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ABSTRACT. The paper describes an iterative approach to the
computation of the electromagnetic scattering by isotropic,
dielectric objects partially made of weakdy nonlinear
materials. The approach is started by using a perturbative
moment-method solution based on the Sherman-Morrison-
Woodbury formula. The noniinearity is assumed to be of the
Kerr npe, iLe., the dielectric permittivity depends on the
square amplitude of the electric field The bistatic scattering
width and the field distribution are computed for some test
cases, in particular, for infinite cylinders coated and filled
with nonlinear materials. The convergence of the medium is
numerically evaluated and the results are compared with
those obtained by the iterative distorted-wave Born
approximation,

1 INTRODUCTION

An interesting perturbational version of the moment
method {1] was recently proposed by Yip and Tomas [2]. The
approach is aimed at determining the electromagnetic
scattering by a slightly perturbed scatterer, after a moment-
method solution for the original unperturbed scatterer has
already been obtained. The method applies the Sherman-
Morrison- Woodbury (SMW) updating formula and allows one
to consider changes in both the geometry and the dielectric
properties of the scatterer. The above method, called by the
authors the UMoM, is one of the various perturbational
methods that make it possible to avoid repeating a complete
computation when several scatterers, only partially different,
have to be considered in the scattering evaluation. An
overview of these methods was presented by Newman {3],
who also described an efficient combination of the moment
method with Green's function.

In this paper, the application of the UMoM, as
proposed in [2], is the starting point for the development of an
iterative approach to the computation of the electromagnetic
scattering by nonlinear dielectric objects. The interest in
evaluating the scattering by nonlinear dielectrics is generally
related to the possibility of using them as coating materials,
for example, in order to obtain apparatus for minimizing and

maximizing cross-sections in
applications.

Here the nonlinearity is assumed to be of the Kerr
type, i.e., the relative dielectric permittivity depends on the
square amplitude of the internal electric field. As long as the
nonlinearity is weak, as for most of nonlinear materials [4],
the main effect of the nonlinearity is a modification to the
field distribution at the frequency of the incident field,
whereas the process of higher-harmonics generation may be
neglected. Moreover, if the nonlinearity is weak, from a
perturbation point of view, one can assume the effective
dielectric permittivity to be approximated by writing it in
terms of the linear field. This was done by the authors in a
previous work in which they computed the bistatic scattering
width for a circular nonlinear cylinder by using an iterative
approach based on the distorted-wave Born approximation
[5]. The main limitation of this approach is related to the fact
that the effective dielectric permittivity must be weak in order
that the process may converge. This is a severe limitation, in
that a nonlinearity can usually be considered weak but the
resulting effective dielectric permittivity is not at all weak.
The authors showed that, although the nonlinearity was very
weak, it affected the bistatic scattering width in a significant
way.

scattering camouflage

If a nonlinear material is assumed to be only a
portion of the scatterer considered, the UMoM can be
successfully applied, as the weak nonlinearity can be viewed
as a perturbation of the original scattering configuration. At
this point, an iterative process is started by applying the SMW
formula, or, in a simpler way, by using the approach described
in [5], but, at the 0-t% step, the linear field (distorted-wave
Born approximation) is replaced by the field obtained by the
UMoM without iterations.

In the following, the mathematical formulation of the
approach is provided. Some test cases are described that
involve coated cylinders of circular and irregular cross-
sections. We consider infinite cylinders illuminated by
transverse-magnetic waves. As V-E = 0, E being the electric
field vector, the problem reduces to a two-dimensional scalar
one, for which the notation is simplified.
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2 MATHEMATICAL FORMULATION

Let us consider an infinite dielectric cylinder of
arbitrary cross-section, with the cylindrical axis parallel to the
z axis (Figure 1). The cylinder is illuminated by a time-
penodxc transverse-magnetic electromagnetic fieid, for which
Emc(x, yzY=E mc(x, y)z and HIOC(x,y z.t) = H. mc(x Jx +
Hy inc(y y.t)y. The propagation medium is assumed to be
lossless homogeneous, and characterized by p, and g,
Suppose the region S; to be made of a weakly nonlinear

material {isotropic and nonmagnetic) whose dielectric
permittivity is of the Kerr type [6]:
Eni(x.y) = golea(x ) + EE,(xy,)7] (1)

where £5(x,y) is the linear part and & is a nonlinear parameter.
The medium of the region S, is assumed to be inhomogeneous
both due to the nonlinearity and in the limit £,(x,y,t} — 0 {7].
To simplify the notation, let us assume that also the dielectric
permittivity of the region S| is expressed by (1), with £ = 0
and €,(x,) replaced by &1(x,y).

