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Abstract - A user-friendly computer code, PCB-MoM,
that is intended to be used in EMC applications for
predicting radiated emission and susceptibility of
printed circuit boards (PCB) is presented. The
formulation is based on an electric field integral
equation (EFIE) expressed in the frequency domain.
The EFIE is solved by the method of moments using
two-dimensional pulse basis funciions and one-
dimensional pulse test functions. In order to
incorporate dielectric material in the substrate a
spectral domain formulation is used. The code has
been validated by comparison with previously
published results and results obtained by other
methods and codes.

I. Introduction

Knowledge of emission and susceptibility of printed
circuit boards is important in order to control the
electromagnetic compatibility of an electronic device.
The main advantage of computation compared with
measurements, is that the former can be done already
during the design phase of the device. Thereby, a costly
redesign due to a failure in passing an EMC test can be
avoided. Stili, it is important to realise that computation is
not a substitute to EMC tests, but rather a complement.
As a complement the computation can give us insight into
different coupling phenomena etc. on the circuit board,
which can be very difficult to understand through
measurements. It is also very easy by computation to test
different methods for reducing the radiated emission or
increasing the susceptibility level. As an example, the re-
routing of the clock signais on a printed circuit board in
order to reduce the radiated emission, can hardly be done
by experiments.

The purpose of this paper is to present a user-friendly
computer program called PCB-MoM that can be used for
analysing planar conducting structures, such as PCB,
regarding radiated emission and susceptibility as well as
crosstalk. The formulation used by the program is based
on an electric field integral equation (EFIE} expressed in
the frequency domain. In order to solve the EFIE the
method of moments [1] is used. The formulation and
choice of basis and test functions is based on that in [2].
The dielectric material in-between the structure and the

ground plane is taken into account by a spectral domain
technique similar to the one presented in [3]. The spectral
domain approach is speeded up by making use of
asymptotic extraction, as explained in [4]. The circuit
board is treaied as a grounded single layer structure. The
approach is readily extended to 2 multilayer structure of
arbitrary number of layers by means of the GIDMULT
algorithm presented in [5].

II. Theory for conducting plane surfaces
in homogenous region

Referring to Fig. 1, we know that the incident field, E™,
will induce a surface current on the conducting structure
and that the surface current in turn will produce a

scattered field, E*“ . If the structure is assumed to be a
perfect conductor, we know that the tangential component
of the electric field at the surface of the structure must
vanish, i.e. (Emc + E** )tm = (. If we want to consider
a finite conductivity, the above formula becomes:

(Emc +Escar)tan = ZSJ (1)

where Z, is the surface impedance (in Ohms) and J is the
induced surface current density (in A/m) on the structure.
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Fig. 1. Planar conducting structure subject to an
incident electromagnetic field.

For the case of thin planar conducting structures, we can
assume the conducting sheet to be infinitesimally thin and
that the cwrent only can flow in two orthogonal
directions. Without loss of generality, we can assume the
conducting sheet to be placed in the xy-plane and the two
orthogonal current directions are in the x- and y-
directions. From any standard textbook on
electromagnetics, e.g. [6], we can find expressions for the
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scattered field from a surface current density expressed in
terms of a vector and a scalar potential (2).

ESCGI = CQA _@ Es{.‘a! =—ja)14y _@ (2)
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where
“ e
A= j ij,y
, 3)
q) — _ i g’f_ + ézy_
472'8 ol & &

A is the vector potential, & is the scalar potential and o is
the charge density which is related to the current density
through the continuity equation. r is the distance between
the source point (the current) and the field point. For field
points on the surface of the structure, r is given as:

+(.}"y')2 , where (x', y‘) is the

source point and (x, y) the field point. In order to solve

r= \J"J(x - x,)z

the coupled integral equations for J, and Jy obtained

by enforcing the boundary conditions in (1), we use the
method of moments [1] and the same type of basis and
test functions as introduced by Glisson & Wilton [2]. The
first step in using the method of moments is to expand the
unknowns in series of known basis functions with
unknown coefficients. The choice here is to use so called
pulse sub-domain basis functions. These functions are
unity over a rectangular area and zero elsewhere. Thus,
we express the current densities and charge density in the
following way:

J. ZJHJ ZJno Zon @
m=]

where H represents  the two-dlmensmnal pulse

function. J,,, J,,, and o, are the coefficients for the

xn?
current and charge densities, respectively. The locations
of the pulse functions for the current and charge elements
are shown in Fig. 2.
o; T

i

7 T T2

Charge clements

Jv current elements

Fig. 2. Definition of current and charge elements.
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Insertion of the expansions (4) in the integral equations
gives:

: N
E;"C(x,y)= %ZJMF(SW;')-{»

n=l
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(6)

