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ABSTRACT 

Many numerical electromagnetic modeling 
techniques that work very well at high frequencies 
do not work well at lower frequencies. This is 
directly or indirectly due to the weak coupling 
between the electric and magnetic fields at low 
frequencies. One technique for improving the 
performance of boundary element techniques at low 
frequencies is through the use of loop-tree basis 
functions, which decouple the contributions from 
the vector and scalar electric potential. However, 
loop-tree basis functions can be difficult to define 
for large, complex geometries. This paper describes 
a method for improving the low-frequency 
performance of boundary element techniques that 
does not require the explicit definition of loop-tree 
basis functions. The method is a modified version 
of an LU recombination method proposed earlier. It 
automatically detects the linear space spanned by 
the scalar electric potential and corrects numerical 
errors during the LU decomposition of the 
impedance matrix. This method does not require 
special basis functions and is relatively easy to 
implement. Several examples are presented to 
demonstrate the effectiveness of this method. 

I. INTRODUCTION 

The boundary element method is a widely used 
numerical electromagnetic modeling technique. 
Boundary element modeling codes use the method 
of moments to solve an electric field integral 
equation (EFIE) or magnetic field integral equation 
(MFIE) to calculate equivalent currents induced on 
a surface in the presence of an exciting field. There 
are many boundary element modeling codes 
available that do an excellent job of modeling 
complex geometries at high frequencies (megahertz 
and higher). At low frequencies however, these 
codes may exhibit instabilities, particularly when 
using general purpose basis functions such as the 
popular Rao-Wilton-Glisson (RWG) [1] basis 
functions [2, 3, 4]. These instabilities can be 
explained in terms of the natural Helmholtz 
decomposition of Maxwell’s equations [5]. At low 

frequencies, the magnetic vector potential and the 
electric scalar potential become more decoupled. 
Their representations in the impedance matrix 
become heavily imbalanced [3, 6, 7] and this 
imbalance results in the loss of important 
information due to the finite precision of the 
numerical computations. 

Loop-tree basis functions have been proposed to 
overcome this difficulty [3]. These basis functions 
allow the divergence-free and the curl-free 
components of the current, which have different 
frequency dependencies, to be separated [5]. The 
round-off error due to the difference in size of the 
scalar and vector potential contributions is avoided. 
Unfortunately, loop-tree basis functions are not 
widely used because they can be difficult to work 
with; particularly if the geometry being modeled is 
large and complex. 

In [8] an LU recombination method was 
proposed that mathematically forced the scalar 
potential to be zero around loops, without explicitly 
defining new basis functions. It was readily applied 
to existing moment method algorithms. This 
method works well for simple structures like small 
loops but does not model surface currents correctly 
on large plates. 

In this paper we present a modified LU 
recombination method. This method extracts the 
linear dependence information from the L matrix 
and modifies both the L and U matrices to remove 
the error in the linear relations and recover the 
space spanned by the scalar potentials. Examples 
show that this method works better than the 
previous LU recombination method. 

The rest of the paper is organized as follows: 
Section II explains the reason for the low-frequency 
errors in boundary element codes and briefly 
describes loop-tree basis functions; Section III 
introduces the new method based on LU 
decomposition; Section IV presents several 
numerical examples; and finally in Section V, we 
provide a brief summary. 
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II. LOW-FREQUENCY PROBLEM AND 
LOOP-TREE SCHEME 

Consider the electromagnetic scattering from 
perfect electric conductors (PECs). The “mixed-
potential” form of the scattered electric field is 
expressed as 

Φ∇−−= AE ωjsca . (1) 

The first term on the right-hand side of this 
equation is directly proportional to frequency while 
the second term is not.  At low frequencies, the 
scalar potential term dominates. 

The low frequency problem can be understood 
by examining the testing process [9]. A vector 
identity states that the integration of the gradient, 
Φ∇ , is path-independent. If the scatterer mesh 

allows current to flow in closed loops, the testing of 
the scalar potentials associated with the loops 
should cancel. If, due to numerical error, the testing 
of scalar potential is not exactly zero when 
evaluated around a closed loop, the error can 
overwhelm the vector potential term in (1) at low 
frequencies. The solution to the matrix equation 
then becomes unstable. 