In order to devise an iterative approach to the
computation of the electromagnetic field distribution, let us
compute the scattering by an inhomogeneous linear scatterer
of section § = §; w S;, obtained by setting £ = 0.0
everywhere, The electric field integral equation (EFIE) for this
problem can be expressed as [8]:

DY) = D(x,p) - ik Dglenn(xy) 110"
X Hy Bk, p)dx'dy” @

where Pi(x, v) and ®Y(x,y) are the space-dependent parts of the
incident and the total electric fields (the time-dependence
exp{jot} is assumed and suppressed); HD(Z)(kOp) is the
Hankel funiction of the second kind and the zero-th order, p is
given by: p = [(x - )2 + (v - |12, and gy y) = £1(x.p) if
(x)) € Sy, gip(x.y) = €2(xy) if (xy) € S, By applying the
Richmond formulation [9] to (2), the problem solution is
reduced to solving the following algebraic system of linear
equations:

[Gl®' = ¢! 3

where:
@t unknown array of dimensions P x 1, P being the number

of subdomains. The pth element of $! is given by: ¢;=
oY ,yp), where (xp,yp) is the center of the pth

_ subdomain;
@ excitation array of dimensions P x 1 whose elements are

given by: ¢,= dli(l)(xp,yp), p=1..P;
[G]: Green's matrix of dimensions P x P whose generic
elements are:

Cylinder Cross-Section, §

&
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Fig.1 Problem geometry.

8pq = (/2)[epn(xgyy) - 1nkeagi Pkeag) - 2]
if p=g

gpq = 6/2)[£1in(xquq)'1]nkoaq'fl (koaq)HO(z)(koppq)
ifpzg
where p Poq =[G - xg? + Op - yP1V2 and ag =
(S myli2, S bemg the area of the g-th subdomaln

Let us now apply the UMoM, considering the
perturbed configuration obtained by computing the dieleciric
permittivity in (1) in terms of the linear field distribution. If
we use the same scheme as for the Richmond formulation, the
problem nurns out to be expressed by:

[Gom = ot (4)

where:
@": unknown array of dimensions P x 1;
[G'}: Green's matrix whose generic elements are:
8pq = (/D)Eqi(xqrg) - UinkeagHy Bkgag) - 2] if
P=q
&pq = (/2D)enilxgqrq) - 11mkoaq ) (ko) Ho P koppq)
if p=gq,

As the geometrical properties are kept unperiurbed and only
the electric properties are made to change, the matrix

[AG] = [G]-[G] (3
has only P» non-zero columns, comresponding to the

subdomains with perturbed characteristics. For the solution of
(4), the UMoM uses the SMW updating formula [10]:

[GT! =[G + G UK - (VITIGT UD HVITIGI1(6)

where [U] and [V] are matrices defined in the following and
[1j is a Py x Py identity matrix. The problem is the same as for
case (a) in [2], so the identification of matrices [U] and {V] is
quite immediate. In particular, U is 2 P x P, matrix whose
columns are the Py non-zero columns of [AG], and [V]is 2 Py

x P matrix whose elements are given by: vj; = 6]_], where 6
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denotes the Kronecker symbol. It follows that:
[4G] = [UIV]T ™

where [V]T is the transposed matrix of {V]). The use of the
SMW is discussed in several papers and books (see the
exhaustive list given in [2]; in the Appendix of that paper, the
formula is derived for completeness). A discussion of the
convergence of the series on which the SMW formula is
based, in terms of the matrix eigenvalues, can be found, for
example, in [10].

At this point, the nonlinear problem can be solved in
two ways. Once the first-order approximation has been
obtained, one can start the iterative process by applying the
UMoM recursively, according to the following scheme:

o Atstep k=0, set:
S0 = O ey aypdip) = Soletinlipp) + E0]
[6F0]=[G]

2);

s At step £, assume:
@ =[G 1l = {([GFIT ]+
+ [GFIAA U VIT[GR T Uy L vITIGA 111

Ent(*pYp) = EolElin(epdp) + §|¢; 2

In a simplified version of the approach, the nonlinear solution
obtained by approximating the solution for @™ in (4) by the
SMW formula is used to start an iterative process expressed
by (k= 1)

©, (63) = ) - JK, /D)5 (epnCxy)1) +
+EOL R0, 6 HD kP (8)

where (D;CZO {x,») is computed, in an approximate way, by (4}

and (6). This simplified version constitutes an improvement
over the distorted-wave Born-approximation iterative
approach proposed in [5]. In a discretized form, the above
iterative process can be written as:

k .k . S ko k
0g =bq i) T Funlipyp) + 86,10,

x Hykopp)assy )
where p, = [(x- )2 + (v -yp)2]1f2 andq=1,..,P.