. Tepresents the area of

— jki
where F{(S,r)= I ¢
s

Jx current element number », S vm the area of Jy current

element number m and S, the area of charge element

number i. The next step is to define two sets of testing
functions, one for equation (5) and one for equation (6).
The choice here is to use functions that are constants
along a line in x- and y-directions, respectively, Fig. 3.
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Fig. 3. Definition of test functions.
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Multiplying equation (5) by the test functions (7) and
multiplying equation (6) by the test functions (8) and
integrating over each test function gives a matrix equation

];:

2] [12.] (2] 9
151 (2] [25] [[Jyﬂ v

where the sub-matrices are defined by:

[Ei" c] is a column vector of dimension N and the

elements: (E ;ﬂc)p =4p ;M(P)
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[Z :.:] is a matrix of dimension N by N and the elements:
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and similar for the other sub-matrices. In deriving the
above expressions we have used a finite-difference
approximation for the derivatives of the currents in the
expression for the charge density. Note that in the above

expressions Z, and Z,, are non-zero only for 1= p
and m = g, respectively. Thus, the surface impedance

effects only the diagonal elements in the matrices. They
are also allowed to be complex. This means that we can
model series impedances consisting of either a resistance
and an inductance or a resistance and a capacitance
(simulating components on a PCB). The excitation vector,

[E;" C], can represent either an incident field, for a

radiated susceptibility analysis, or voltage sources, for a
radijated emission analysis. For incident field excitation
all elements of the excitation vector are non-zero and for
voltage source excitation only one or a limited number of
the elements are non-zero.

Equation (9) can easily be solved for the unknown current
distribution by matrix inversion. However, special care
must be taken when computing the matrix elements since
the integrand involved in the integration of Green’s
function becomes singular for the self-terms (when the
observation point is located within the source rectangle).
Fortunately, the singularity is integrable and can be
treated by changing to polar coordinates.

III. Including the ground plane

Equation (9) together with the matrix elements given
above is valid for a conducting sheet (representing the
conducting traces on a PCB) in the xy-plane and situated
in free-space. In order to also include the case when the
conducting sheet is placed over an infinitely large and
perfectly conducting plane (z=constant) we use image
theory. Since the image currents will be the opposite of
the currents on the sheet we do not have to increase the
size of the matrix equation, it is sufficient to modify the
matrix elements according to.

{E;“%E;@” =[[Zﬂ—z;;;;] iz, -z" [[qu
Er+E% |7z, -z2| |z, -z2]|1v,]

(10}
where the matrices without superscript are the same as
before and the matrices with the superscript “im” are
computed in the same way as the corresponding matrix
without the superscript but with the distance r changed

from \/(x—x')l +(y—}/)2 to
\/(x-x')z +(y—y’)2 +(2h)2 , when evaluating the

integrals over the Green’s function. k is the distance
between the conducting sheet and the ground plane (i.e.
the ground plane is assumed to be defined by the plane
=-h). The excitation wvectors will be given by:

E + E;ef = E;";(l —e_jzkhwse) for the case of

incident field excitation and will remain the same as for
the case without a ground plane for the case of voltage
source excitation. Thus, the matrix filling time will be
approximately doubled when we have a ground plane,
compared to the case without a ground plane, but the
matrix inversion time will remain the same.

Ancther case of interest is when we have one or several
connections from the conducting sheet to the groumd
plane. In order to solve this case we have to introduce
currents in the z-direction as well. Following the same
procedure that was used for the case when we only had x-
and -y-directed currents, similar expressions for the
currents can be derived. Details can be found in [7].

IV. Including the substrate

In order to extend the above theory so that also planar
structures on a grounded dielectric substrate could be
analysed, the natural way would be to exchange the free
space Green functions to that for a grounded dielectric
substrate. However, this approach requires that slowly
converging integrals of Sommerfelds type have to be
evaluated, see e.g. [8]-[10]. Another approach is to
perform a Fourier transform of the structure along the two



uniform directions, i.e. to perform the computation in the
spectral domain. This will give a spectrum of 1D field
problems instead of one 3D field problem [5]. This
approach will also result in slowly converging integrals,
see e.g. [3], [11]. However, the convergence can be
speeded up by extracting the asymptotic part of these
integrals and treat this separately [12]. It can also be
shown that the asymptotic part just as well can be
computed in the spatial domain and in fact is equal to the
impedance elements as given in Section III but computed

with a permittivity equal to £, = (1-5-8 )/ 2, [4]. Thus,

in order to take the grounded dielectric substrate into
account we only have to add a correction factor to the
impedance elements already computed (using the

ermittivity & 1+&,}/2). The correction factors
p of =

for the 1mpedance elements in (9) are:

( y);en' a_ "1 J' J’ Ed:el Ed&elas)]ﬂj‘;kdk dk

) an
where i=x or y, j=xor ¥y, k=porg,l=m

or n. E*“ are the asymptotic field expressions and
E? are the exact field expressions.