The construction of the loop-tree basis functions 
starts with the physical decomposition of current, 

is JJJ += , (2) 

where Js is the solenoidal current and Ji is the 
irrotational component. Loop basis functions are 
used to expand Js and tree basis functions to expand 
Ji. 

A loop basis function is associated with an inner 
node and its surrounding edges. Explicitly, the 
definition in terms of RWG basis functions is [2], 

( ) ( )∑
∈

=
ni

i
i

i
n

 loop

rfrO
λ
σ , (3) 

where fi is the RWG basis function for the ith edge 
connected to node n. λi is the length of the edge and 
the coefficient σi=±1 forces the current to flow in 
the same direction around node n. 

Tree basis functions are simply chosen from a 
subset of the RWG basis functions and are 
complementary to the loop basis functions. It is 
easy to show that the loop basis functions are 
divergence-free. Physically, that means there is no 
charge associated with the loop basis functions.  

The loop-tree basis function scheme inherently 
forces the numerical integration of Φ∇  over closed 
paths to be exactly zero and preserves the 

information contained in A. However, to take 
advantage of this technique, one has to identify all 
possible closed paths in the mesh. This requires 
searching the mesh to locate the inner nodes, 
identifying shared edges for each inner node, and 
adjusting the basis functions associated with the 
edges to orient them properly. This procedure can 
be cumbersome [2]. 

III. THE MODIFIED LU RECOMBINATION 
METHOD 

The modified LU recombination method 
described here takes advantage of the fact that the 
loop-tree basis functions are linear combinations of 
the RWG basis functions. In this method, the 
reordering of the impedance matrix is performed 
automatically without having to identify current 
loops explicitly. 

Consider the following N×N matrix equation, 

FJC =•  (4) 

obtained after applying the method of moments 
using RWG basis and testing functions. J = [Jn] is a 
vector of the unknown surface current densities 
which are normal to the edges. F = [Fm] is the 
excitation vector. C = [Cmn] is the N×N impedance 
matrix. Each row of C corresponds to an edge in 
the mesh. The elements of C are given by [10], 
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where k is the wave number and η the intrinsic 
impedance. C1 is the vector potential component 
and C2 is the scalar potential component of C. The 
function fn is the RWG basis function defined on 
triangle pair Tn. Tn is composed of two triangles, 

+
nT  and −

nT , sharing edge n. G0 is the free space 

Green’s function. r  and r'  are the observation 
and source points, respectively. We can write the 
elements of C2, the second integral on the right of 
(5), as 
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The surface divergence of the function fn, which 
is proportional to the surface charge density, is 



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n TA
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 in /
 in /

r
r

f
λ
λ , (7) 

where λ is the edge length and A is the area of the 
triangle. Using this property and defining 
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(6) can be written as 
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Suppose an inner node is surrounded by 4 
triangles, Ta, Tb, Tc, and Td and the edges shared by 
these four triangles are edges 1, 2, 3, and 4 as 
shown in Fig. 1. For simplicity, the orientations of 
the edges are defined to be counterclockwise. Now 
consider the integrals for these observation edges 
and a source edge n, also shown in Fig. 1. 
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In (10), C2in is the element on the ith row and nth 
column of C2. It is easy to show that these elements 
are dependent, and satisfy the following equation 
[8], 
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Since n can be any edge in the mesh, (11) 
indicates that rows 1, 2, 3, and 4 of C2 are linearly 
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Figure 1. Source and observation triangles. 
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dependent. So if there is an inner node in the mesh, 
the row elements in C2 associated with edges 
connecting to this inner node are linearly dependent 
and C2 is a singular matrix. 

After LU decomposition, the C2 matrix can be 
written as the product of a lower triangular matrix, 
L, and an upper triangular matrix, U. If C2 is 
singular, U is also singular and has zeros on its 
diagonal corresponding to the linearly dependent 
rows of C2.  