In a linear case, the possibility of applying the
UMoM is related to the convergence of the series for the
SMW formula, which in turn is related to the matrix
eigenvalues. This sets rigid limits on the validity of the
approach for slightly perturbed geometries. When the
scatterer's geometry is unperturbed, the above condition can

be satisfied for a weak "excess” of permittivity. Analogously,
in the case of ponlinear scatterers, we can expect the process
to converge for weak nonlinearities only. Unfortunately, in the
present case, convergence depends on various factors: the
linear part of the dielectric permittivity, the nonlinear
coefficient, and the incident electric field. Unlike linear
scattering, for a monochromatic plane-wave TM illumination,
the amplitude, phase and frequency values contribute to the
process convergence or divergence. At present, this makes it
impossible for the authors to define a criterion that establishes
whether convergence can be reached or not, for given
perturbed and unperturbed configurations. In the Results
section, however, this aspect will be discussed by way of
several numerical examples.

To this end, let us define the following residual error:

R {k+1}[dB] = 10log) (S I { ©F (') - Dix'y) +

+ e 24) [ (e )-1107 () Hy@XEoE) du dv 1) (10)

The approach is assumed to be convergent if R{k} — 0, as
k— oo,

3 NUMERICAL RESULTS

Some test cases are now described. In the first
example, a homogeneous dielectric cylinder (g; = 1.8}, coated
with a nonlinear layer (g5 = 1.1), was illuminated by a unit
uniform plane TM-wave propagating along the x axis (Figure
2(a)). The radii of the two cylinders were such that k,a; =
0.497 and kyap = 0.6n. Figure 2 gives the values of the
bistatic scattering width (BSW), defined as [11]:

', ) = ' (x, )
D (x, IF

W19) [dB] = 10log,, [lim27p 1 an

The values of the nonlinear parameter were assumed to be (a)
£=10.01, (p) £=0.1, and (¢) § = 0.8. The linear values (£ =
0.0) are also provided. They were analytically computed by
using the recursive Richmond formula [12] (slightly corrected
in [13]}. For comparison, the figure also gives the values
obtained by applying the iterative distorted-wave Bomn-
approximation (DWBA) approach [5]. It can be noticed that
the behaviours for £ = 0.01, corresponding to a very weak
nonlinearity, and for £ = 0.1 are similar. For § = 0.8, the
iterative DWBA solution did not converge, so only the first
two iterations are shown. As expected, the iterative UMoM
always converged very fast (it should be stressed that the
relative high permittivity of the internal cylinder made the
convergence of the DWBA. problematic, even for very weak
nonlinearities). It is worth noting that, for the considered
values of the field intensity and of the scatterers' dimensions
most of the chosen values for & correspond to weak
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Bistatic scattering width of a circular cylinder (¢, = 1.8) coated with a nonlinear layer (g5 = 1.1, ka1 = 0.49m; kyap = 0.6n, P

=121, Py = 40). Comparison between the iterative approaches using the distorted-wave Born approximation (DWBA) and the
UMoM. (@) £E=0.01; (&) £=0.1; (c) £ = 0.8; (d) £ = 0.8, simplified iterative version (relation (8)).

nonlinearities, in the sense the resulting scatterers are such that
the obtained scattering distributions (predicted by the assumed
nonlinear electromagnetic model) can be regarded as slight
perturbations of those of the corresponding linear cases.

The simplified version of the proposed approach
(relation (8)} was also applied. As an example, Figure 2(d)
gives the BSW wvalue for £ = 0.8. The solution converged,
even though rather slowly, whereas, for the other two values
of &, the behaviours were similar to that of the iterative
DWBA approach.

Figure 3 gives, for the same values of the nonlinear
parameter, the amplitude of the total electric field along the x
axis [y = 0]. Finally, Figure 4 shows the plots of the residual
errors (relation (10)) for different numbers of iterations. As
long as the nonlinearity was weak (and hence the

configuration was slightly perturbed), the iterative UMoM
approach converged independently of the linear permittivity.
This is confirmed by Figure 35, which gives the BSW values
for a multilayer cylinder equal to that in the previous example,
but with an internal dielectric permittivity equal to 5.0. In this
example, the nonlinearity was partially blinded by the high
value of the nonlinear permittivity. The simplified version of
the approach (which exhibited obvious limitations similar to
those of the DWBA approach) did not converge

(R(1) = -36.2, R(2) =-31.3, R(3) = -24.7, R(5) = -2.0, K
(8)=40.5).