7 (k,r . ky) = ” £ (x,y)e’e™” dxdy

represent quantities in the spectral domain and " denotes
complex conjugate. The asymptotic field expressions in
the spectral domain correspond, in the spatial domain, to
the field from a single current element over a ground
plane in a homogencus region. Expressions for the
asymptotic part can be found in [4] and [12]. Exact field
expressions can be found in e.g. [3]. The integrals (11)
converge fast since the asymptotic field expressions

approach the exact field expressions for large k. + kj .

V. The user interface

The above theory has been implemented in a user-friendly
computer program, PCB-MoM, that can be used on an
ordinary PC running Windows 95 or NT 4.0. In using the
PCB-MoM program, analysing a printed -circuit board
(PCB) is a three-step procedure: defining the geometry,
performing a simulation and finally visualising the
computed results, Each of these steps is devoted an own
page in the program. Switching between these pages is
done simply by clicking on the corresponding page tab,
Fig. 4. In order to define the geometry the conducting
segments on the PCB are simply drawn on the screen
using the built-in CAD-like interface, Fig. 4.
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Fig. 4. The geometry definition page showing a simple
structure.

The subdivision of the segments into current and charge
elements is done automatically, but can also be set
manually by the user. Lumped, discrete voltage sources
and impedance elements can easily be defined by pointing
out the locations in the layout. In the same way, ground
points (i.e. metal connections to the underlying ground
plane) can be defined. When the geometry is defined a
simulation can be performed. All relevant parameters for
the simulation is set on an own page, Fig. 5.

Fig. 5. Part of the computation page where parameters
for the simulation are set.

On this page the excitation is either defined as voltage
sources or as an incident plane wave. The existents of a
ground plane and the dielectric constant for the region
between the structure and the ground plane are also
defined on the computation page. When a simulation is
started the program will, if requested by the user, give a
time estimate for how long the simulation will take. The
time estimate is based upon constants saved in a fiie.
Since the constants are dependent on the used computer
they are created by the program through a calibration
procedure. Before a simulation is started, the program
analyses the input data and, if possible, a symmetrical
matrix filling procedure will be used in order to reduce
the simulation time. Fig. 6 shows the required time for



filling both a full matrix and a symmetrical matrix for a
structure in free space.
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Fig. 6. Simulation times for a structure in free space on
a Pentium 166 MHz.

The results from a simulation are primarily the current
densities on the conducting traces. In addition the near-
field in selected points and the far-field in selected
angular ranges can be obtained. The computed current
densities can be viewed in different ways, as a 3D plot, as
a 2D plot or as a vector plot. Figures 7 and 8 show two
different ways of visualisation of the current density.

Fig. 7. Current density at 2 GHz for the structure in Fig.
4 shown as a 3D-plot.
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Fig. 8. Current density on a plate shown as a vector plot.
Excitation is done by a current carrying straight conductor
in the vicinity of the plate (not shown in the figure).

The computed radiation pattern in the far-field can be
viewed as a polar plot. All computed quantities can also
be listed in the program and are saved in ASCII-files.
This makes it easy to perform further analysis or plotung
using another program.

VI. Test cases and examples

The PCB-MoM program has been extensively tested
against previously published results, against results
obtained with other codes and methods, and against
measurements. At low frequencies the code has been
tested against results obtained with ordinary circuit
theory. Results for intermediate frequencies have been
tested against ordinary transmission line theory and
multiconductor transmission line theory. High frequency
results and problems involving dielectric material have
been compared with published results obtained by other
methods and also with computations done with other
programs. As an example the computed and measured
radiated emission from a simple PCB with a 10 MHz
clock oscillator is shown in Fig. 9. For the computation it
is necessary to know the output voltage from the clock
oscillator at the desired frequencies. The voltage was
measured with 2 spectum analyzer. Since this
measurement is not trivial, the uncertainty is quite high
and it probably explains the disagreement between
measurement and simulation. However, it is interesting to
note that the overall behaviour of the radiated field is
predicted well.
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Fig. 9. Measured and computed radiated emission from
a simple PCB with a 10 MHz clock oscillator.

