , 0r  ; (a) RCS at 0 and 

(b) RCS at 90 . 
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Fig. 3. Normalized scattering cross section of a 
thin chiral plate in free space characterized by 

2.6r  , 1r  , and 0r  , 0.1 , 0.3 , 0.5 , 0.7 ; (a) 
co-polarized and (b) cross-polarized components. 
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Fig. 4. Normalized scattering cross section of a 
chiral circular cylinder shell in free space 
characterized by 2.6r  , 1r  , and 0r  , 0.2 , 

0.4 , 0.6 ; (a) co-polarized and (b) cross-polarized 
components. 
 

IV. CONCLUSION 
The TDS SIE method used in the paper leads 

to SIE instead of the traditional VIE. 
Consequently, the number of unknowns is reduced 
by only surface meshes being utilized to discretize 
the thin chiral dielectric sheet. Apparently, the 
approach in the paper needs fewer unknowns 
compared with VIE. In addition, it is easier for 
meshing. Modified RWG and pulse functions for 
basis and testing functions are employed to 
approximate the tangential and normal currents in 
the thin chiral dielectric layer. Finally, the TDS 
method are verified by Mie series and VIE by 
considering different shapes, and the simulation 
results show good agreements. Obviously, it is 
more advantageous to solve some thin sheet 
problems by TDS SIE than VIE. We further 
confirm that the truth of one distinct manifestation 
of "chirality" is the existence of a cross-
polarization component in the field scattered by a 
chiral object in the paper. 

The TDS approximation in the paper can deal 
with thin electric, chiral, and bi-isotropic media 
effectively. In spite of this, the method has its 
limitations because it is an approximate method. 
Scattering or radiation problems of a TDS coating 
metal are also of practical interest, the task is 
currently in progress and it will be reported later. 
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APPENDIX 
In this appendix, the parameters in equations 

(5), (6), (7), and (8) are given as, 

1


 




           
             (26) 

2


 





 
, 

           
             (27) 

      
3


 




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             (28) 

4


 
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, 
            

             (29) 
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             (31) 
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
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             (32) 

 0
4

   


 
 




 .                  (33) 

Let us now consider the integrals in equations (17) 
and (18). According to [8], when  is close to 0, 
the formulations (17) and (18) then can be 
approximated as,  
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  ,(35) 

here    , ,TG G n   r r r r , representing the 

contribution from the sources on the interface nS  . 

Note that n
D and n

B have been replaced by t tD , 

n
D and  t tB , n

B . And it  in    in   

 i  1, 2,3,4i  . 

Then evaluations of the submatrices of the 
impedance matrix in equation (25) are, 
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Consider 1d  t f , 1n n n  and 0 s
dsf n , then 

the above formulas become simple and easy to 

handle. It should note that  ( , )= ,n TG S G r r' r r , 

representing the contribution from the sources on 
the interface nS  . Consider,  

       1
, , ,n n

GG G S G S
n 

           
n r r r r r r r

        (68) 
then the integrations in equations (62) and (66) can 
be transformed to more simple forms, and then 
just integral of the Green's function needs to be 
treated, rather than that of the gradient of Green's 
function. After all these matrix elements have been 
evaluated, and then dB , dD , nD , and nB can be 
solved by direct or iterative matrix solvers. 
 

REFERENCES 
[1] V. Demir, A. Elsherbeni, and E. Arvas, “FDTD 

formulations for scattering from three dimensional 
chiral objects,” 20th Annual Review of Progress in 
Applied Computational Electromagnetics (ACES), 
Syracuse, NY, April 2004. 

[2] Y. Zhang, A. Bauer, and E. Li, “T-Matrix analysis 
of multiple scattering from parallel semi-circular 
channels filled with chiral media in a conducting 
plane,” Progress In Electromagnetics Research, 
vol. 53, pp. 299-318, 2009. 

[3] D. Worasawate, J. Mautz, and E. Arvas, 
“Electromagnetic scattering from an arbitrarily 
shaped three-dimensional homogeneous chiral 
body,” IEEE Trans. Antennas Propag., vol. 51, no. 
5, pp. 1077-1084, May 2003. 

[4] M. Hasanovic, C. Mei, J. Mautz, and E. Arvas, 
“Scattering from 3-D inhomogeneous chiral bodies 
of arbitrary shape by the method of moments,” 
IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 
1817-1825, June 2007. 

[5] T. Senior and J. Volakis, “Derivation and 
application of a class of generalized bound 
conditions,” IEEE Trans. Antennas Propag. , vol. 
37, pp. 1566-1572, 1989. 

[6] R. Harrington and J. Mautz, “Impedance sheet 
approximation for thin dielectric shells,” IEEE 
Trans. Antennas Propag., vol. 23, no. 4, pp. 531-
534, 1975. 

[7] I. Chiang and W. Chew, “Thin dielectric sheet 
simulation by surface integral equation using 
modified RWG and pulse bases,” IEEE Trans. 
Antennas Propag., vol. 54, no. 7, pp. 1927-1934, 
July 2006. 

[8] I. Chiang and W. Chew, “A coupled PEC-TDS 
surface integral equation approach for 
electromagnetic scattering and radiation from 
composite metallic and thin dielectric objects,” 

DENG, TIAN, WANG, GU, ZHOU: A THIN DIELECTRIC APPROXIMATION FOR 3-D EM SCATTERING 1220



 

IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 
3511-3516, Nov. 2006. 

[9] S. He, Z. Nie, S. Yan, and J. Hu, “Multi-layer TDS 
approximation used to numerical solution for 
dielectric objects,” Asia-Pacific Microwave 
Conference Proceedings, APMC, 2008. 

[10] S. He, Z. Nie, and J. Hu, “Numerical solution of 
scatter from thin dielectric-coated conductors based 
on TDS approximation and EM boundary 
conditions,” Progress In Electromagnetics 
Research, vol. 93, pp. 339-354, 2009. 

[11] S. Rao, D. Wilton, and A. Glisson, 
“Electromagnetic scattering by surfaces of arbitrary 
shape,” IEEE Trans. Ante nnas Propag., vol. 30, 
pp. 409-418, May 1982. 

[12] A. Dmitrenko, A. Mukomolov, and V. Fisanov, 
“Scattering of electromagnetic waves on a magneto 
dielectric with chiral properties,” Russian Physics 
Journal, vol. 39, no. 8, pp. 781-785, 1996. 

 

1221 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013