In another example, we considered the effects of the
ratio between the wavelength and the scatterer's dimensions by
considering a multilayer cylinder with the cross-section shown
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coated with a nonlinear layer (g5 = 1.1, £ = 0.1, kja; =
0.49m; ka5 = 0.67, P =121, P, = 40). iterative UMoM.

in Figure 6(q). The internal layer was linear (g; = 1.5),
whereas the external was nonlinear (g, = 1.5, £ = 0.2). The
illumination conditions were the same as in the previous
examples. The BSW was computed by using the iterative
UMoM for (a) k,/ = 0.48x, (b) ky/ = 0.8x, and (c) ky/ = 1.2x.
The linear values (£ = 0.) are also given in Figure 6, and the
residual errors are given in Table 1.

A linear circular cylinder (g) = 3.0) with a nonlinear

nucleus (€7 = 3.0, £ = 0.2) was then considered. The radii of
the two cylinders were such that koa; = 1.27x and k a, =
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k7| k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=B

0.48n| -20.4 | 446 -66.2 [ -86.5 |-103.2{-121.1}-125.5{-126.0
08z | -15.9[-36.1{-51.1]| -67.7] -81.8 | -85.0/-109.2{-121.7
12z | -13.3 | -286| -45.1 | -58.9| -75.6 | -88.5|-101.0{-111.9

Table I. Residual errors W{k} (dB) for different numbers of

iterations. Simulations in Fig. 6.

Figure 7 gives the BSW values computed at various iteration
steps, and Table I provides the values of the residual errors.
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k

1 2 3 4 5 10 15 20
1111197 -253{-33.0[ -39.1 ] -72.9 {-107.1]-119.0

Table II. Residual errors R{k} (dB) for different numbers of
iterations. Simulations in Fig. 7.

Finally, the plane-wave scaftering by two equal,
separate, homogeneous, circular cylinders was considered (g
= g = 4.0}. The cylinders' radii were such that k a; = k,as =
0.82n, and the distance between the two centers was such that
kod = 1.2m. As a perturbed configuration, one of the two
cylinders was assumed to be nonlinear, with £ = (.2. Figure 8
gives the BSW values computed for this configuration at
various steps. The linear values (numerically computed) are
also given for comparison.

4 DISCUSSION AND CONCLUSIONS

In this paper, the perturbational UMoM has been
applied to develop an iterative approach to the numerical
computation of the electromagnetic scattering by dielectric
cylinders of arbitrary shapes, coated with layers made of
weakly nonlinear materials (of the Kerr type). Some test cases
have been described, including multilayer circular cylinders
coated or filled with nonlinear dielectrics, under TM
illumination conditions. A comparison with data obtained by
the iterative DWBA has been made.

The approach converged very fast as long as the
nonlinearity was weak, corresponding to a slightly perturbed
configuration. For example, in the example shown in Figure 7,
the approach did not converge for £ = 2.0. But this
nonlinearity seems too high for the considered simplified
electromagnetic model of the nonlinear process (neglecting
the harmonics generation) to be realistic [14].

Future work will be devoted to applying the
proposed iterative approach to perturbed geometries for which
the nonlinearities, although weak, are such that the harmonics
generation cannot be neglected. As shown in [14], each field
component can then be expressed in integral form by coupling
coefficients that take into account the harmonics mixing.
From a perturbation point of view, the nonlinear field
provided by the UMoM could be used to start an iterative
process by which the higher-order harmonics (initially, the
third-order harmonic, if a Kerr-like nonlinearity is assumed to
be under monochromatic illumination) are first computed in
terms of the field of the fundamental frequency, and the
effects of the higher-order harmonics on the effective
dielectric permittivity are then recursively evaluated.
Convergence will of course remain an issue.

The approach has so far been applied only to
dielectric infinite cylinders under TM illumination, For these
configurations, the Richmond formulation is quite effective.
Extensions to the TE-wave case and to the three-dimensional
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case are conceptually feasible, even though more accurate
testing and weighting functions should be used for the MoM
implementation.

The UMoM considered here is not restricted to
dielectric configurations (the test case described in [2]
actually concerns perfectly conducting scatterers). Therefore,
the approach could in principle be applied to conductive
objects coated with nonlinear materials. To this end, MoM
solutions suitable for heterogeneous structures made of
dielectric and conductive materials should be used.
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