The configuration in Fig. 10 was considered in order to
verify the results against multiconductor transmission line
theory . One of the lines in Fig. 10 was excited with a 1V
voltage source and the other ends of both lines were
terminated with 1 k2 resistors. The computed quantity
was the current through the R, resistor in line 2. Using

the multiconductor transmission line theory the per unit
length parameters, inductance matrix L and capacitance
matrix C, were first computed with LC-Calc [13] which is
a finite difference program. The matrices were found to
be:

0.383 0.067
-[0.067 0.383:|[#H/ )

30.0 =525
C=
—-5.25

30.0

The per unit length parameters were then used in BMTL
[14] which is a finite difference time domain program that
solves the multiconductor transmission line equations. In
the BMTL program the conductors were divided into 50
elements and 8192 time steps were used for the
computation. This gives a frequency resolution of
approximately 11.4 MHz. In the PCB-MoM program the
conductors were divided into 20 current elements along
the length and 4 in the transverse direction. As can be
seen from the results in Fig. 10 the agreement is good.

:l [pF/m]
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Fig. 10. Computation of crosstalk between two paraliel
lines that are terminated to a common ground plane. All
resistors are 1 k. The environment is free space.
Computed quantity is current through the R  Tesistor.

Computation done with PCB-MoM and with multi-
conductor transmission line theory implemented in a
FDTD program.

As a test of the capability of computing the near field, the
square plate in Fig. 11 was considered. The plate was
excited with a normal incident plane wave with the E-
field polarised along the x-axis. The computed quantities
were the total field components E_ and E, close to the
surface of the plate. Since PCB-MoM gives the scattered
field when the excitation is an incident field, the total

field was computed as: E*™ = E** + E™ where the
incident field is given by: E™ =£e/® . For the
computation the plate was divided into 25 by 25 charge
elements. The resulis in Fig. 11 agree very well with the
results reported in [15] and the results obtained with the
FDTD program XFDTD. In [15] two different method of
moments programs and a UTD program were used. Aiso
the £, component, although not shown here, agrees very
well with results obtained with XFDTD and results
reported in [15].



CARLSON et at USER-FRIENDLY COMPUTER CODE FOR RADIATED EMISSION AND SUSCEPTIBILITY ANALYSIS OF PCB'S 7

Einc
Ak, L
- L L
R e
. i -
I/ ’ o Y
- 008K S
e o -
- e -
&
X
0 T T T
=10
—
2
[as]
=
= 30
1y ///
&
40 = .
| Z=03.08 A, PCB-MoM
o Z=0.0% i, FDTD
50 L N T
-1 0.5 0.0 0.5 0
X-coordinate [A]

Fig. 11. Computed E_ along the line:—A<x<A4,
y =0, z=0.084 over a square plate at z=0 excited

with an incident plane wave. Plate dimension A x A .
Solid line represents PCB-MoM, circies the XFDTD
program.

For testing the capability of treating conducting structures
on a dielectric substrate the loaded rectangular loop
shown in Fig. 12 was analysed. The loop was fed by a
voltage generator with an amplitude of 1 Volt and an
internal resistance of 50 Q. The computed quantity was

" the current at the fed point and the result was compared
with result obtained by the commercial FDTD program
XFDTD. As can be seen in Fig. 12 the agreement
between the two approaches is good. However, it can be
noted that the current amplitude predicted by XFDTD
around 700 MHz is slightly too large. It should not be
higher than 20 mA due to the internal resistance of the
source.

——FCB-MoM

Current {A]

5 PR 1 !
1 10 100 1000

Frequency [MHz]

Fig. 12. Computed current amplitude at the feed point of
a loaded rectangular loop on a grounded dielectric
substrate with permittivity 4.0. Solid line represents PCB-
MoM, dotted line the XFDTD program.

As another test of the capability of treating dielectric
material the centre fed microstrip dipole in Fig. 13 was
considered. The length of the dipole was varied and the
input impedance at the feed point was calculated. The
impedance was computed as Z = U / I, where U is the

excitation voltage and [ is the current in the current
element where the voltage source is placed. Fig. 13 shows
the impedance, real and imaginary parts, computed by the
PCB-MoM program using 19 current elements. The
agreement with results reported in {9] is found to be good.
It can also be noted that the half and full wavelength
resonances are predicted accurately.
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Fig. 13. Computed input impedance for a centre fed
microstrip dipole with varying length. Stars and crosses
represent data extracted from [9].

VII. Development history

From the beginning the program was aimed to be used for
planar structures in free space and was later modified to
treat also structures on a dielectric substrate. The free
space routines and the user interface were all written in
Delphi by Borland. Since the Pascal used in Delphi does
not have support for complex numbers several routines
had to be written for treating them. This also includes
matrix inversion routines. The routines for treating
dielectric material were written in C++, also by Borland,
and added to the original program as a DLL (Dynamic
Link Library).

VIII. Conclusions

We have presented a user-friendly method of moments
program designed to be used in EMC applications where
the interest is in determining the radiated emission and
susceptibility of printed circuit boards. The intention has
been to design a tool that can be of help to EMC
engineers. The program has been extensively tested and
the agreement with results obtained by other methods and
codes has been found to be good. The code can be
obtained from the first author (jan.carlsson@sp.se).
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