To illustrate this, we consider the 6 x 6 matrix 
below, 
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where x, y, z, p, q, and s are row vectors and we 
assume, 

zyxq cba ++= , (13.a) 

zps ed +=  (13.b) 

where a, b, c, d, and e are scalar variables. The LU 
decomposition can be written as in (14), or in a 
compact form as 









=








⋅








d

i

dddi

idii

dddi

ii

2

2

C
C

UU
UU

LL
0L . (15) 

Lii, Ldd, Uii, and Udd are square matrices. The 
subscript i denotes the independent rows and d 
denotes dependent rows. C2d contains the 
dependent vectors, q and s. So both Udi and Udd, 
corresponding to C2d, should be zero. In the 
numerical computation however, this zero is always 
a small but non-zero value due to the limited 
precision of the calculations. The LU 
recombination method, described in [8], enforces 
the singularity property by setting Udi and Udd to 
zero. In this way, the method forces the 

contribution of Φ∇  on closed loops to be exactly 
zero. This is not sufficient in all cases though. 
While modifying U maintains the singularity 
property of C2, it does not enforce the correct 
relationship between the dependent rows as 
expressed in (11). 

The L matrix contains the information 
pertaining to how the linearly dependent rows are 
related. If we write the row vectors on the right of 
(14) in terms of lij and uij, and apply (13), we get 
the following equations 
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which can be rewritten in the form 
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or 

RLL ⋅′=′ iidi  (17.b) 

where the prime indicates the transpose and R is a 
matrix recording the relationships between the row 
vectors. 

The square matrix Lii is nonsingular. If we 
know the exact relationship between x, y, z, p, q, 
and s, we can determine Ldi using R and Ldi. We 
can also extract the linear relationship between the 
row vectors from the L matrix by treating R as an 
unknown and solving (17). 
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C2 in Equation (5) is singular if closed loops 
exist in the mesh. The rows forming a loop are 
linearly dependent as shown in (11) and we can 
write them in a form similar to (13), 

( ) ( ) ( ) 







±+








±+








±=









4

24

3

23

2

22

1

21

λλλλ
CCCC cba (18) 

where 
i

i

λ
2C  is the ith row of C2 normalized by the 

edge length. Comparing (18) to (11), it is clear that 
the coefficients a, b, and c should be either 1 or –1. 
It is not difficult to rearrange the edges in the mesh 
so that the LU decomposition of C2 can be written 
as in (15). If we fill (17) with the L matrix and 
solve the equation, the solution R should be a 
vector with integer elements. The non-zero integers 
correspond to edges forming a loop with one of the 
dependent edges, and zero values correspond to 
edges not related to the loop. The numerical 
solution will not be exact. However, it is accurate 
enough for us to identify all the integers. So we can 
determine the edges forming a loop and how they 
are related. Moreover, we can replace the elements 
in the solution with the exact values of the integers 
and recalculate Ldi using (17). This modification, 
together with the modification of U, not only makes 
those rows dependent but also corrects their linear 
relation and recovers the scalar potential space. 

In practice, we decompose C2 in the form, 

LULC ′⋅⋅=2  (19) 

where L is the lower triangular matrix resulting 
from an LU decomposition. Since C2 is symmetric, 
the U matrix in (19) is also symmetric and U is still 
partitioned into four parts as in (15). U can then be 
modified by setting Udi, Uid, and Udd to zero. In this 
manner, we make all modifications symmetrically 
thus maintaining the symmetric property of the new 
C2 matrix. 

After the LU recombination, the errors in C2 are 
eliminated and the information from C1 is 
preserved. This can be seen from the equation 
below. 

L
UU
UU

DD
DD

L

LLULLDCCC

′















+








=

′+′=+=

dddi

idii
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21
, (20) 

where L and U are the same as in (19). D is a 
matrix such that LDLC ′⋅⋅=1 . Udi, Uid, and Udd are 
set to zero in the recombination. Their counterparts, 
Ddi, Did, and Ddd, however, are so small that the new 
C is still poorly conditioned when summing up D 

and U. In previously described loop-tree schemes, 
the frequency scaling property of the operators was 
analyzed and frequency normalization was applied 
to the elements of the EFIE matrix [5, 6]. In the 
modified LU recombination method we reduce the 
imbalance between the magnitudes of the matrix 
elements by scaling the vector potential part, that is, 
the sub matrices Ddi, Did, and Ddd in (20). This 
scaling is based directly on the magnitudes of the 
elements in C1 and C2 rather than on the frequency 
dependence. In our examples, this greatly improves 
the condition of the C matrix. 

IV. NUMERICAL RESULTS 

We applied a boundary element method 
employing RWG basis functions, the LU 
recombination method, and the modified LU 
recombination method to the analysis of the square 
loop circuit shown in Figure 2. The circuit has a 
voltage source and a resistive load. The mesh has 
74 edges and 10 inner nodes. Since the circuit itself 
is a loop, there are 11 loops in this mesh and there 
are 11 dependent rows in the C2 matrix. Figure 3 
shows the current through the load calculated by 
each of the three methods. Both the LU 
recombination method and the modified method 
calculate the current correctly down to frequencies 
as low as 1 Hz while the standard RWG method 
exhibits significant errors below 80 MHz.  

 
Figure 2. Mesh used to model a square loop circuit. 

Figure 4 shows the current on another edge, 
indicated by the thick line in Figure 2. The current 
on this edge can be divided into two parts, one is 
the actual current flowing around the loop, and the 
other is an artificial current circling the inner node. 
The old LU recombination method exhibits errors 
below 10 kHz due to the artificial currents, but the 
modified method works well as low as 1 Hz. 

Figure 5 shows a simple electric dipole antenna 
with a voltage source on the center edge. From the 
mesh we can see that the source edge is not part of 
any loop. Figure 6 compares this current through 
this edge calculated by the three methods. The LU 
recombination method fails for this example, 
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50-ohm 
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   Figure 3. Current on the load edge of the loop  

circuit. 
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  Figure 4. Current on a single edge of the loop 

circuit. 

while both the standard RWG method and the 
modified method work fine. Figure 7 compares the 
current on another edge, indicated in Figure 5 by a 
thick line. In this case only the modified LU 
recombination method yields stable results below a 
few MHz. 

 
Figure 5. Mesh used to model a short dipole. 

The dipole has a relatively simple mesh. We can 
readily observe how loops are formed around inner 
nodes in Figure 5, so it is relatively straightforward 
to implement the loop-tree scheme for this 
example. Figure 8 compares the current calculated 
by the modified LU recombination method to the 
current obtained using a loop-tree scheme. The 
results of the two methods match very well. The 

unstable results at frequencies below 100 Hz are 
due to the significant imbalance in the scale of the 
vector and scalar potential terms. When we scale up 
the vector potential, the new method yields good 
results down to a few Hz, as shown in Figure 7. 
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Figure 6. Current on the source edge of the dipole. 
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Figure 7. Current on a single edge of the dipole. 
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Figure 8. Modified LU and loop-tree results. 
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Figure 9 shows a simple circuit board 
configuration. Two traces of the same shape are 
centered over a 100-mm x 8-mm plate. The traces 
have the same length as the plate. They have a 
width of 1 mm and are placed 2 mm apart and 
2 mm above the plate. One trace has a 1-volt source 
on one end and is terminated with a 50-ohm 
resistor. The other trace has 50-ohm resistors on 
both ends. Both the traces and the plate have zero 
thickness and are modeled as PEC surfaces. In 
order to observe conductive crosstalk at very low 
frequencies, a lumped resistance is located across 
the middle of the plate. The model employs 374 
triangles and a total of 440 edges. 

The current on the load resistor of the source 
trace, modeled using the RWG basis function 
method and the modified LU recombination 
method, is shown in Figure 10. Figure 11 shows the 
calculated current through the far-end resistor of the 
victim trace. In both cases, the standard RWG 
method exhibits significant errors below a few 
MHz, while the modified LU recombination 
method is accurate down to 1 Hz. 
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Figure 10. The current on the far end of the source 

trace. 

 

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

cu
rr

en
t a

m
pl

itu
de

 (A
)

frequency (MHz)

Ix (RWG)
Ix (modified LU)

 
Figure 11. The coupled current on the far end of the 

victim trace. 

V. CONCLUSION 

In this paper, a new method to remove the low 
frequency instability inherent in the boundary 
element method using RWG basis functions is 
presented. This method uses LU decomposition of 
the impedance matrix to find the dependent 
components in the integration of the scalar 
potential. It then recovers the correct relationship 
between the dependent components, by modifying 
the L and U matrices.  

This method accomplishes the same goal as 
using loop-tree basis functions. However the new 
method extracts all the necessary information from 
the MoM matrix itself without requiring the user to 
define new basis functions. It enforces a zero scalar 
potential over closed loops and preserves the 
information from the vector potential that otherwise 
would be lost due to numerical error. Dipole and 
loop circuit examples demonstrate that this method 
is capable of working at frequencies as low as a 
few Hz. 
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Figure 9. The crosstalk example. (a) geometry; (b) side view. 
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